用户名: 密码: 验证码:
纳米Pd及Pd-Ru作为H_2O_2电还原催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以H_2O_2为阴极氧化剂的燃料电池,已被广泛研究用作水下和空间设备的电源中。H_2O_2作为燃料电池的氧化剂具有很多突出的优点。首先,H_2O_2是液体,储存、运输以及向电池中输送均较方便,不存在严重的安全性问题,而且H_2O_2分解的产物是水和氧气,也不会造成环境污染问题;其次,H_2O_2直接电还原是2个电子反应过程,其直接还原的交换电流密度比氧电还原的大3个数量级;最后,H_2O_2电还原是固-液两相反应,与氧气电还原的固-液-气三相反应相比,两相反应界面区更容易建立且稳定,无需气体扩散层。然而,H_2O_2作为燃料电池氧化剂仍存在两个主要的问题。一是目前的电还原催化剂不仅催化H_2O_2直接电还原,而且同时催化H_2O_2分解,从而导致电池能量密度的下降;二是目前的电催化剂的活性有待提高。因此,研制具有高活性,高选择性的H_2O_2直接电还原催化剂具有极其重要的意义。
     本论文利用纳米Pd颗粒修饰的Au旋转圆盘电极,通过强制对流条件下的线性电势扫描伏安法,研究了酸性介质中H_2O_2在纳米Pd催化剂上的电还原反应。TEM和XRD表征表明,所用的纳米Pd催化剂呈球形,结晶程度好,粒径分布窄,平均粒径为20 nm左右。动力学研究结果表明,H_2O_2在纳米Pd上电还原反应为2电子转移过程,相对于H_2O_2为一级反应,相对于H~+为零级反应,其反应的表观活化能为27.6 kJ/mol。纳米Pd对H_2O_2电化学还原反应的催化性能随电解质阴离子吸附力的增强而减弱。
     酸性介质中,纳米Ru催化剂对H_2O_2电还原反应表现了一定的催化活性。TEM和XRD表征表明,纳米Ru催化剂呈球形,结晶程度不好,表面存在无定型Ru及其氧化物。其粒径分布窄,平均粒径为10 nm左右。H_2O_2在其上的极限催化电流密度较Pd催化剂上低20 mA/cm~2,而起始还原电势却高0.35 V。纳米Ru对H_2O_2电化学还原反应的催化性能不随电解质阴离子吸附力的大小而规律的变化。纳米Ru催化剂表面的氧化物越多,H_2O_2在其上的电化学还原反应的极限电流越低,起始还原电势越高。
     利用调节pH值的化学还原法制备了Pd/C(20 wt.%)催化剂,XRD和电化学表征表明,该Pd/C催化剂的平均粒径较小,约为8.9 nm,线性伏安测试表明其对H_2O_2电还原反应有很好的催化性能。同时考察了不同操作条件对Pd/C催化剂催化活性的影响。碳载体的前处理和N_2条件下的热处理均能提高催化剂的催化活性。利用相同的制备方法,采用共浸渍方式制备了不同原子比例的碳载Pd-Ru催化剂。发现最佳的Pd、Ru比例为1:1,即PdRu/C催化剂。其粒径分布窄,平均粒径为7.5 nm。线性伏安测试表明该催化剂对H_2O_2电还原反应的催化活性高于Pd/C催化剂,这与其较大的电化学表面积和较高的合金化程度有关。
     Mg-H_2O_2半燃料电池的性能测试表明,以PdRu/C为阴极催化剂的电池性能高于以Pd/C为阴极催化剂的电池。当阳极电解液为40 g/L NaCl溶液,阴极电解液为0.4 mol/L H_2O_2+0.1 mol/L H_2SO_4+40 g/L NaCl混合溶液,电解液流速为50 mL/min,工作温度为25℃,以PdRu/C为阴极催化剂的电池的开路电压为2.2 V,当工作电流为75 ma/cm2时,电池达到最高功率密度为105 mW/cm~2;而以Pd/C为阴极催化剂的电池的开路电压约为2.0 V,工作电流为70 mA/cm~2时,电池达到最高功率密度仅为80 mW/cm~2。电池的恒流放电曲线表明,以PdRu/C为阴极催化剂的电池的稳定性优于以Pd/C为阴极催化剂的电池
Fuel cells using hydrogen peroxide as oxidant have been studied as underwateror space power sources recently. Hydrogen peroxide has several advantages asfuel cell cathode oxidants. Firstly, hydrogen peroxide is liquid, much denser thana gas phase oxidant, such as oxygen. Its handling, storage and controllable feedingto a fuel cell are easy. Secondly, the two-electron direct reduction of hydrogenperoxide has a lower activation barrier and thus a faster kinetics than thefour-electron reduction of oxygen. Thirdly, the electroreduction of liquidhydrogen peroxide at the cathode of a fuel cell occurs in a solid/liquid two-phasereaction zone, while oxygen electroreduction requires a solid/liquid/gasthree-phase region. The two-phase reaction zone is readily realizable and muchsteady during fuel cell operation than the three-phase region. However, there aretwo major problems for hydrogen peroxide as fuel cell cathode oxidant. One isthat the current electrocatalysts not only catalyze the direct electroreduction ofhydrogen peroxide, but also catalyze its chemical decomposition, resulting in thereduction of energy density of fuel cell. The other one is that the activity ofcurrent electrocatalysts remains to be enhanced. Therefore, the development ofelectrocatalysts with high activity and selectivity for the direct reduction ofhydrogen peroxide is necessary.
     Electrocatalytic reduction of H_2O_2 on Pd nanoparticles in acidic medium wasinvestigated by linear potential sweep method using an Au rotating disk electrodecovered with Pd nanoparticles. TEM and XRD analysis indicated that the Pdnanoparticles were spheres with mean particle size of around 20 nm and have highcrystallinity. The kinetics study shows that H_2O_2 reduction on Pd nanoparticles isfirst order with respect to H_2O_2 and the zero order with respect to proton. Theapparent activation energy for electroreduction of H_2O_2 on Pd nanoparticles was determined to be around 27.6 kJ/mol. The reaction proceeds via a two electronprocess. Electrolyte anions significantly affect hydrogen peroxide reductionactivity, and the activity decreases in the order ClO_4~- > HSO_4~- > Cl~-, which isconsistent with the increasing adsorption bond strength of the anions.
     The catalytic activity of Ru nanoparticles for H_2O_2 electroreduction in acidicmedium was investigated. XRD and TEM measurements showed that the meanparticle size of Ru is around 10 nm and Ru oxides existed in Ru nanoparticles.The limiting current density of H_2O_2 reduction on Ru nanoparticles was muchsmaller than that on Pd nanoparticles. However, the onset potential of H_2O_2reduction on Ru nanoparticles was 0.35 V higher than that on Pd nanoparticles.The catalytic behavior of Ru nanoparticles was independent with the increasingadsorption bond strength of the anions. The existence of oxides on the surface ofRu nanoparticle lowered the catalytic current density but increased the onsetpotential.
     A Pd/C (20wt.%) electrocatalyst was prepared by a adjusted pH chemicalreduction method. XRD and electrochemical characterization (CV) showed thatthe particle size of Pd/C was about 8.9 nm. And it has enhanced activity for H_2O_2reduction reaction. Effects of various conditions for preparation of Pd/C oncatalytic activity were investigated. The pretreatment to the C support and thethermal treatment of Pd/C in N_2 enhanced the catalytic activity of Pd/C. Pd-Rusupported on XC-72 with different Pd-Ru ratio were prepared by adjusted pHchemical reduction method. The optimal Pd-Ru ratio was 1:1. XRD, TEM andelectrochemical characterization (CV) showed that homogeneous PdRu particleswith a mean particle size of 7.5 nm were deposited on carbon support. Theoptimal PdRu/C catalyst showed higher H_2O_2 reduction activity than Pd/C in RDEtests, which may be attributed to the larger surface area and the formation ofPd-Ru alloy.
     Mg-H_2O_2 semi fuel cells with PdRu/C as cathode catalyst showed higherperformance than that using Pd/C as cathode catalyst. A peak power density of105 mW/cm~2 at the cell current density of 75 mA/cm~2 was obtained for the cellusing PdRu/C as cathode catalyst operating at 25℃. The anode fuel and cathodeoxidizer was 40 g/L NaCl, 0.4 mol/L H_2O_2+0.1 mol/L H_2SO_4+40 g/L NaCl,respectively. The electrolyte flow rate is 50 mL/min. A peak power density of 80mW/cm~2 at the current density of 70 mA/cm~2 was obtained for the cell using Pd/Cas cathode catalyst at the same operating conditions. The open circuit voltage ofthe cell using PdRu/C as cathode catalyst is 0.2 V higher than that using Pd/C ascathode catalyst. Constant current discharge at 50 mA/cm~2 tests indicated that cellwith PdRu/C cathode catalyst exhibited higher stability than that with Pd/Ccathode.
引文
[1] 毛宗强.燃料电池[M].化学工业出版社,2005:107-113页
    [2] 衣宝廉.燃料电池-高效、环境友好的发电方式[M].化学工业出版社,2000:1页
    [3] O'Hayre R,Colella W,Prinz F B et al.王晓红,黄宏,译.燃料电池基础[M].电子工业出版社,2007:7-9页
    [4] Hasvold φ, Johansen K H, Mollestad O et al. The alkaline aluminium-hydrogen peroxide power source in the Hugin Ⅱ unmanned underwater vehicle[J]. Journal of Power Sources, 1999, 80: 254-260P
    [5] Bessette R R, Cichon J M, Dischert D W et al. A study of cathode catalysis for the aluminiumrhydrogen peroxide semi-fuel cell[J]. Journal of Power Sources, 1999, 80: 248-253P
    [6] Bessette R R, Medeiros M G, Patrissi C J et al. Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications[J]. Journal of Power Sources, 2001, 96: 240-244P
    [7] Yang W, Yang S, Sun Wet al. Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells[J]. Electrochimica Acta, 2006, 52: 9-14P
    [8] Yang W, Yang S, Sun W et al. Nanostructured silver catalyzed nickel foam cathode for an aluminum-hydrogen peroxide fuel cell[J]. Journal of Power Sources, 2006, 160: 1420-1424P
    [9] Brodrecht D J, Rusek J J. Aluminum-hydrogen peroxide fuel-cell studies[J]. Applied Energy, 2003, 74: 113-124P
    [10] Dow E G. Separated flow liquid catholyte aluminum hydrogen peroxide seawater semi fuel cell[P]. US, 10037808, 2002
    [11] Dow E G, Bessette R R, Seeback G L et al. Enhanced electrochemical performance in the development of the aluminum/hydrogen peroxide semi-fuel cell[J]. Journal of Power Sources, 1997, 65: 207-212P
    [12] Hasvold φ, Stφrkersen N J, Forseth Set al. Power sources for autonomous underwater vehicles[J]. Journal of Power Sources, 2006, 162: 935-942P
    [13] Medeiros M G, Bessette R R, Deschenes C Met al. Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing[J]. Journal of Power Sources, 2001, 96: 236-239P
    [14] Medeiros M G, Bessette R R, Deschenes C Met al. Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles[J]. Journal of Power Sources, 2004, 136: 226-231P
    [15] Medeiros M G, Dow E G. Magnesium-solution phase catholyte seawater electrochemical system[J]. Journal of Power Sources, 1999, 80: 78-82P
    [16] Medeiros M G, Patrissi C J, Tucker S P et al. The development of a magnesium-hydrogen peroxide semi-fuel cell[C]. Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles. San Antonio. 2002: 51-56P
    [17] 宋玉苏,王树宗.Al/H_2O_2作为无人水下航行器动力电池的研究[J].海军工程大学学报,2003,15(6):60-63页
    [18] 唐有根,黄伯云,卢凌彬等.金属燃料电池[J].物理学与新能源材料专题,2004,33(2):85-89页
    [19] 杨维谦,杨少华,孙伟等.铝-过氧化氢燃料电池阴极的研究[J].电源技术,2006,30(5):358-361页
    [20] Bessette R R. Power and Efficiency Advancements for Low Rate Long Endurance Semi-Fuel Cells[P]. US, 20021015021, 2002
    [21] Marsh C L, Seebach G L, Zee J W V et al. Preparation of an electrocatalytic cathode for an aluminum-hydrogen peroxide battery[P]. US, 5296429, 1994
    [22] Medeiros M G, Tucker S P, Clchon J M et al. Magnesium solution phase catholyte seawater electrochemical system[P]. US, 6228527, 2001
    [23] Medeiros M G, Dow E G, Bessette R R. Magnesium anode, seawater/acid/catholyte electrolyte utilizing a palladium and iridium carbon paper cathode electrochemical system[P].US,6465124 Bl,2002
    [24]Patrissi C J.A bipolar electrode for use in a semi fuel cell[P].US,20050215015,2004
    [25]Marsh C L,Licht S L,Matthews D E.Dual flow aluminum hydrogen peroxide battery[P].US,5445905,1995
    [26]Dow E G,Yan S G,Mcdeiros M G et al.Separated flow liquid catholyte aluminum hydrogen peroxide seawater semi fuel cell[P].US,0124418,2003
    [27]Prater D N,Rusek J J.Energy density of a methanol/hydrogenperoxide fuel cell[J].Applied Energy,2003,74:135-140P
    [28]Rusek J.Direct hydrogen peroxide fuel cell[P].US,0175878,2005
    [29]Rusek J,Prater D.Direct hydrogen peroxide fuel cell utilizing proton-donating fuel[P].US,0072044,2004
    [30]Sung W,Choi J-W.A membraneless microscale fuel cell using non-noble catalysts in alkaline solution[J].Journal of Power Sources,2007,172:198-208P
    [31]Bewer T,Beckmann T,Dohle H et al.Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H_2O_2 solution[J].Journal of Power Sources,2004,125:1-9P
    [32]Choudhury N A,Raman R K,Sampath S et al.An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant[J].Journal of Power Sources,2005,143:1-8P
    [33]PoncedeLeon C,Walsh F C,Rose A et al.A direct borohydride-Acid peroxide fuel cell[J].Journal of Power Sources,2007,164:441-448P
    [34]Miley G H,Luo N,Mather J et al.Direct NaBH4/H_2O_2 fuel cells[J].Journal of Power Sources,2007,165:509-516P
    [35]Raman R K,Prashant S K,Shukla A K.A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack[J].Journal of Power Sources, 2006,162:1073-1076P
    [36]Selvarani G,Prashant S K,Sahu A K et al.A direct borohydride fuel cell employing Prussian Blue as mediated electron-transfer hydrogen peroxide reduction catalyst[J].Journal of Power Sources,2008,178:86-91P
    [37]Gu L,Luo N,Miley G H.Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell[J].Journal of Power Sources,2007,173:77-85P
    [38]Raman R K,Shukla A K.Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells[J].Journal of Applied Electrochemistry,2005,35:1157-1161P
    [39]Yamazaki S-i,Siroma Z,Senoh H et al.A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel[J].Journal of Power Sources,2008,178:20-25P
    [40]Urbach H B,Bowen R J.Efficiency of Hydrazine-Peroxide Fuel Cells[.T].Electrochemical Technology,1970,117(12):1594-1600P
    [41]Pizzariello A,Stred'ansky M,Miertus S.A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix[J].Bioelectrochemistry,2002,56:99-105P
    [42]Tartakovsky B,Guiot S R.A Comparison of Air and Hydrogen Peroxide Oxygenated Microbial Fuel Cell Reactors[J].Biotechnology Progress,2006,22:241-246P
    [43]Ramanavicius A,Kausaite A,Ramanaviciene A.Biofuel cell based on direct bioelectrocatalysis[J].Biosensors and Bioelectronics,2005,20:1962-1967P
    [44]Hasvold (?),Sterkersen N J.Electrochemical power sources for unmanned underwater vehicles used in deep sea survey operations[J].Journal of Power Sources,2001,96:252-258P
    [45]Hasvold (?).Battery system[P].US,6573008,2003
    [46]Hasvold (?),Johansen K H.The alkaline aluminium/hydrogen peroxide power source in the Hugin 3000 autonomous underwater vehicle[C].Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles.San Antonio,2002:89-94P
    [47]Honda M,Kodera T,Kita H.On the electrochemical behavior of H_2O_2 at Ag in alkaline solution[J].Electrochimica Acta,1983,28(5):727-733P
    [48]Honda M,Kodera T,Kita H.Electrochemical behavior of H_2O_2 at Ag in HCIO4 aqueous solution[J].Electrochimica Acta,1986,31(3):377-383P
    [49]Hasegawa S,Shimotani K,Kishi K et al.Electricity Generation from Decomposition of Hydrogen Peroxide[J].Electrochemical and Solid-State Letters,2005,8(2):A119-A121P
    [50]Bfezina M,Korytaa J,Phuong P-T L.Decomposition of hydrogen peroxide at a rotating silver disc in alkaline medium[J].Journal of Electroanalytical Chemistry,1972,40(1):107-111P
    [51]Prabhu V G,Zarapkar L R,Dhaneshwar R G Electrochemical studies of hydrogen peroxide at a platinum disc electrode[J].Electrochimica Acta,1981,26(6):725-729P
    [52]Damjanovic A,Dey A,Bockris J 6.Kinetics oxygen evolution and dissolution on platinum electrodes[J].Electrochimica Acta,1966,11:791-814P
    [53]Memming R.Mechanism of electrochemical reduction of persulfates and hydrogen peroxide[J].Journal of The Electrochemical Society,1969,116(6):785-793P
    [54]Venroou T G J v,Koper M T M.Bursting and mixed-mode oscillations during the hydogen peroxide reduction on a platinum electrode[J].Electrochimica Acta,1995,40(11):1689-1696P
    [55]Damjanovic A,Genshaw M A,Bockris J 6.Hydrogen peroxide formation in oxygen reduction at gold electrodes[J].Journal of Electroanalysis Chemistry,1967,15:173-180P
    [56]Damjanovic A,Genshaw M A,Bockris J 6.The mechanism of Oxygen reduction at platinum in alkaline solutions with special reference[J].Journal of Electrochemistry Society,1967,114(11):1107-1112P
    [57]Zurilla R W,Sen R K,Yeager E.The kinetics of the oxygen reduction reaction on gold in alkaline solution[J].Journal of Electrochemistry Society,1978,125(7):1103-1109P
    [58]Cere S,Vazquez M,deSanchez S R et al.Surface redox catalysis and reduction kinetics of hydrogen peroxide on copper-nickel alloys[J].Journal of Electroanalytical Chemistry,1999,470:31-38P
    [59]Goldik J S,Noe¨l J J,Shoesmith D W.The electrochemical reduction of hydrogen peroxide on uranium dioxide electrodes in alkaline solution[J].Journal of Electroanalytical Chemistry,2005,582:241-248P
    [60]Iwakura C,Matsuda Y,Tamura H.Cathodic reduction of H_2O_2 on silver in alkaline solution[J].Electrochimica Acta,1971,16(4):471-477P
    [61]Flatgen G,Wasle S,L(?)bke M et al.Autocatalytic mechanism of H_2O_2 reduction on Ag electrodes in acidic electrolyte:experiments and simulations[J].Electrochimica Acta,1999,44:4499-4506P
    [62]Fetner N,Hudson J L.Oscillations during the electrocatalytic reduction of hydrogen peroxide on a platinum electrode[J].Journal of Physical Chemistry,1990,94:6506-6509P
    [63]Savinova E R,Wasle S,Doblhofer K.Structure and activity relations in the hydrogen peroxide reduction at silver electrodes in alkaline NaF/NaOH electrolytes[J].Electrochimica Acta,1998,44:1341-1348P
    [64]Lingane J J,Lingane P J.Chronopotentiometry of hydrogen peroxide with a platinum wire electrode[J].Journal of Electroanalytical Chemistry 1963,5(6):411-419P
    [65] Mukouyama Y, Nakanishi S, Konishi H et al. Electrochemical oscillations of a new type in an H_2O_2+H_2SO_4 Pt-electrode system, appearing by addition of small amounts of halide ions[J]. Journal of Electroanalytical Chemistry, 1999, 473: 156-165P
    [66] Li X, Heryadi D, Gewirth A A. Electroreduction Activity of Hydrogen Peroxide on Pt and Au Electrodes[J]. Langmuir, 2005, 21: 9251-9259P
    [67] Eickes C, Weil K G, Doblhofer K. Faradaic impedance studies of the autocatalytic reduction of H_2O_2 on Ag electrodes in HClO_4[J]. Physical Chemistry Chemical Physics, 2000, 2: 5691-5697P
    [68] (?)trbac S, Ad(?)i(?) R R. Oscillatory phenomena in oxygen and hydrogen peroxide reduction on the Au(100) electrode surface in alkaline solutions [J]. Journal of Electroanalytical Chemistry 1992, 337(1-2): 355-364P
    [69] Merkulova N D, Zhutaeva G V, Shumilova N A et al. Reactions of hydrogen peroxide on a silver electrode in alkaline solution [J]. Electrochimica Acta, 1973, 18(2): 169-174 P
    [70] Van-velzen C J, Oostveen J M, Sluyters-rehbach M et al. Hydrogen isotape and temperature effect upon oxygen and Hydrogen peroxide reduction at the mercury electrode[J]. Journal of Electroanalysis Chemistry, 1985, 191: 175-183P
    [71] Ze(?)evi(?) S, Drazic D M, Gojkovi(?) S. Oxygen reduction on iron-IV, the reduction of hydrogen peroxide as the intermediate in oxygen reduction reaction in alkaline solutions [J]. Electrochimica Acta, 1991, 36(1): 5-14P
    [72] Matsumoto F, Uesugi S, Koura Net al. Enhancement of electrochemical reduction of hydrogen peroxide and observation of current oscillatory phenomena during its reduction on a mercury adatom-modified Au electrode[J]. Journal of Electroanalytical Chemistry, 2003, 549: 71-80P
    [73] Vazquez M V, deSanchez S R, Calvob E J et al. The electrochemical reduction of hydrogen peroxide on polycrystalline copper in borax buffer [J]. Journal of Electroanalytical Chemistry 1994, 374(1-2): 179-187P
    [74] Calvo E J, Schiffrin D J. The reduction of hydrogen peroxide on passive iron in alkaline solutions[J]. Journal of Electroanalytical Chemistry 1984, 163(1-2): 257-275P
    [75] Miao X-M, Yuan R, Chai Y-Q et al. Direct electrocatalytic reduction of hydrogen peroxide based on Nation and copper oxide nanoparticles moditied Pt electrode[J]. Journal of Electroanalytical Chemistry, 2008, 612: 157-163P
    [76] Diasa V L N, Femandes E N, Silva L M S d et al. Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(Ⅱ) -2, 4, 6-tris(2-piridil)-1, 3, 5-triazine complex adsorbed on a graphite electrode[J]. Journal of Power Sources, 2005, 142: 10-17P
    [77] Liu H, Zhang L, Zhang J et al. Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes[J]. Journal of Power Sources, 2006, 161: 743-752P
    [78] Zhang J, Anson F C. Electrochemistry of the Cu(Ⅱ) complex of 4, 7-diphenyl-1, 10-phenanthrolinedisulfonate adsorbed on graphite electrodes and its behavior as an electrocatalyst for the reduction of O_2 and H_2O_2[J]. Journal of Electroanalytical Chemistry 1992, 341(1-2): 323-341P
    [79] Martel D, Kuhn A. Electrocatalytic reduction of H_2O_2 at P_2Mo_(18)O_(62)~(6-) modified glassy carbon[J]. Electrochimica Acta, 2000, 45: 1829-1836P
    [80] L(?)tzbeyer T, Schuhmann W, Schmidt H-L. Direct electrocatalytical H_2O_2 reduction with hemin covalently immobilized at a monolayer-moditied gold electrode[J]. Journal of Electroanalytical Chemistry, 1995, 395: 341-344P
    [81] Camara G A, Lima R B d, Iwasita T. Catalysis of ethanol electrooxidation by PtRu: the influence of catalyst composition[J]. Electrochemistry Communications, 2004, 6: 812-815P
    [82] Chevillot J P, Farcy J, Hinnen Jet al. Electrochemical study of hydrogen interaction with palladium and platinum[J]. Journal of Electroanalytical Chemistry, 1975, 64: 39-62P
    [83] Col(?)n-Mercado H R, Popov B N. Stability of platinum based alloy cathode catalysts in PEM fuel cells[J]. Journal of Power Sources, 2006, 155: 253-263P
    [84] Moa Y, Sarangapanib S, Leb A et al. Electrochemical characterization of unsupported high area platinum dispersed on the surface of a glassy carbon rotating disk electrode in the absence of Nation(?) or other additives[J]. Journal of Electroanalytical Chemistry, 2002, 538-539: 35-38P
    [85] Kumar S, Zou S. Electroreduction of O2 on uniform arrays of Pt and PtCo nanoparticles[J]. Electrochemistry Communications, 2006, 8: 1151-1157P
    [86] Lima F H B, Lizcano-Valbuena W H, Teixeira-Neto E et al. Pt-Co/C nanoparticles as electrocatalysts for oxygen reduction in H_2SO_4 and H_2SO_4/CH_3OH electrolytes[J]. Electrochimica Acta, 2006, 52: 385-393P
    [87] Luo J, Njoki P N, Lin Y et al. Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen[J]. Electrochemistry Communications, 2006, 8: 581-587P
    [88] Guo J, Sun G, Sun S et al. Polyol-synthesized PtRu/C and PtRu black for direct methanol fuel cells[J]. Journal of Power Sources, 2007, 168: 299-306P
    [89] Lemos S G, Oliveira R T S, Santos M C et al. Electrocatalysis of methanol, ethanol and formic acid using a Ru/Pt metallic bilayer[J]. Journal of Power Sources, 2007, 163: 695-701P
    [90] Wang W, Zheng D, Du C et al. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction[J]. Journal of Power Sources, 2007, 167: 243-249P
    [91] Xu C, Shen P k, Liu Y. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide[J]. Journal of Power Sources, 2007, 164: 527-531P
    [92] Zhu Y, Kang Y, Zou Z et al. A Facile Preparation of Carbon-Supported Pd Nanoparticles for Electrocatalytic Oxidation of Formic Acid[J]. Electrochemistry Communications, 2008, 10(5): 802-805P
    [93] Wang Z-B, Yin G-P, Shao Y-Y et al. Electrochemical impedance studies on carbon supported PtRuNi and PtRu anode catalysts in acid medium for direct methanol fuel cell[J]. Journal of Power Sources, 2007, 165: 9-15P
    [94] Zhang L, Lu T, Bao J et al. Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell[J]. Electrochemistry Communications, 2006, 8(10): 1625-1627P
    [95] Garcia A C, Paganin V A, Ticianelli E A. CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC[J]. Electrochimica Acta, 2008, 53(12): 4309-4315P
    [96] Zhang L, Lee K, Zhang J. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts[J]. Electrochimica Acta, 2007, 52(9): 3088-3094P
    [97] Zheng H T, Li Y, Chen S et al. Effect of support on the activity of Pd electrocatalyst for ethanol oxidation[J]. Journal of Power Sources, 2006, 163(1): 371-375P
    [98] Zhang L, Lee K, Zhang J. Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd-Co alloy electrocatalysts[J]. Electrochimica Acta, 2007, 52: 7964-7971P
    [99] Wang X, Tang Y, Gao Y et al. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell[J]. Journal of Power Sources, 2008, 175: 784-788P
    [100] Huang Y, Zhou X, Liao J et al. Synthesis of Pd/C Catalysts with Designed Lattice Constants for the Electro-oxidation of Formic Acid[J]. Electrochemistry Communications, 2008, 10(8): 1155-1157P
    [101] Yoo E, Okada T, Kizuka T et al. Effect of carbon substrate materials as a Pt-Ru catalyst support on the performance of direct methanol fuel cells[J].Journal of Power Sources,2008,180:221-226P
    [102]Wang J,Yin G,Wang G et al.A novel Pt/Au/C cathode catalyst for direct methanol fuel cells with simultaneous methanol tolerance and oxygen promotion[J].Electrochemistry Communications,2008,10:831-834P
    [103]Spinace E V,Farias L A,Linardi M et al.Preparation of PtSn/C and PtSnNi/C electrocatalysts using the alcohol-reduction process[J].Materials Letters,2008,62:2099-2102P
    [104]Guo D-J,Zhao L,Qiu X-P et al.Novel hollow PtRu nanospheres supported on multi-walled carbon nanotube for methanol electrooxidation[J].Journal of Power Sources,2008,177:334-338P
    [105]Amorim C,Keane M A.Palladium supported on structured and nonstructured carbon:A consideration of Pd particle size and the nature of reactive hydrogen[J].Journal of Colloid and Interface Science,2008,322(1):196-208P
    [106]Zheng J-S,Zhang X-S,Li P et al.Effect of carbon nanofiber microstructure on oxygen reduction activity of supported palladium electrocatalyst[J].Electrochemistry Communications,2007,9:895-900P
    [107]Yuan D,Xu C,Liu Y et al.Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation[J].Electrochemistry Communications,2007,9(10):2473-2478P
    [108]Yang S,Zhang X,Mi H et al.Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid[J].Journal of Power Sources,2007,175(1):26-32P
    [109]Gurrath M,Kuretzky T,Boehm H P et al.Palladium catalysts on activated carbon supports Influence of reduction temperature,origin of the support and pretreatments of the carbon surface[J].Carbon,2000,38:1241-1255P
    [110]Rodriguez-Reinoso F.The role of carbon materials in heterogeneous catalysis[J].Carbon,1998,36(3):159-175P
    [111]Liu Z,Hong L,Tham M P et al.Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells[J].Journal of Power Sources,2006,161:831-835P
    [112]Cho Y-H,Choi B,Cho Y-H et al.Pd-based PdPt(19:l)/C electrocatalyst as an electrode in PEM fuel cell[J].Electrochemistry Communications,2007,9(3):378-381P
    [113]Li H,Sun G,Jiang Q et al.Preparation and characterization of Pd/C catalyst obtained in NH3-mediated polyol process[J].Journal of Power Sources,2007,172(2):641-649P
    [114]Stonehart P.Development of alloy electrocatalysts for phosphoric acid fuel cells (PAFC)[J].Journal of Applied Electrochemistry,1992,22:995-1001P
    [115]Hurlen T,Sandler Y L,Pantier E A.Reaction of oxygen and hydrogen peroxide at silver electrodes in alkaline solutions[J].Electrochimica Acta,1966,11:1463-1473P
    [116]Salvador-Pascual J J,Cital'an-Cigarroa S,Solorza-Feria O.Kinetics of oxygen reduction reaction on nanosized Pd electrocatalyst in acid media[J].Journal of Power Sources,2007,172:229-234P
    [117]Cao D,Wieckowski A,Inukai J et al.Oxygen Reduction Reaction on Ruthenium and Rhodium Nanoparticles Modified with Selenium and Sulfur[J].Journal of The Electrochemical Society 2006,153:A869-A874P
    [118]Mallat T,Polyanszky E,Petro J.Electrochemical study of palladium powder catalysts[J].Journal of Catalysis 1976,44 345-351P
    [119]Pattabiraman R.Electrochemical investigations on carbon supported palladium catalysts[J].Applied Catalysis A:General,1997,153:9-20P
    [120]Stewart K L,Gewirth A A.Mechanism of Electrochemical Reduction of Hydrogen Peroxide on Copper in Acidic Sulfate Solutions[J].Langmuir,2007,23:9911-9918P
    [121] Cai L-T, Chen H-Y. Electrocatalytic reduction of hydrogen peroxide at platinum microparticles dispersed in a poly(o-phenylenediamine) film[J]. Sensors and Actuators B, 1999, 55: 14-18P
    [122] Mustain W E, Prakash J. Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt-palladium electrocatalysts in acid media[J]. Journal of Power Sources 2007, 170: 28-37P
    [123] Schmidt T J, Paulus U A, Gasteiger H A et al. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions [J]. Journal of Electroanalytical Chemistry, 2001, 508(1-2): 41-47 P
    [124] Hor(?)nyi G, Inzelt G. Study of the adsorption of chloride ions on platinum electrodes from concentrated solutions of H_2SO_4, H_3PO_4 and HClO_4[J]. Journal of Electroanalytical Chemistry, 1978, 86: 215-218P
    [125] Alexeyeva N, Laaksonen T, Kontturi K s et al. Oxygen reduction on gold nanoparticle/multi-walled carbon nanotubes modified glassy carbon electrodes in acid solution[J]. Electrochemistry Communications, 2006, 8: 1475-1480P
    [126] Tominaka S, Momma T, Osaka T. Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes: Preparation and characterization[J]. Electrochimica Acta, 2008, 53: 4679-4686P
    [127] Ribadeneira E, Hoyos B A. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells[J]. Journal of Power Sources, 2008, 180: 238-242P
    [128] Rivera-Noriega R, Castillo-Hern(?)ndez N, Soto-Guzm(?)n A B et al. Oxygen reduction on RuxFey cluster electrocatalyst in acid electrolyte [J]. International Journal of Hydrogen Energy, 2002, 27(4): 457-460P
    [129] Alonso-Vante N, Cattarin S, Musiani M. Electrocatalysis of O_2 reduction at polyaniline+molybdenum-doped ruthenium selenide composite electrodes[J]. Journal of Electroanalytical Chemistry, 2000, 481: 200-207P
    [130]Zhou W P,Lewera A,Larsen R et al.Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid[J].Journal of Physical Chemistry B 2006,110:13393-13398 P
    [131]Li H,Sun G,Cao L et al.Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation[J].Electrochimica Acta,2007,52:6622-6629P
    [132]Guo J,Sun G,Wang Q et al.Carbon nanofibers supported Pt-Ru electrocatalysts for direct methanol fuel cells[J].Carbon,2006,44:152-157P
    [133]Cao L,Sun G,Li H et al.Carbon-supported IrSn catalysts for a direct ethanol fuel cell[J].Electrochemistry Communications,2007,9(10):2541-2546P
    [134]Solla-Gullon J,Vidal-Iglesias F,Montiel V et al.Electrochemical characterization of platinum-ruthenium nanoparticles prepared by water-in-oil microemulsion[J].Electrochimica Acta,2004,49:5079-5088P
    [135]Duron S,Rivera-Noriega R,Nkeng P et al.Kinetic study of oxygen reduction on nanoparticles of ruthenium synthesized by pyrolysis of Ru_3(CO)_(12)[J].Journal of Electroanalytical Chemistry,2004,566:281-289P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700