用户名: 密码: 验证码:
金属微纳结构制备中多光子光化学还原过程控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属微纳结构是指金属纳米颗粒或者金属原子/离子通过一系列物理和化学变化过程所形成的具有微米或纳米尺寸几何外形。金属微纳结构的表面等离子体效应及与之相关的应用受到人们广泛的关注。金属表面等离子体的频率和强度与金属微纳结构的几何构型、尺寸和表面形貌有密切关系,因而金属微纳结构的制备是目前研究的一个热点。然而,现在大部分的加工手段只能制备出几何构型较简单的二维结构,对于复杂三维结构的制备无能为力,这已经成为认识与三维金属纳米结构相关的新现象、新效应和新原理的巨大瓶颈,同时也极大限制了基于这些新发现的三维纳米器件的开发和应用。因此发展纳米尺度三维金属结构的重要性不言而喻。
     本论文主要研究目的是解决金属微纳结构制备中多光子光化学还原过程控制问题,以制备纳米尺度的金属结构。我们通过将表面活性剂引入多光子光还原过程,限制了金属纳米颗粒的还原生长,使多光子加工技术的金属加工分辨率超过传统光学理论衍射极限,实现了纳米尺度的金属加工。同时,我们研究了加工条件对银微纳结构表面形貌、外形以及连续性的影响,揭示了在多光子过程中存在的光镊效应和激光消融效应与金属微结构形貌的关系。这对进一步研究三维金属微纳结构的光电性能以及构筑微器件具有重要意义。
     本文分六章,各章具体内容如下:
     第一章:本章详细介绍了相关研究背景。综述了金属纳米材料和金属微纳结构的性质和应用;概述了微纳结构不同的加工方法;详细介绍了多光子技术的原理、特点和应用,以及目前使用多光子技术加工得到的各种微纳结构。阐述了本论文所进行的研究工作的目的和意义。
     第二章:本章研究了银氨络离子水溶液的光学吸收性质和在该溶液中银离子的多光子光还原特性,考察了不同激光功率、曝光时间和扫描速度对金属银微结构尺寸和表面形貌的影响,以及激光加工条件与组成银微结构的银颗粒的尺寸和形貌的关系。
     第三章:本章通过将饱和脂肪酸盐表面活性剂引入多光子光还原金属银微结构的制备,研究了饱和脂肪酸盐结构对银微结构的表面形貌和尺寸的影响,发现增加脂肪酸盐碳链的长度可以促进银离子还原并可以减小银微结构的尺寸、提高表面光滑度。通过改变加工条件,考察了激光功率对银点和银线结构制备的影响,以及金属激光加工阈值的变化。通过选择合适的加工条件,银线的宽度可超越光学衍射极限。探讨表面活性剂辅助多光子光还原制备银微纳结构的机理,通过离子迁移理论计算模拟了随曝光时间增长银点结构直径的变化趋势。这些研究为进一步提高多光子金属微结构加工精度提供了基础。
     第四章:本章使用表面活性剂n-癸酰肌氨酸钠盐通过多光子光还原制备一维/二维/三维金属银微纳结构,利用表面活性剂对银纳米颗粒生长的限制,使银线的宽度达到纳米尺寸,银柱的宽度接近纳米尺寸。通过调整激光加工功率和激光焦点扫描速度,来改变银微纳结构的表面形貌和外形,并进一步对银线进行溶剂和高温退火,重塑银微纳结构的形貌、改变银线的连续性。通过制作银电极和金属银光栅证明其电导性,为今后银微纳结构的光电学应用提供了参考。
     第五章:本章使用多光子光还原技术在琼脂糖水凝胶中制备金属银微纳结构,研究了凝胶中各种化学物质配比对银线连续性的影响,考察了在改变加工条件下,包埋在水凝胶中的结构形态和线宽。通过比较不同的物质配比和加工条件下制备银线的形貌,分析了有利于提高银线连续性和尺寸的因素,为进一步提高水凝胶中银微结构加工精度打下了基础。
     第六章:本章对本论文的研究工作和结果进行了总结,并对未来研究进行了展望。
Metallic micro/nano structures are formed through successive chemical and physical reactions of metal nanoparticles or atoms/ions, which finally achieve a shape with the geometry in micro/nano scales. These structures have attracted much attention due to their unique surface Plasmon resonance (SPR) characteristics and their SPR-related applications. Great efforts have been made concerning the fabrication of metallic micro/nano structures, due to the strong dependence of the resonance frequency and strength of the SPR on their geometry, size and surface morphology. However, most approaches are just suitable for the fabrication of simply two-dimensional (2D) structures. The lack of methods for the fabrication of three dimensional (3D) structures has greatly inhibited the new experimental finding in the research of metallic nanostructures, which also limit the potentials of 3D nano-devices applications. Therefore, it is critical important to develop the fabrication techniques for the 3D metallic nanostructures.
     In this work, we focused on the fabrication of metallic nanostructure. We introduced surfactants into multiphoton induced photoreduction (MPR) process to inhibit the growth of metal particles, which led to nanometer scale fabrication exceeding the light diffraction limit. Furthermore, we investigate the dependence of surface morphologies and continuities of metallic structures on fabrication conditions. We found many unexpected effects in MPR, such as the optical tweezer, thermal and laser ablation effects, which also greatly influence morphologies of metallic structures. These researches may open the way for both the exploration of the optical/electronical properties of 3D metallic structures and the fabrication of micro/nano device in future.
     The thesis contains six chapters and main points of each chapter are listed as follows:
     Chapter 1: This chapter covered the background of the research. It reviewed applications and properties of metallic micro/nano structures, microfabrication methods and the principle, characteristics and applications of multiphoton microfabrication. The purpose, significance and contents were addressed in the last part.
     Chapter 2: Silver microstructures were fabricated in aqueous solution by MPR. Surface morphologies and size dependence of silver structures on the laser power and exposure time was investigated. Moreover, the size and morphologies dependence of silver particles produced in MPR was also explored.
     Chapter 3: Silver microstructures were fabricated in aqueous solution mixed with fatty salts by MPR. Surface morphologies and size dependence of silver structures on the chain length of fatty salts was investigated. Not only the feature size of the silver structure was reduced but also the surface smoothness was improved by increasing the chain length of the fatty salts. The threshold for the fabrication of silver structures was found by changing the laser irradiation condition. The size of silver structures can exceed the diffraction limit by optimizing the fabrication condition. Furthermore, the mechanism for surfactant assisted MPR was discussed. The dependence of the size of silver dots on the exposure time was simulated by using ions diffusion model.
     Chapter 4: 1D/2D/3D silver micro/nano structures were fabricated by using n-decanoylsarcosine sodium in MPR. The smallest feature size of silver structures was in nanometer scale. The morphologies and shapes dependence of silver structures on the fabrication condition was investigated. The high temperature and solvent annealing process was also used to modify morphologies of the silver structures. In addition, the electrical conductivity of silver line was estimated by fabricating silver electrodes and silver gratings, which open the way for the investigation of the optical/electronical properties of silver micro/nano structures.
     Chapter 5: Silver microstructures were fabricated in agarose gel. The morphologies and size dependence of silver structures on the ratio of reagent contents and fabrication condition was explored. The factors for improving the continuity and reducing the size of silver lines was found, which may provided the base for improving the fabrication resolution in gels.
     Chapter 6: Conclusions of main research results and corresponding future researches were provided in this chapter.
引文
[1] R. P. Feynman. In Engineering and Science, The Caltech Alumni Magazine 1960.
    [2]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 2001.
    [3]朱静.纳米材料与器件.北京:清华大学出版社, 2003.
    [4]张立德,解思深.纳米材料和纳米结构-国家重大基础研究项目新进展.北京:化学工业出版社, 2005.
    [5] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl and R. E. Smalley "C-60 - buckminsterfullerene." Nature 1985, 318: 162.
    [6] S. Iijima "Helical microtubules of graphitic carbon." Nature 1991, 354: 56.
    [7] S. Mao, G. H. Lu and J. H. Chen "Coating carbon nanotubes with colloidal nanocrystals by combining an electrospray technique with directed assembly using an electrostatic field." Nanotechnology 2008, 19.
    [8] Y. T. Nien, B. Zaman, J. Ouyang, I. G. Chen, C. S. Hwang and K. Yu "Raman scattering for the size of cdse and cds nanocrystals and comparison with other techniques." Mater. Lett. 2008, 62: 4522.
    [9] H. T. Yu and S. L. Brock "Effects of nanoparticle shape on the morphology and properties of porous cdse assemblies (aerogels)." Acs Nano 2008, 2: 1563.
    [10] J. Goldberger, R. R. He, Y. F. Zhang, S. W. Lee, H. Q. Yan, H. J. Choi and P. D. Yang "Single-crystal gallium nitride nanotubes." Nature 2003, 422: 599.
    [11] W. S. Su, T. T. Chen, C. L. Cheng, S. P. Fu, Y. F. Chen, C. L. Hsiao and L. W. Tu "Built-in surface electric field, piezoelectricity and photoelastic effect in gan nanorods for nanophotonic devices." Nanotechnology 2008, 19.
    [12] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang "Room-temperature ultraviolet nanowire nanolasers." Science 2001, 292: 1897.
    [13] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono "Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor." Science 2003, 300: 1269.
    [14] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets and R. Hillenbrand "Near-field microscopy through a sic superlens." Science 2006, 313: 1595.
    [15] D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda and K. Takatori "Ultrahigh-quality silicon carbide single crystals." Nature 2004, 430: 1009.
    [16] J. W. Tringe, G. Vanamu and S. H. Zaidi "Templated control of au nanospheres in silica nanowires." J. Appl. Phys.2008, 104.
    [17] H. J. Chen, X. S. Kou, Z. Yang, W. H. Ni and J. F. Wang "Shape- and size-dependent refractive index sensitivity of gold nanoparticles." Langmuir 2008, 24: 5233.
    [18] B. K. Juluri, Y. B. Zheng, D. Ahmed, L. Jensen and T. J. Huang "Effects of geometry and composition on charge-induced plasmonic shifts in gold nanoparticles." J. Phys.Chem.C 2008, 112:7309.
    [19] A. S. Barnard and L. A. Curtiss "Modeling the preferred shape, orientation and aspect ratio of gold nanorods." J.Mater.Chem. 2007, 17: 3315.
    [20] H. A. Keul, M. Moller and M. R. Bockstaller "Structural evolution of gold nanorods during controlled secondary growth." Langmuir 2007, 23: 10307.
    [21] A. Gulati, H. Liao and J. H. Hafner "Monitoring gold nanorod synthesis by localized surface plasmon resonance." J. Phys.Chem.B 2006, 110: 22323.
    [22] Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, S. T. Chen, L. Hu-Lin and H. J. Gao "Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior." Chem. Phys. Lett. 2006, 432: 222.
    [23] A. Gole and C. J. Murphy "Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed." Chem. Mater. 2004, 16: 3633.
    [24] C. Lee, X. D. Wei, J. W. Kysar and J. Hone "Measurement of the elastic properties and intrinsic strength of monolayer graphene." Science 2008, 321: 385.
    [25] D. Li and R. B. Kaner "Materials science - graphene-based materials." Science 2008, 320: 1170.
    [26] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov "Electric field effect in atomically thin carbon films." Science 2004, 306: 666.
    [27] L. J. Zhi and K. Mullen "A bottom-up approach from molecular nanographenes to unconventional carbon materials." J. Mater.Chem. 2008, 18: 1472.
    [28] C. T. Lin, C. Y. Lee, H. T. Chiu and T. S. Chin "Graphene structure in carbon nanocones and nanodiscs." Langmuir 2007, 23: 12806.
    [29] Y. H. Wei, R. Klajn, A. O. Pinchuk and B. A. Grzybowski "Synthesis, shape control, and optical properties of hybrid au/fe3o4 "Nanoflowers"." Small 2008, 4: 1635.
    [30] Y. Qin, Y. Song, N. J. Sun, N. Zhao, M. X. Li and L. M. Qi "Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry." Chem. Mater. 2008, 20: 3965.
    [31] J. D. Watson and F. H. C. Crick "Molecular structure of nucleic acids - a structure for deoxyribose nucleic acid." Nature 1953, 171: 737.
    [32] O. Crisan, K. von Haeften, A. M. Ellis and C. Binns "Novel gas-stabilized iron clusters: Synthesis, structure and magnetic behaviour." Nanotechnology 2008, 19.
    [33] Z. J. Gu, X. Xiang, G. L. Fan and F. Li "Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction-oxidation route." J. Phys.Chem.C 2008, 112: 18459.
    [34] M. Valle-Orta, D. Diaz, P. Santiago-Jacinto, A. Vazquez-Olmos and E. Reguera "Instantaneous synthesis of stable zerovalent metal nanoparticles under standard reaction conditions." J. Phys. Chem. B 2008, 112: 14427.
    [35] L. H. Zhang, H. Q. Yang, L. Li, R. G. Zhang, R. N. Liu, J. H. Ma, X. L. Xie and F. Gao "Controlled solvothermal synthesis of nanosheets, nanobelts, and ultralong nanobelt arrays with honeycomb-like micropatterns of znse on zinc substrate." Inorg. Chem. 2008, 47: 11950.
    [36] C. Sealy "New nanowire applications nanostructured materials." Nano Today 2008, 3: 10.
    [37] A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen and L. Dalton "Integration of photonic and silver nanowire plasmonic waveguides." Nat. Nanotechnol. 2008, 3: 660.
    [38] G. Schmid "The relevance of shape and size of au-55 clusters." Chem. Soc.Rev.2008, 37: 1909.
    [39] F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. A. Pankhurst and P. Martinek "Before striking gold in gold-ruby glass." Nature 2000, 407: 691.
    [40] Faraday, M. Philos. Trans. 1857, 147, 145.
    [41] Y. Yin and A. P. Alivisatos "Colloidal nanocrystal synthesis and the organic-inorganic interface." Nature 2005, 437: 664.
    [42] G. A. DeVries, M. Brunnbauer, Y. Hu, A. M. Jackson, B. Long, B. T. Neltner, O. Uzun, B. H. Wunsch and F. Stellacci "Divalent metal nanoparticles." Science 2007, 315: 358.
    [43] Y. G. Sun and Y. N. Xia "Shape-controlled synthesis of gold and silver nanoparticles." Science 2002, 298: 2176.
    [44] Y. J. Xiong and Y. N. Xia "Shape-controlled synthesis of metal nanostructures: The case of palladium." Adv. Mater. 2007, 19: 3385.
    [45] N. I. Kovtyukhova and T. E. Mallouk "Nanowires as building blocks for self-assembling logic and memory circuits." Chem. Eur. J. 2002, 8: 4355.
    [46] S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating and M. J. Natan "Submicrometer metallic barcodes." Science 2001, 294: 137.
    [47] S. Minko, A. Kiriy, G. Gorodyska and M. Stamm "Mineralization of single flexible polyelectrolyte molecules." J. Am. Chem. Soc. 2002, 124: 10192.
    [48] N. R. Jana, L. Gearheart, S. O. Obare and C. J. Murphy "Anisotropic chemical reactivity of gold spheroids and nanorods." Langmuir 2002, 18: 922.
    [49] C. J. Murphy and N. R. Jana "Controlling the aspect ratio of inorganic nanorods and nanowires." Adv. Mater. 2002, 14: 80.
    [50] S. J. Huang, G. Tsutsui, H. Sakaue, S. Shingubara and T. Takahagi "Experimental conditions for a highly ordered monolayer of gold nanoparticles fabricated by the langmuir-blodgett method." J. Vac. Sci. Technol., B 2001, 19: 2045.
    [51] W. S. Liao, T. L. Yang, E. T. Castellana, S. Kataoka and P. S. Cremer "A rapid prototyping approach to ag nanoparticle fabrication in the 110-100 nm range." Adv. Mater. 2006, 18: 2240
    [52] J. X. Huang, F. Kim, A. R. Tao, S. Connor and P. D. Yang "Spontaneous formation of nanoparticle stripe patterns through dewetting." Nat. Mater. 2005, 4: 896.
    [53] J. X. Fang, X. N. Ma, H. H. Cai, X. P. Song, "Nanoparticle-aggregated 3dmonocrystalline gold dendritic nanostructures." Nanotechnology 2006, 17: 5841.
    [54] H. Masuda and K. Fukuda "Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina." Science 1995, 268: 1466.
    [55] Z. H. Bao, E. M. Ernst, S. Yoo and K. H. Sandhoge "Syntheses of porous self-supporting metal-nanoparticle assemblies with 3d morphologies inherited from biosilica templates (diatom frustules)." Adv. Mater. 2009, 21: 474; L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman and J. B. Wiley "Synthesis and magnetic behavior of periodic nickel sphere arrays." Adv. Mater. 2003, 15: 1562
    [56]王永昌,赵延瑞,朱建,黄丽清,“金属表面等离子体振荡”,大学物理2005, 24, 1.
    [57] S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny and C. M. Soukoulis "Magnetic response of metamaterials at 100 terahertz." Science 2004, 306: 1351.
    [58] S. Kawata, A. Ono and P. Verma "Subwavelength colour imaging with a metallic nanolens." Nat. Photonics 2008, 2: 438.
    [59] C. Petit, V. Russier and M. P. Pileni "Effect of the structure of cobalt nanocrystal organization on the collective magnetic properties." J. Phys. Chem. B 2003, 107: 10333.
    [60] E. Braun, Y. Eichen, U. Sivan and G. Ben-Yoseph "DNA-templated assembly and electrode attachment of a conducting silver wire." Nature 1998, 391: 775.
    [61]崔铮,微纳米加工技术及其应用,高等教育出版社,北京,2005,6.
    [62]张立德,牟季美.纳米结构自组装和分子自组装体系,物理,1999,28: 22.
    [63] R. R. Schlittler, J. W. Seo, J. K. Gimzewski, C. Durkan, M. S. M. Saifullah and M. E. Welland "Single crystals of single-walled carbon nanotubes formed by self-assembly." Science 2001, 292: 1136.
    [64] P. Van Zant Microchip Fabrication, 3rd Edition. McGraw– Hill, 1997.
    [65] J. Y. Park, H. J. Oh, D. J. Kim, J. Y. Beak and S. H. Lee,“A polymeric microfluidic valve employing a pH-responsive hydrogel microsphere as an actuating source”, J. Micromech. Microeng., 2006, 16: 656.
    [66]范玉殿.电子束和粒子束加工.北京:机械工业出版社. 1989
    [67]顾文琪.电子束曝光微纳加工技术.北京:北京工业大学出版社,2004.
    [68] R. Clampitt and D. K. Jefferies "Miniature ion sources for analytical instruments." Nucl. Instrum. Methods Phys. Res., Sect. A 1978, 149: 739.
    [69] S. Matsui and K. Mori "New selective deposition technology by electron-beam induced surface-reaction." J. Vac. Sci. Technol. B 1986, 4: 299.
    [70] R. Kaesmaier and H. Loschner“Ion projection lithography: Progress of european medea & international program.”1999,53, 37.
    [71] S. Maruo, O. Nakamura and S. Kawata "Three-dimensional microfabrication with two-photon-absorbed photopolymerization." Opt. Lett. 1997, 22: 132.
    [72] T. Tanaka, H. B. Sun and S. Kawata,“Rapid sub-diffraction-limit laser micro nano processing in a threshold material system”, Appl.phys. Lett., 2002, 80: 312.
    [73] M. Goppert-Mayer "Elementary file with two quantum fissures." Annalen Der Physik 1931, 9: 273.
    [74] W. Kaiser and C. G. B. Garrett "2-photon excitation in caf2 - eu2+." Phys. Rev.Lett. 1961, 7: 229.
    [75] K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. B. Ren and E. W. V. Stryland,“Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging”, J. Phys. Org. Chem., 2000, 13: 837.
    [76] R. W. Boyd, Nonlinear Optics, Boston , Academic Press, 1992.
    [77] W. Denk, J. H. Strickler and W. W. Webb "2-photon laser scanning fluorescence microscopy." Science 1990, 248: 73.
    [78]董贤子,陈卫强,赵震声,段宣明.飞秒脉冲激光双光子微纳加工技术及其应用.科学通报. 2008, 53, 2.
    [79]朱江峰,魏志义,“飞秒激光精密微纳加工的研究进展”,物理,2006,35: 679.
    [80] S. Maruo and J. T. Fourkas "Recent progress in multiphoton microfabrication." Laser Photon. Rev. 2008, 2: 100.
    [81] D. A. Parthenopoulos and P. M. Rentzepis "3-dimensional optical storagememory." Science 1989, 245: 843.
    [82] C. N. LaFratta, J. T. Fourkas, T. Baldacchini and R. A. Farrer "Multiphoton fabrication." Angew. Chem. Int. Ed. 2007, 46: 6238.
    [83] K. D. Belfield, X. B. Ren, E. W. Van Stryland, D. J. Hagan, V. Dubikovsky and E. J. Miesak "Near-ir two-photon photoinitiated polymerization using a fluorone/amine initiating system." J. Am. Chem. Soc. 2000, 122: 1217.
    [84] J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka and S. Kawata "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency." Appl. Phys. Lett. 2007, 90: 131106.
    [85] P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts and S. L. Goodman "3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes." Macromolecules 2000, 33: 1511.
    [86] W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith and H. J. Guntherodt "Su-8 for real three-dimensional subdiffraction-limit two-photon microfabrication." Appl. Phys. Lett. 2004, 84: 4095.
    [87] W. H. Teh, U. Durig, U. Drechsler, C. G. Smith and H. J. Guntherodt "Effect of low numerical-aperture femtosecond two-photon absorption on (su-8) resist for ultrahigh-aspect-ratio microstereolithography." J. Appl. Phys. 2005, 97: 11.
    [88] X. B. Yin, N. Fang, X. Zhang, I. B. Martini and B. J. Schwartz "Near-field two-photon nanolithography using an apertureless optical probe." Appl. Phys. Lett. 2002, 81: 3663.
    [89]潘祖仁,高分子化学,化学工业出版社,北京,2003.
    [90] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.Y. S. Lee, D. M. Maughon, J. Qin, H. Roeckel, M. Rumi, X. L. Wu, S. R. Marder and J. W. Perry,“Two-photon polymerization initiators for three dimensional optical data storage and microfabrication”, Nature, 1999, 398: 51.
    [91] X. Z. Dong, Z. S. Zhao and X. M. Duan "Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication." Appl. Phys.Lett. 2008, 92.
    [92] D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong and X. M. Duan "Reduction in feature size of two-photon polymerization using scr500." Appl. Phys. Lett. 2007, 90: 071106.
    [93] H. B. Sun, S. Matsuo and H. Misawa,“Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin”, Appl. Phys. Lett., 1999, 74: 786.
    [94] J. Serbin, M. Gu,“Experimental evidence for superprism effects in three-dimensional polymer photonic crystals”, Adv. Mater., 2006, 18: 221.
    [95] S. Maruo and H. Inoue,“Optically driven micropump produced by three-dimensional two-photon microfabrication”, Appl. Phys. Lett., 2006, 89, 144101.
    [96] P. Galajda and P. Ormaos,“Complex micromachines produced and driven by light”, Appl. Phys. Lett., 2001, 78: 249.
    [97] Z. Xiong, X. Z. Dong, W. Q. Chen and X. M. Duan "Fast solvent-driven micropump fabricated by two-photon microfabrication." Appl. Phys. A: Mater. Sci. & Proc., 2008, 93: 447.
    [98] X. M. Duan, H. B. Sun, K. Kaneko and S. Kawata,“Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication”, Thin Solid Films, 2004, 453: 518.
    [99] Z. B. Sun, X. Z. Dong, S. Nakanishi, W. Q. Chen, X. M. Duan and S. Kawata,“Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis”. Appl. Phys. A: Mater. Sci. & Proc., 2007, 86: 427.
    [100] Z. B. Sun, W. Q. Chen, X. Z. Dong, and X. M. Duan,“A facile size-control method of CdS nanoparticles in-situ synthesized in polymer matrix by adjusting ratio of acidic acid with metallic complex in acrylate photoresist resin”, Chem. Lett., 2007, 36, 156.
    [101] Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, and S. Kawata,“Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3Dmicrostructures”, Adv. Mater., 2008, 20, 914.
    [102] B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde and S. I. Anisimov "Timescales in the response of materials to femtosecond laser excitation." Appl. Phys. A: Mater. Sci. & Proc., 2004, 79: 767.
    [103] P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz and E. Yablonovitch "Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix." Adv. Mater. 2000, 12: 1438.
    [104] J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang and K. Hirao "Manipulation of gold nanoparticles inside transparent materials." Angew. Chem. Int. Ed. 2004, 43: 2230.
    [105] F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder and J. W. Perry "Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning." Adv. Mater. 2002, 14: 194.
    [106] T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun and M. J. Naughton "Multiphoton laser direct writing of two-dimensional silver structures." Opt. Express 2005, 13: 1275.
    [107] L. Vurth, P. Baldeck, O. Stephan and G. Vitrant "Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(ii) dye as photoinitiator." Appl. Phys. Lett. 2008, 92: 171103.
    [108] S. Maruo and T. Saeki "Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix." Opt. Express 2008, 16: 1174.
    [109] A. Ishikawa, T. Tanaka and S. Kawata "Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye." Appl. Phys. Lett. 2006, 89: 113102.
    [110] T. Tanaka, A. Ishikawa and S. Kawata "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure." Appl. Phys. Lett. 2006, 88: 081107.
    [1] G. Dukovic, M. G. Merkle, J. H. Nelson, S. M. Hughes and A. P. Alivisatos "Photodeposition of pt on colloidal cds and cdse/cds semiconductor nanostructures." Adv. Mater. 2008, 20: 4306.
    [2] X. M. Wu, P. L. Redmond, H. T. Liu, Y. H. Chen, M. Steigerwald and L. Brus "Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms." J. Am. Chem. Soc. 2008, 130: 9500.
    [3] H. Y. Wan, S. G. Li, T. A. Konovalova, S. F. Shuler, D. A. Dixon and S. C.Street "Experimental and theoretical studies of the photoreduction of copper(ii)-dendrimer complexes." J.Phys. Chem. C 2008, 112: 1335.
    [4] M. V. Canamares, J. V. Garcia-Ramos, J. D. Gomez-Varga, C. Domingo and S. Sanchez-Cortes "Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced raman scattering analysis of dyes." Langmuir 2007, 23: 5210.
    [5] L. Q. Qiu, J. Franc, A. Rewari, D. Blanc and K. Saravanamuttu "Photolytic formation of ag nanoparticles in oligomeric organosiloxanes: New photolithographic routes to metallodielectric microperiodic structures." J. Mater. Chem. 2009, 19: 373.
    [6] S. J. Henley and S. R. P. Silva "Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced raman spectroscopy." Appl. Phys. Lett. 2007, 91.
    [7] N. Makarava, A. Parfenov and I. V. Baskakov "Water-soluble hybrid nanoclusters with extra bright and photostable emissions: A new tool for biological imaging." Biophys. J . 2005, 89: 572.
    [8] H. Hada, Y. Yonezawa, A. Yoshida and A. Kurakake "Photoreduction of silver ion in aqueous and alcoholic solutions." J. Phys. Chem. 1976, 80: 2728.
    [9] A. Ishikawa, T. Tanaka and S. Kawata "Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye." Appl. Phys. Lett. 2006, 89: 113102.
    [10] T. Tanaka, A. Ishikawa and S. Kawata "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure." Appl. Phys. Lett. 2006, 88: 081107.
    [11] F. Vari and K. Bell "A simplified silver diammine method for the staining of nucleic acids in polyacrylamide gels." Electrophoresis 1996, 17: 20.
    [12] M. Sakamoto, M. Fujistuka and T. Majima "Light as a construction tool of metal nanoparticles: Synthesis and mechanism." J. Photochem. Photobiol., C 2009, 10: 33.
    [13] L. Vurth, P. Baldeck, O. Stephan and G. Vitrant "Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using aruthenium(ii) dye as photoinitiator." Appl. Phys. Lett. 2008, 92: 171103.
    [1]李玲,表面活性剂应用技术丛书-表面活性剂与纳米技术,北京:化学工业出版社,2004.
    [2] C. W. Kim, H. G. Cha, Y. H. Kim, A. P. Jadhav, E. S. Ji, D. I. Kang and Y. S. Kang "Surface investigation and magnetic behavior of co nanoparticles prepared via a surfactant-mediated polyol process." J. Phys. Chem. C 2009, 113: 5081.
    [3] W. X. Niu, S. L. Zheng, D. W. Wang, X. Q. Liu, H. J. Li, S. A. Han, J. Chen, Z. Y. Tang and G. B. Xu "Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals." J. Am. Chem. Soc. 2009,131: 697.
    [4] D. Jose and B. R. Jagirdar "Au@pd core-shell nanoparticles through digestive ripening." J. Phys. Chem. C 2008, 112: 10089.
    [5] C. L. Lee, Y. C. Huang, C. C. Wan, Y. Y. Wang, Y. J. Ju, L. C. Kuo and J. C. Oung "Synthesis of hydrophilic and hydrophobic pd nanoparticles with in situ generated reducing agent and their application as activator for electroless copper and nickel depositions." J. Electrochem. Soc. 2005, 152: C520.
    [6] I. S. Park, M. S. Kwon, N. Kim, J. S. Lee, K. Y. Kang and J. Park "Rhodium nanoparticles entrapped in boehmite nanofibers: Recyclable catalyst for arene hydrogenation under mild conditions." Chem. Commun. 2005,45: 5667.
    [7] Y. J. Song, Y. Yang, C. J. Medforth, E. Pereira, A. K. Singh, H. F. Xu, Y. B. Jiang, C. J. Brinker, F. van Swol and J. A. Shelnutt "Controlled synthesis of 2-d and 3-d dendritic platinum nanostructures." J. Am. Chem. Soc. 2004, 126: 635.
    [8] A. Roucoux, J. Schulz and H. Patin "Reduced transition metal colloids: A novel family of reusable catalysts?" Chem. Rev. 2002, 102: 3757. [9 ]N. R. Jana "Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles." Small 2005, 1: 875.
    [10] L. Y. Wang, X. Chen, J. Zhan, Y. C. Chai, C. J. Yang, L. M. Xu, W. C. Zhuang and B. Jing "Synthesis of gold nano- and microplates in hexagonal liquid crystals." J. Phys. Chem. B 2005, 109: 3189.
    [11] J. X. Gao, C. M. Bender and C. J. Murphy "Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution." Langmuir 2003, 19: 9065.
    [12] S. O. Obare, N. R. Jana and C. J. Murphy "Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes." Nano Lett. 2001, 1: 601.
    [13] T. K. Sau and C. J. Murphy "Seeded high yield synthesis of short au nanorods in aqueous solution." Langmuir 2004, 20: 6414.
    [14] T. K. Sau and C. J. Murphy "Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution." J. Am. Chem. Soc. 2004,126: 8648.
    [15] M. Yamamoto, Y. Kashiwagi and M. Nakamoto "Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine." Langmuir 2006, 22: 8581.
    [16] P. L. Redmond, E. C. Walter and L. E. Brus "Photoinduced thermal copper reduction onto gold nanocrystals under potentiostatic control." J. Phys. Chem. B 2006, 110: 25158.
    [17] S. Link, Z. L. Wang and M. A. El-Sayed "How does a gold nanorod melt?" J. Phys. Chem. B 2000, 104: 7867.
    [18] J. S. Jeon and C. S. Yeh "Studies of silver nanoparticles by laser ablation method." J. Chin. Chem. Soc. 1998, 45: 721.
    [19] W. Svendsen, O. Ellegaard and J. Schou "Laser ablation deposition measurements from silver and nickel." Appl. Phys. A: Mater. Sci. & Proc. 1996, 63: 247.
    [20] Y. R. Luo, comprehensive handbook of chemical bond energies, CRC press, 2007, 187.
    [21] T. Tanaka, A. Ishikawa and S. Kawata "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure." Appl. Phys. Lett. 2006, 88: 081107.
    [22] S. K. Mehta, K. K. Bhawna and K. K. Bhasin "Micellization behavior of cationic surfactant dodecyldimethylethylammonium bromide (ddab) in the presence of papain." Colloids Surf. A 2008, 317: 32.
    [23] J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka and S. Kawata "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency." Appl. Phys. Lett. 2007, 90: 131106.
    [24] J. Crank, The mathematics of diffusion, 2nd ed., Oxford university press, 1999.
    [1] N. Fang, H. Lee, C. Sun and X. Zhang "Sub-diffraction-limited optical imaging with a silver superlens." Science 2005, 308: 534.
    [2] D. R. Smith, J. B. Pendry and M. C. K. Wiltshire "Metamaterials and negative refractive index." Science 2004, 305: 788.
    [3] Smolyaninov, II, Y. J. Hung and C. C. Davis "Magnifying superlens in the visible frequency range." Science 2007, 315: 1699.
    [4] N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer and H. Giessen "Three-dimensional photonic metamaterials at optical frequencies." Nat. Mater. 2008, 7: 31.
    [5] M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden and M. Wegener "Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation." Opt. Lett. 2009, 34: 19.
    [6] D. E. Chang, A. S. Sorensen, P. R. Hemmer and M. D. Lukin "Quantum optics with surface plasmons." Phys. Rev. Lett. 2006, 97.
    [7] Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi and H. Tashiro "Raman probe using a single hollow waveguide." Opt. Lett. 2005, 30: 2942.
    [8] R. A. Pala, K. T. Shimizu, N. A. Melosh and M. L. Brongersma "A nonvolatile plasmonic switch employing photochromic molecules." Nano Lett. 2008, 8: 1506.
    [9] A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen and L. Dalton "Integration of photonic and silver nanowire plasmonic waveguides." Nat. Nanotechnol. 2008, 3: 660.
    [10] F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen and L. Martin-Moreno "Multiple paths to enhance optical transmission through a single subwavelength slit." Phys. Rev. Lett. 2003, 90.
    [11] M. P. Jonsson, P. Jonsson, A. B. Dahlin and F. Hook "Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template." Nano Lett. 2007, 7: 3462.
    [12] J. Kneipp, H. Kneipp, B. Wittig and K. Kneipp "One- and two-photon excited optical ph probing for cells using surface-enhanced raman and hyper-raman nanosensors." Nano Lett. 2007, 7: 2819.
    [13] K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl and J. H. Hafner "A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods." Acs Nano 2008, 2: 687.
    [14] W. H. Xu and S. H. Yu "Conducting performance of individual ag@c coaxial nanocables: Ideal building blocks for interconnects in nanoscale devices." Small 2009, 5: 460.
    [15] J. M. Baik, S. J. Lee and M. Moskovits "Polarized surface-enhanced raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires." Nano Lett. 2009, 9: 672.
    [16] Z. Xiong, X. Z. Dong, W. Q. Chen and X. M. Duan "Fast solvent-driven micropump fabricated by two-photon microfabrication." Appl. Phys. A: Mater. Sci. & Proc 2008, 93: 447.
    [17] P. Galajda and P. Ormaos,“Complex micromachines produced and driven by light”, Appl. Phys. Lett., 2001, 78: 249.
    [18] S. Yokoyama, T. Nakahama, H. Miki and S. Mashiko "Two-photon-induced polymerization in a laser gain medium for optical microstructure." Appl. Phys. Lett. 2003, 82: 3221.
    [19] C. F. Li, F. Jin, X. Z. Dong, W. Q. Chen and X. M. Duan "Photoluminescence of pmma doped with fluorescein and carbosilane dendrimer and lasing in pbgresonance cavity." J. Lumin. 2007, 127: 321.
    [20] Q. Ya, W. Q. Chen, X. Z. Dong, T. Rodgers, S. Nakanishi, S. Shoji, X. M. Duan and S. Kawata "Dual photonic band gap and reversible tuning of 3d photonic crystal fabricated by multiphoton polymerization with photoresponsive polymer." Appl. Phys. A 2008, 93: 393.
    [21] T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun and M. J. Naughton "Multiphoton laser direct writing of two-dimensional silver structures." Opt. Express 2005, 13: 1275.
    [22] A. Ishikawa, T. Tanaka and S. Kawata "Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye." Appl. Phys. Lett. 2006, 89: 113102.
    [23] F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa and S. Kawata "Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures." Appl. Phys. Lett. 2006, 88.
    [24] J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas and K. M. Ho "All-metallic three-dimensional photonic crystals with a large infrared bandgap." Nature 2002, 417: 52.
    [25] M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden and M. Wegener "Photonic metamaterials by direct laser writing and silver chemical vapour deposition." Nat. Mater. 2008, 7: 543
    [26] N. Takeyasu, T. Tanaka and S. Kawata "Fabrication of 3d metal/polymer microstructures by site-selective metal coating." Appl. Phys. A 2008, 90: 205.
    [27] Y. S. Chen, A. Tal, D. B. Torrance and S. M. Kuebler "Fabrication and characterization of three-dimensional silver-coated polymeric microstructures." Adv. Funct. Mater. 2006, 16: 1739.
    [28] C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini and J. T. Fourkas "Direct laser patterning of conductive wires on three-dimensional polymeric microstructures." Chem. Mater. 2006, 18: 2038.
    [29] T. Tanaka, A. Ishikawa and S. Kawata "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallicmicrostructure." Appl. Phys. Lett. 2006, 88: 081107.
    [30] H.Raether,Surface Plasmons on smooth and rough surfaces and on gratings, Springer, 1988.
    [31] J. P. Abid, A. W. Wark, P. F. Brevet and H. H. Girault "Preparation of silver nanoparticles in solution from a silver salt by laser irradiation." Chem. Commun. 2002, 7: 792.
    [32] L. Vurth, P. Baldeck, O. Stephan and G. Vitrant "Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(ii) dye as photoinitiator." Appl. Phys. Lett. 2008, 92: 171103.
    [33] S. Maruo and T. Saeki "Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix." Opt. Express 2008, 16: 1174.
    [34] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu "Observation of a single-beam gradient force optical trap for dielectric particles." Opt. Lett 1986, 11: 288.
    [35] K. Svoboda and S. M. Block "Biological applications of optical forces." Annu. Rev. Biophys. Biomol. Struct. 1994, 23: 247.
    [36] C. C. Yang and S. Li "Size-dependent phase stability of silver nanocrystals." J. Phys. Chem. C 2008, 112: 16400.
    [37] M. D. Malinsky, K. L. Kelly, G. C. Schatz and R. P. Van Duyne "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers." J. Am. Chem. Soc. 2001, 123: 1471.
    [38] S. E. Roark and K. L. Rowlen "Thin ag films - influence of substrate and postdeposition treatment on morphology and optical-properties." Anal. Chem. 1994, 66: 261.
    [1] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith "Metamaterial electromagnetic cloak at microwave frequencies." Science 2006, 314: 977.
    [2] S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny and C. M. Soukoulis "Magnetic response of metamaterials at 100 terahertz." Science 2004, 306: 1351.
    [3] D. R. Smith, J. B. Pendry and M. C. K. Wiltshire "Metamaterials and negative refractive index." Science 2004, 305: 788.
    [4] A. Ishikawa, T. Tanaka and S. Kawata "Frequency dependence of the magnetic response of split-ring resonators." J. Opt. Soc. Am. B: Opt. Phys. 2007, 24: 510.
    [5] J. Pendry "Applied physics - playing tricks with light." Science 1999, 285: 1687.
    [6] J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang and K. Hirao "Manipulation of gold nanoparticles inside transparent materials." Angew. Chem. Int. Ed. 2004, 43: 2230.
    [7] F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder and J. W. Perry "Laser and electron-beam induced growth of nanoparticles for 2d and 3d metal patterning." Adv. Mater. 2002, 14: 194.
    [8] T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun and M. J. Naughton "Multiphoton laser direct writing of two-dimensional silver structures." Opt. Express 2005, 13: 1275.
    [9] L. Vurth, P. Baldeck, O. Stephan and G. Vitrant "Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(ii) dye as photoinitiator." Appl. Phys. Lett. 2008, 92: 171103.
    [10] S. Maruo and T. Saeki "Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix." Opt. Express 2008, 16: 1174.
    [11] P. W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz and E. Yablonovitch "Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix." Adv. Mater. 2000, 12: 1438.
    [12] T. Schmidt, K. Friehs, M. Schleef, C. Voss and E. Flaschel "Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis." Analytical Biochemistry 1999, 274: 235.
    [13] N. Kusukawa, M. V. Ostrovsky and M. M. Garner "Effect of gelation conditions on the gel structure and resolving power of agarose-based DNA sequencing gels." Electrophoresis 1999, 20: 1455.
    [14] J. F. Zhou, M. F. Zhou and R. A. Caruso "Agarose template for the fabrication of macroporous metal oxide structures." Langmuir 2006, 22: 3332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700