用户名: 密码: 验证码:
利用瞬态光伏技术研究功能材料的光电行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A Study on the Photoelectric Behavior of Functional Materials by Transient Photovoltage Technique
  • 作者:魏霄
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:王德军
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-12-01
摘要
光生电荷的微观动力学行为是太阳能转换、光催化、发光材料、纳米/分子光电子器件、光敏传感器等光电体系或器件的基础。对光生电荷微观动力学行为的研究是表面和界面科学的前沿课题。瞬态光伏技术是一种十分有效的研究功能材料中光生电荷动力学行为的手段,在国际上利用其对光电体系的研究也取得了较好的进展。本文主要利用瞬态光伏技术并结合表面光伏、Kelvin探针等其它光电表征手段,对典型的体相材料(包括n-硅、p-硅以及具有不同表面的TiO2单晶)、纳米体系材料(包括商品TiO2纳米粒子P25、纳米多孔TiO2薄膜电极、Al3+修饰的纳米多孔TiO2薄膜电极、有序多孔TiO2薄膜)以及其它复合体系(Fe3O4@Fe2O3核壳结构纳米粒子以及卟啉系列化合物)的光电性质进行了研究。系统地研究了在各种类型的光电体系中光生电荷的行为特点。
The organic, inorganic functional materials have been widely used in the electronic, optical and optoelectronic semiconductor devices as well as the photocatalysis. The performance of the devices as well as the photochemical reactivity of photocatalyst is directly related to the optoelectronic properties of the semiconductor materials. Therefore, the understanding of the photo-generated charge carriers properties is very important for theoptimization of the devices performance and the photochemical reactivity. As a result, the study of the photo-generated charge carriers properties is one of the most active researches at present. The nondestructive characterization and qualification of semiconductor materials as well as the devices is a crucial step in the fabrication of modern day electronic, optical, and optoelectronic semiconductor devices. Improvements in the quality and yield of semiconductor devices, with a resultant increase in performance and reduced cost, will rely on characterization methods that are informative, nondestructive, convenient, easy to use, and inexpensive. A photovoltage arises whenever photo-generated charge carriers are separated in space. Therefore, we can obtain the fundamental properties of light absorption, transport of excess carriers in a semiconductor material and the electronic structures of the surface and interface from the study of the surface photovoltage (SPV). The measurements of the photovoltage do not need the Ohmic contact between the measured sample and the electrode and may be performed under different atmosphere and temperature. In addition, the high sensitivity of SPV for the detection of the surface charge makes it be a powerful method to characterize the semiconductor materials and devices.
     Based on the establishment of the transient photovoltage which may detect the evolution of the SPV with the time, the present thesis is successful to the study of the photoelectric properties in various functional materials using the transient photovoltage technique. The results in this paper provide the theory evidence for optimization of the performance of the semiconductor devices, dye-sensitized solar cells, and for improvement of the photochemical reactivity of the photocatalyst and the light emission quantum yield of the luminescence materials. And the light source (laser pulse) was extended to the continuum visible light, the information about the time resolution of photo-generated charge carriers in the functional materials and devices have been attained further.
     The main results are illuminated as follows:
     1. Transient photovoltage technique has been applied to investigate the behaviors of the photo-induced charge carriers in bulk semiconductor materials (include the n- and p- type of Si single crystal as well as the TiO2 single crystal with various crystal plane (110, 001, 111)). The results indicate that the transient SPV directly reflects the optoelectronic properties of the semiconductor surface. The factors, as the surface charge region, the density of the surface states, etc., that may influence the SPV response in the bulk semiconductor have been discussed.
     2. The study of the photoelectric properties of the nanoscale functional materials, which include the TiO2 nanoparticle, disorder and ordered nano-TiO2 film. It was directly observed the photo-generated charge carriers drift at TiO2/ITO interface and the diffuse in the TiO2 film, which demonstrates the existence of the potential barrier at the interface. The relation between the SPV response and incident light under different transport dynamic mechanism was discussed. These results provide a new experiment for the understanding of the work mechanism of the dye-sensitized solar cells.
     3. The photovoltaic properties of Fe3O4@Fe2O3 nanoparticles have been investigated by the surface photovoltage spectroscopy and transient photovoltage technique. The effect of the junction formation in the Fe3O4@Fe2O3 nanoparticles on the separation, transport and recombination of the photogenerated charges have been discussed in detail. These results are helpful in understanding the photovoltaic properties of nanoscaled materials with such structure. Through investigating this system, we can design and construct the specific interface structures, which can be applied to photocatalysis and photodegradation based on the behavior properties of the photogenerated charges.
     4. The photovoltaic properties of a series of the porphyrin compounds have been investigated by the transient photovoltage technique. We intend to construct the interface between the porphyrin film and the ITO substrate, and investigate the effect of the junction on the behaviours of the photogenerated charge. The reversal of the photovoltage polarity under the effect of the interface, as well as the change of the time in two kind of response process with the variety of the intensity of the incident illumination was observed. The results provide the scientific experiment fact for understanding the work mechanism of the semiconductor devices made from the organic semiconductor films, such as the organic light emitting diodes (OLED). Also, the results may provide the theory evidence for the design of the high performance optoelectronic devices.
引文
1. ARMAROLI N. BALZANI V. The Future of Energy Supply: Challenges and Opportunities [J], Angewandte Chemie-International Edition, 2007, 46(1-2): 52-66.
    2. CIAMICIAN G. The Photochemistry of the Future [J], Science, 1912, 36(926): 385-394.
    3. KERR R A. SERVICE R F. What Can Replace Cheap Oil--and When? [J], Science, 2005, 309(5731): 101-101.
    4. LEWIS N S. et al. Basic Research Needs for Solar Energy Utilization, http://www.sc.doe.gov/bes/reports/files/SEU_rpt.pdf. Argonne National Laboratory, 2005, 4, 1.
    5. Renewables 2005-Global Status Report, http://www.worldwatch.org/press/news/2005/11/06/. Worldwatch Institute, Washington, DC, 2005.
    6. Basic Research Needs for Solar Energy Utilization, http://www.er.doe.gov/bes/reports/files/SEU_rpt.pdf. US Department of Energy Office of Science, 2005.
    7. O’REGAN B. GR?TZEL M. A low-cost and high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J], Nature 1991, 353: 737-740.
    8. GR?TZEL M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells [J], Inorganic Chemistry 2005, 44(20): 6841-6851.
    9. GRATZEL M. Photoelectrochemical cell [J], Nature, 2001, 414, 338-344.
    10. OLAH G A. GOEPPERT A. PRAKASH G K S. Beyoun Oil and Gas: The Methanol Economy [M], Wiley-VCH, Weinheim, 2005.
    11. SMIL V. Energy [M], Oneworld, Oxford, 2006.
    12. MAEDA K. TERAMURA K. LU D. L. TAKATA T. SAITO N. INOUE Y. DOMEN K. Photocatalyst releasing hydrogen from water [J], Nature, 2006, 440: 295-295.
    13. BALZANI V. MOGGI L. MANFRIN M F. BOLLETTA F. GLERIA M. Solar Energy Conversion by Water Photodissociation: Transition metal complexes can provide low-energy cyclic systems for catalytic photodissociation of water [J], Science, 1975, 189(4206): 852-856.
    14. BALZANI V. CREDI A. VENTURI M. Molecular Devices and Machines [M], Chap.5, Wiley-VCH, Weinheim, 2003.
    15. FERREIRA K N. IVERSON T M. MAGHLAOUI K. BARBER J. IWATA S. Architecture of the Photosynthetic Oxygen-Evolving Center [J], Science, 2004, 303: 1831-1838.
    16. STEINBERG-YFRACH G., RIGAUD J. L., DURANTINI E. N., MOORE A. L., GUST D., MOORE T. A., Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane [J], Nature, 1998, 392: 479-482.
    17. It is estimated that millions of people in poor countries suffer from severe respiratory problems arising from indoor air pollution generated by improperly vented stoves fueled with biomass.
    18. Biofuels for transport-An international perspective, http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf. International Energy Agency, 2004.
    19. KHESHGI K S. PRINCE R C. MARLAND G., THE POTENTIAL OF BIOMASS FUELS IN THE CONTEXT OF GLOBAL CLIMATE CHANGE: Focus on Transportation Fuels Annual Review of Environment and Resources [J], 2000, 25: 199-244.
    20. For a recent assessment on energy return on energy investment for bioethanol see HAMMERSCHLAG R. Ethanol's Energy Return on Investment: A Survey of the Literature 1990-Present [J], Environmental Science & Technology, 2006, 40(6): 1744-1750.
    21. J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany, Environmental, economic,and energetic costs and benefits of biodiesel and ethanol biofuels [J], Proceedings of the National Academy of Sciences, USA, 2006, 103(30): 11206-11210.
    22. HESS G. Incentives boost coal gasification [J], Chemical & Engineering News, 2006, 84 (7): 22-25.
    23. SMIL V. Energy at the Crossroads [M], MIT Press, Cambridge, MA, 2003.
    24.周馨我,张公正,范广裕,功能材料学[M],北京理工大学出版社,2002,第一版,1.
    25. GUR I. FROMER N A. GEIER M L. ALIVISATOS A P. Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution [J], Science, 2005, 310: 462-465.
    26. KANG S H. CHOI S H. KANG M S. KIM J Y. KIM H S. HYEON T. SUNG Y E. Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency [J], Advanced Materials, 2008, 20(1): 54-58.
    27. KOO H J. KIM Y J. LEE Y H. LEE W I. KIM K. PARK N G. Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells [J], Advanced Materials, 2008, 20(1): 195-199.
    28. WANG X. ZHI L J. TSAO N. TOMOVI? ?. LI J L. MüLLEN K. Transparent Carbon Films as Electrodes in Organic Solar Cells [J], Angewandte chemie-international edition, 2008, 47(16): 2990-2992.
    29. DENNLER G. SCHARBER M C. AMERI T. DENK P. FORBERICH K. WALDAUF C. BRABEC C J. Design Rules for Donors in Bulk-Heterojunction Tandem Solar Cells [J], Advanced Materials, 2008, 20(3): 579-583.
    30. BOUCLéJ. CHYLA S. SHAFFER M S P. DURRANT J R. BRADLEY D D C. NELSON J. Hybrid Solar Cells from a Blend of Poly (3-hexylthiophene) and Ligand-Capped TiO2 Nanorods [J], Advanced Functional Materials, 2008, 18(4): 622-633.
    31. G. H. Li, K. A. Gray, The solid–solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials [J], Chemical Physics, 2007, 339(1-3): 173-187.
    32. KAMAT P V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion [J], The Journal of Physical Chemistry C, 2007,
    111(7): 2834-2860.
    33. ZHANG J. XU Q. FENG Z C. LI M J. LI C. Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2 [J], Angewandte Chemie-International Edition, 2008, 47(9): 1766-1769.
    34. IN S. ORLOV A. BERG R. GARCíA F. PEDROSA-JIMENEZ S. TIKHOV M S. WRIGHT D S. LAMBERT R M. Effective Visible Light-Activated B-Doped and B,N-Codoped TiO2 Photocatalysts [J], Journal of the American Chemical Society, 2007, 129(45): 13790-13791.
    35. YAGI M. KANEKO M. Molecular Catalysts for Water Oxidation [J], Chemical Reviews, 2001, 101(1): 21-36.
    36. MATSUOKA M. KITANO M. TAKEUCHI M. TSUJIMARU K. ANPO M. THOMAS J M. Photocatalysis for new energy production Recent advances in photocatalytic water splitting reactions for hydrogen production [J], Catalysis Today, 2007, 122(1-2): 51-61.
    37. MOR G K. PRAKASAM H E. VARGHESE O K. SHANKAR K. GRIMES C A. Vertically Oriented Ti-Fe-O Nanotube Array Films [J], Nano Letters, 2007, 7(8): 2356-2364.
    38. RITTERSKAMP P. KUKLYA A. WUSTKAMP M A. KERPEN K. WEIDENTHALER C. DEMUTH M. A Titanium Disilicide Derived Semiconducting Catalyst for Water Splitting under Solar Radiation-Reversible Storage of Oxygen and Hydrogen [J], Angewandte chemie-international edition, 2007, 46(41): 7770-7774.
    39. KANG Z H. TSANG C H A. WONG N B. ZHANG Z D. LEE S T. Silicon Quantum Dots A General Photocatalyst for Reduction, Decomposition, and Selective Oxidation Reactions [J], Journal of the American Chemical Society, 2007, 129(40): 12090-12091.
    40. PALMISANO G. AUGUGLIARO V. PAGLIARO M. PALMISANO L. Photocatalysis: a promising route for 21st century organic chemistry [J], Chemical Communications, 2007, 33: 3425-3437.
    41. IPE B I. NIEMEYER C M. Nanohybrids Composed of Quantum Dots and Cytochrome P450 as Photocatalysts [J], Angewandte Chemie-International Edition, 2006, 45(3): 504-507.
    42. MCEVOY J P. BRUDVIG G W. Water-Splitting Chemistry of Photosystem II [J], Chemical Reviews, 2006, 106(11): 4455-4483.
    43. MATSUI I. Nanoparticles for Electronic Device Applications: A Brief Review [J], Journal of Chemical Engineering of Japan, 2005, 38(8): 535-546.
    44. TEO B K. SUN X H. Silicon-Based Low-Dimensional Nanomaterials and Nanodevices [J], Chemical Reviews, 2007, 107(5): 1454-1532.
    45. YANG R. CHUEH Y L. MORBER J R. SNYDER R. CHOU L J. WANG Z L.Single-Crystalline Branched Zinc Phosphide Nanostructures Synthesis, Properties, and Optoelectronic Devices [J], Nano Letters, 2007, 7(2): 269-275.
    46. ZHANG Y. WANG L W. MASCARENHAS A. "Quantum Coaxial Cables" for Solar Energy Harvesting [J], Nano Letters, 2007, 7(5): 1264-1269.
    47. MAO S S. Nanolasers: Lasing from nanoscale quantum wires [J], International Journal of Nanotechnology, 2004, 1(1-2): 42-85.
    48. MIESZAWSKA A J. JALILIAN R. SUMANASEKERA G U. ZAMBORINI F P. The Synthesis and Fabrication of One-Dimensional Nanoscale Heterojunctions [J], Small, 2007, 3(5): 722-756.
    49. WINBOW A G. HAMMACK A T. BUTOV L V. Photon Storage with Nanosecond Switching in Coupled Quantum Well Nanostructures [J], Nano Letters, 2007, 7(5): 1349-1351.
    50. SUDA M. NAKAGAWA M. IYODA T. EINAGA Y. Reversible Photoswitching of Ferromagnetic FePt Nanoparticles at Room Temperature [J], Journal of the American Chemical Society, 2007, 129(17): 5538-5543.
    51. LIM H S. KWAK D. LEE D Y. LEE S G. CHO K. UV-Driven Reversible Switching of a Roselike Vanadium Oxide Film between Superhydrophobicity and Superhydrophilicity [J], Journal of the American Chemical Society, 2007, 129(14): 4128-4129.
    52. WHALLEY A C. STEIGERWALD M L. GUO X F. NUCKOLLS C. Reversible Switching in Molecular Electronic Devices [J], Journal of the American Chemical Society, 2007, 129(42): 12590-12591.
    53. MACYK W. STOCHEL G. SZACI?OWSKI K. Photosensitization and the Photocurrent Switching Effect in Nanocrystalline Titanium Dioxide Functionalized with Iron (II) Complexes: A Comparative Study [J], Chemistry-A European Journal, 2007, 13(20): 5676-5687.
    54. HECHT S. Optical Switching of Hierarchical Self-Assembly: Towards“Enlightened”Materials [J], Small, 2005, 1(1): 26-29.
    55. LUKE C L. Spectrophotometric Determination of Silicon in Gallium Phosphide [J], Analytical Chemistry, 1964, 36: 2036-2037.
    56. BRINZA M. WILLEKENS J. BENKHENDIR M L. EMELIANOVA E V. ADRIAENSSENS G J. Photoconductivity methods in materials research [J], Journal of Materials Science: Materials in Electronics, 2005, 16(11-12): 703-713.
    57. GREENWALD Y. COHEN G. POPLAWSKI J. EHRENFREUND E. SPEISER S. DAVIDOV D. Transient Photoconductivity of Acceptor-SubstitutedPoly(3-butylthiophene) [J], Journal of the American Chemical Society, 1996, 118(12): 2980-2984.
    58. PARKER J H. JR. WARREN R W. Kelvin Device to Scan Large Areas for Variations in Contact Potential [J], Review of Scientific Instruments, 1962, 33(9): 948-950.
    59. DANYLUK S. A UHV guarded Kelvin probe [J], Journal of Physics E: Scientific Instruments, 1972, 5(5): 478-480.
    60. BONNET J. SOONCHINDT L. LASSABATèRE L. The Kelvin probe method for work function topographies: technical problems and solutions [J], Vacuun, 1984, 34(7): 693-698.
    61. PALAU J M. BONNET J. Design and performance of a Kelvin probe for the study of topographic work functions [J], Journal of Physics E: Scientific Instruments, 1988, 21(7): 674-679.
    62. CAMP J B. DARLING T W. BROWN R E. Macroscopic variations of surface potentials of conductors [J], Jornal of Applied Physics, 1991, 69(10): 7126-7129.
    63. BUTZ R. WAGNER H. A device for measuring contact potential differences with high spatial resolution [J], Applied Physics A: Materials Science & Processing, 1977, 13(1): 37-42.
    64. M?CHEL R., BAUMG?RTNERM H. REN J. The scanning Kelvin microscope [J], Review of Scientific Instruments, 1993, 64(3): 694-699.
    65. LIESS H D. MACKEL R. REN J. The Scanning Kelvin Microscope with Voltage Modulation: a New Principle to Image Discrete Surface Potentials [J], Surface and Interface Analysis, 1997, 25: 855-859.
    66. NABHAN W. EQUER B. BRONIATOWSKI A. DE ROSNY G. A high-resolution scanning Kelvin probe microscope for contact potential measurements on the 100 nm scale [J], Review of Scientific Instruments, 1997, 68(8): 3108-3111.
    67. KIKUKAWA A. HOSAKA S. IMURA R. Vacuum compatible high-sensitive Kelvin probe force microscopy [J], Review of Scientific Instruments, 1996, 67(4): 1463-1467.
    68. STEINKE R. HOFFMAN M. B?HMISH M. EISENMENGER J. DRANSFELD K. LEIDERER P. Potentiometry with the acoustic near field microscope: A new method for microscopy of surface potentials [J], Applied Physics A: Materials Science & Processing, 1997, 64(1): 19-27.
    69. HENNING A K. HOCHWITZ T. SLINKMAN J. NEVER J. HOFFMANN S.KASZUBA P. DAGHLIAN C. Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy [J], Jornal of Applied Physics, 1995, 77(5): 1888-1896.
    70. MURTHY C S. POSSELT M. FEUDEL T. Physically based modeling of two-dimensional and three-dimensional implantation profiles: Influence of damage accumulation [j], Journal of Vacuum Science and Technology B, 1996, 16(1): 440-446.
    71. LI Y. NXUMALO J N. THOMSON D J. Two-dimensional imaging of charge carrier profiles using local metal–semiconductor capacitance–voltage measurement [j], Journal of Vacuum Science and Technology B, 1996, 16(1): 457-462.
    72. ARAKAWA M., KISHIMOTO S. MIZUTANI T. Kelvin Probe Force Microscopy for Potential Distribution Measurement of Cleaved Surface of GaAs Devices [j], Japanese Journal of Applied Physics Part 1: Regular Papers Short Notes & Review Papers, 1997, 36: 1826-1829.
    73. YASUTAKE M. AOKI D. FUJIHIRA M. Surface potential measurements using the Kelvin probe force microscope [J], Thin Solid Films, 1996, 273(1-2): 279-283.
    74. FUJIHIRA M. SAKOMURA M. AOKI D. KOIKE A. Scanning probe microscopies for molecular photodiodes [J], Thin Solid Films, 1996, 273(1-2): 168-176.
    75. M. ABE, T. UCHIHASHI, OHTA M. UEYAMA H. SUGAWARA Y. MORITA S. Detection mechanism of an optical evanescent field using a noncontact mode atomic force microscope with a frequency modulation detection method [J], Journal of Vacuum Science and Technology B, 1997, 15(4): 1512-1515.
    76. GOLETTI C. SGARLATA A. MOTTA N. CHIARADIA P. PAOLESSE R. ANGELACCIO A. DRAGO M. NATALE C DI. D′AMICO A. COCCO M. TROITSKY V I. Kelvin probe and scanning tunneling microscope characterization of Langmuir–Blodgett sapphyrin films [J], Applied Physics Letters, 1999, 75(9): 1237-1239.
    77. HSU J W P. FITZGERALD E A. XIE Y H. SILVERMAN P J. Tudies of electrically active defects in relaxed GeSi films using a near-field scanning optical microscope [j], Jornal of Applied Physics, 1996, 79(10): 7743-7750.
    78. MCDANIEL A A. HSU J W P. GABOR A M. Near-field scanning optical microscopy studies of Cu(In, Ga)Se2 solar cells [J], Applied Physics Letters,1997, 70(26): 3555-3557.
    79. STEINKE R. HOFFMANN M. B?HMISCH M. EISENMENGER J. DRANSFELD K. LEIDERER P. Potentiometry with the acoustic near field microscope: A new method for microscopy of surface potentials [J], Applied physics A: Materials science & processing, 1997, 64(1): 19-27.
    80. SHIKLER R. ROSENWAKS Y. Near-field surface photovoltage [J], Applied Physics Letters, 2000, 77(6): 8Z36-838.
    1. KRONIK L. SHAPIRA Y. Surface photovoltage phenomena theory, experiment, and applications [J], Surface Science Reports, 1999, 37: 1-206.
    2. LIU Q. CHEN C. RUDA H. Surface photovoltage in undoped semi-insulating GaAs [J], Jornal of Applied Physics, 1993, 74(12): 7492-7496.
    3. CHENG Y T. HUANG Y S. LIN D Y. TIONG K K. POLLAK F H. EVANS K R. Surface photovoltage spectroscopy characterization of a GaAlAs/InGaAs/GaAs pseudomorphic high electron mobility transistor structure [J], Applied Physics Letters, 2001, 79(7): 949-751.
    4. SOLODKY S. KHRAMTSOV A. BAKSHT T. LEIBOVITCH M. HAVA S. SHAPIRA Y. Surface photovoltage spectroscopy of epitaxial structures for high electron mobility transistors [J], Applied Physics Letters, 2003, 83(12): 2465-2467.
    5. TU C S. WANG F T. CHIEN R R. SCHMIDT V H. HUNG C M. TSENG C T. Dielectric and photovoltaic phenomena in tungsten-doped Pb(Mg1/3Nb2/3)1–xTixO3 crystal [J], Applied Physics Letters, 2006, 88(3): 032902(3 pages).
    6. DE JONGH P E. VANMAEKELBERGH D. Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles [J], Physical Review Letters, 1996, 77(16): 3427-3430.
    7. NELSON J. HAQUE S A. KLUG D R. DURRANT J R. Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes [J], Physical Review B, 2001, 63(20): 205321(9 pages).
    8. GARRETT C G B. BRATTAIN W H. Physical Theory of Semiconductor Surfaces [J], Physical Review, 1955, 99(2): 376-387.
    9. JOHNSON E O. Large-Signal Surface Photovoltage Studies with Germanium [J], Physical Review, 1958, 111(1): 153-166.
    10. GERMANOVA K G. KONSTANTINOV L L. STRASHILOV V L. Sub-bandgap surface photovoltage in deep bulk impurity level semiconductors [J], Surface Science, 1983, 128(2-3): 447-463.
    11. SZARO L. Analysis of the surface photovoltage under sub-bandgap illumination: Effect of the bulk traps [J], Surface Science, 1984, 137(1): 311-326.
    12. BRILLSON L J. Chemical reactions and local charge redistribution at metal-CdS and CdSe interfaces [J], Physical Review B, 1978, 18(6), 2431-2446.
    13. BRILLSON L J. The structure and properties of metal-semiconductor interfaces [J], Surface Science Reports, 1982, 2(2): 123-326.
    14. SMITH R A. Semiconductors [M], London, Cambridge University Press, 1959.
    15. H. DEMBER, Physik, Zeitschr. 1931, 32: 554.
    16. RAPPICH J. DITTRICH TH. Electrochemical Passivation of Si and SiGe Surfaces, in Thin Film Handbook, edited by H.S.Nalva, Academic Press, 2000.
    17. DUZHKO V. KOCH F. DITTRICH TH. Transient photovoltage and dielectric relaxation time in porous silicon [J], Jornal of Applied Physics, 2002, 91(11): 9432-9434.
    18. DUZHKO V. TIMOSHENKO V YU. KOCH F. DITTRICH TH. Photovoltage in nanocrystalline porous TiO2 [J], Physical Review B, 2001, 64(7): 075204(7 pages).
    19. LEVY B. LIU W. GILBERT S E. Directed Photocurrents in Nanostructured TiO2/SnO2 Heterojunction Diodes [J], The Journal of Physical Chemistry B, 1997, 101(10): 1810-1816.
    20. DAMM C. MüLLER F W. ISRAEL G. Models for description of the in?uence of light intensity on the parameters of the transient photo-EMF of organic photoconductors [J], Physical Chemistry Chemical Physics, 2001, 3(18): 4096-4101.
    21. JOHNSON E O. Measurement of Minority Carrier Lifetimes with the Surface Photovoltage [J], Jornal of Applied Physics, 1957, 28(11): 1349-1353.
    22. HLáVKA J. ?VEHLA R. Measurement of fast surface photovoltage relaxation [J], Review of Scientific Instruments, 1996, 67(7): 2588-2589.
    23. LEE C H. YU G. MOSES D. HEEGER A J. SRDANOV V I. Nonlinear transient photovoltaic response in Al/C60/Au devices: Control of polarity with optical bias [J], Applied Physics Letters, 1994, 65(6): 664-666.
    24. PAN Y L. CHEN L B. WANG Y. ZHAO Y Y. LI F M. WAGIKI A. YAMASHITA M. TAKO T. Transient photovoltaic proterties in Al /tin–phthalocyanine /indium -tin-oxide sandwich cell [J], Applied Physics Letters, 1996, 68(10): 1314-1316.
    25. MAHRON B. BOSCHLOO G. HAGFELDT A. DLOCZIK L. DITTRICH TH. Photovoltage study of charge injection from dye molecules into transparent hole and electron conductors [J], Applied Physics Letters, 2004, 84(26): 5455-5457.
    26. Th. Dittrich, Temperature dependent normal and anomalous electron diffusion in porous TiO2 studied by transient surface photovoltage [J], Physical Review B, 2006, 73(4): 045407(8 pages).
    27. DITTRICH TH. DUZHKO V. KOCH F. KYTIN V. RAPPICH J. Trap-limited photovoltage in ultrathin metal oxide layers [J], Physical Review B, 2002, 65(15):155319(5 pages).
    28. DITTRICH TH. DUZHKO V. Photovoltage in Free-Standing Mesoporous Silicon Layers [J], Physica Status Solidi A: Applied Research 2003, 197(1): 107-112.
    29. DUZHKO V. DITTRICH TH. KAMENEV B. TIMOSHENKO V YU. BRUTTING W. Diffusion photovoltage in poly (p-phenylenevinylene) [J], Jornal of Applied Physics, 2001, 89(8): 4410-4412.
    30. SONG Q L. WU H R. DING X M. HOU X Y. LI F Y. ZHOU Z G. Exciton dissociation at the indium tin oxide-N, N’-Bis(nophthalen-1-yl)-N,N’-bis(phenyl) benzidine interface: A transient photovoltage study [J], Applied Physics Letters, 2006, 88(23): 232101(3 pages).
    31. SONG Q L. LI C M. WANG M L. SUN X Y. HOU X Y. Role of buffer in ofganic solar cell using C60 as an acceptor [J], Applied Physics Letters, 2007, 90(7): 071109(3 pages).
    32. DUZHKO V. Photovoltage Phenomena in Nanoscale Materials, PhD thesis, 2003.
    33. DONCHEV V. KIRILOV K. IVANOV TS. GERMANOVA K. Surface photovoltage phase spectroscopy– a handy tool for characterisation of bulk semiconductors and nanostructures [J], Materials Science and Engineering B: Solid State Materials for Advanced Eechnology, 2006, 129(1-3): 186-192.
    34. ZHAO Q D. XIE T F. PENG L L. LIN Y H. WANG P. PENG L. WANG D J. Size- and Orientation-Dependent Photovoltaic Properties of ZnO Nanorods [J], The Journal of Physical Chemistry C, 2007, 111(45): 17136-17145.
    1.蒋荣华,肖顺珍,硅基太阳能电池与材料[J],《新材料产业》, 2003, 7: 8-13.
    2. KRONIK L. SHAPIRA Y. Surface photovoltage phenomena theory, experiment, and applications [J], Surface Science Reports, 1999, 37: 1-206.
    3. DONCHEV V. KIRILOV K. IVANOV TS. GERMANOVA K. Surface photovoltage phase spectroscopy– a handy tool for characterisation of bulk semiconductors and nanostructures [J], Materials Science and Engineering B: Solid State Materials for Advanced Eechnology, 2006, 129(1-3): 186-192.
    4. ZHAO Q D. XIE T F. PENG L L. LIN Y H. WANG P. PENG L. WANG D J. Size- and Orientation-Dependent Photovoltaic Properties of ZnO Nanorods [J], The Journal of Physical Chemistry C, 2007, 111(45): 17136-17145.
    5. ADIL F. CHRISTIAN M. BERNARD S. MAURO C. Theoretical analysis of the structures of titanium dioxide crystals [J], Physical Review B, 1993, 47(18): 11717-11724.
    6. STRELHOW W H. COOK E L. Compilation of energy band gaps in elemental and binary compound semiconductors and insulators [J], Journal of Physical and Chemical Reference Data, 1973, 2(1): 163-200.
    7. GOPEL W. ANDERSON J A. FRANKEL D. JAEHNIG M. PHILLIPS K. SCH?FER. ROCHER G. Surface defects of TiO2 (110): A combined XPS, XAES AND ELS study [J], Surface Science, 1984, 139(2-3): 333-346.
    8. SEE A K. BARTYNAKI R A. Inverse photoemission study of the defective TiO2 (110) surface [J], Journal of Vacuum Science & Technology A, 1992, 10(44): 2591-2956.
    9. SANJINéS R. TANG H. BERGER H. GOZZO F. MARGARITONDO G. LéVY F. Electronic structure of anatase TiO2 oxide [J], Jounal of Applied Physecs, 1994, 75(6): 2945-2951.
    10. HADJIIVANOV K I. KLISSURSKI D G. Surface Chemistry of Titania (Anatase) and Titania-Supported Catalysts [J], Chemical Society Reviews, 1996, 25(1): 61-69.
    11. UETSUKA H. SASAHARA A. ONISHI H. Scanning Tunneling Microscopy Study of Surface Reconstructions of Rutile TiO2 (111) [J], Japanese Journal of Applied Physics Part 1: Regular Papers Short notes & Review Papers, 2000, 39: 3769-3772.
    12. UETSUKA H. HENDERSON M A. SASAHARA A. ONISHI H. Formate Adsorption on the (111) Surface of Rutile TiO2 [J], The Journal of Physical Chemistry B, 2004, 108(36): 13706-13710.
    13. CHANG Z. THORNTON G. Reactivity of thin-film TiO2 (110) [J], Surface Science, 2000, 462(1-3): 68-76.
    14. RAMAMOORTHY M. VANDERBILT D. KING-SMITH R. D. First-principles calculations of the energetics of stoichiometric TiO2 surfaces [J], Physical Review B, 1994, 49(23): 16721-16727.
    15. WILSON J N. IDRISS H. Reactions of Ammonia on Stoichiometric and Reduced TiO2 (001) Single Crystal Surfaces [J], Langmuir, 2004, 20(25): 10956-10961.
    16. TAIT R H. KASOWSIK R V. Ultraviolet photoemission and low-energy-electron diffraction studies of TiO2 (rutile) (001) and (110) surfaces [J], Physical Review B, 1979, 20(12): 5178-5191.
    17. KASOWSIK R V. TAIT R H. Theoretical electronic properties of TiO2 (rutile) (001) and (110) surfaces [J], Physical Review B, 1979, 20(12): 5168-5177.
    18. MUSCAT J. HARRISON N M. The physical and electronic structure of the rutile (001) surface [J], Surface Science, 2000, 446(1-2): 119-127.
    19. MORRIS HOTSENPILLER P A. BOLT J D. FARNETH W E. LOWEKAMP J B. ROTHRER G S. Orientation Dependence of Photochemical Reactions on TiO2Surfaces [J], The Journal of Physical Chemistry B, 1998, 102(17): 3216-3226.
    20. Gerischr H. Heller A. Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water [J], Journal of the Electrochemical Society, 1992, 139(1): 113-118.
    21. ANPO M. SHIMA T. KODAMA S. KUBOKAWA Y. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates [J], The Journal of Physical Chemistry, 1987, 91(16): 4305-4310.
    22.回峥,徐金杰,谢腾峰,王德军,李铁津,孙家钟,TiO2单晶的表面光电压谱研究[J],高等学校化学学报, 1999, 20(9): 1458-1459.
    23.回峥,徐金杰,谢腾峰,王德军,李铁津,孙家钟,偏振光作用下金红石型TiO2单晶(001)面的表面光电压谱研究[J],高等学校化学学报,1999,20(10): 1625-1627.
    24.王宝辉,王德军,李铁津,多孔硅的光电化学特性研究[J],高等学校化学学报,1997, 18(4): 621-624.
    25. CRONEMEYER D C. Electrical and Optical Properties of Rutile Single Crystals [J], Physical Review, 1952, 87(5): 876-886.
    26. SERPONE N. LAWLESS D. KHAIRUTDINOV R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? [J], The Journal of Physical Chemistry, 1995, 99(45): 16646-16654.
    27. DAUDE N. GOUT C. JOUANIN C. Electronic band structure of titanium dioxide [J], Physical Review B, 1977, 15(6): 3229-3235.
    28.林艳红,王德军,肇启东,杨敏,张清林,ZnO纳米粒子结构对光电量子限域特性的影响,高等学校化学学报,2003, 24(11): 2077-2079.
    29. LIN Y H. WANG D J. ZHAO Q D. YANG M. ZHANG Q L. A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy, The Journal of Physical Chemistry B, 2004, 108(10): 3202-3206.
    1. DANIELE S. FABIO P. ANDREW J S. PETER C M C. STUART N H. MICHELLE Y S. DAVID A R. JAN C M. MICHAEL P. Observation of Charge Transport by Negatively Charged Excitons [J], Science, 2001, 294(5543): 837-839.
    2. ABRAHAM N. MARK A R. Electron Transport in Molecular Wire Junctions [J], Science, 2003, 300(5624): 1384-1389.
    3. Paul Wentworth Jr. McDunn J E. Wentworth A D. Takeuchi C. Nieva J. Jones T. Bautista C. Ruedi J M. Gutierrez A. Janda K D. Babior B M. Eschenmoser A. Lerner R A. Evidence for Antibody-Catalyzed Ozone Formation in Bacterial Killing and Inflammation [J], Science, 2002, 298(5601): 2195-2199.
    4. SHAH A. TORRES P. TSCHARNER R. WYRSCH N. KEPPNER H. Photovoltaic Technology: The Case for Thin-Film Solar Cells [J], Science, 1999, 285(5428):692-698.
    5. O’REGAN B. GR?TZEL M. A low-cost and high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J], Nature 1991, 353: 737-740.
    6. BACH U. LUPO D. COMTE P. MOSER J. E. WEISS?RTEL F. SALBECK J. SPREITZER H. GR?TZEL M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395: 583-585.
    7. KAMAT P V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion [J], The Journal of Physical Chemistry C, 2007, 111(7): 2834-2860.
    8. PALOMARES E. VILAR R. DURRANT J R. Heterogeneous colorimetric sensor for mercuric saltsElectronic supplementary information (ESI) available: Materials and methods [J], Chemical Communications, 2004, 4(4): 362-363.
    9. SUN L P. HUO L H. ZHAO H. GAO S. ZHAO J G. Preparation and gas-sensing property of a nanosized titania thin film towards alcohol gases [J], Sensors and Actuators B: Chemical, 2006, 114(1): 387-391.
    10. HAN C H. HONG D W. HAN S D. GWAK J. SINGH K C. Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED [J], Sensors and Actuators B: Chemical, 2007, 125(1): 224-228.
    11. LU Z X. ZHOU L. ZHANG Z L. SHI W L. XIE Z X. XIE H Y. PANG D W. SHEN P. Cell Damage Induced by Photocatalysis of TiO2 Thin Films [J], Langmuir, 2003, 19(21): 8765-8768.
    12. TARANTO J. FROCHOT D. PICHAT P. Combining Cold Plasma and TiO2 Photocatalysis To Purify Gaseous Effluents: A Preliminary Study Using Methanol-Contaminated Air [J], Industrial & Engineering Chemistry Research, 2007, 46(23): 7611-7614.
    13. YIN Y M. LIANG J. YANG L M. WANG Q Q. Vapour generation at a UV/TiO2 photocatalysis reaction device for determination and speciation of mercury by AFS and HPLC-AFS [J], Journal of Analytical Atomic Spectrometry, 2007, 22(3): 330-334.
    14. WANG R. HASHIMOTO K. FUJISHIMA A. CHIKUNI M., KOJIMA E. KITAMURA A. SHIMOHIGOSHI M. WATANABE T. Photogeneration of Highly Amphiphilic TiO2 Surfaces [J], Advanced Materials, 1998, 10(2): 135-138.
    15. HARA K. SAYAMA K. OHGA Y. SHINPO A. SUGA S. ARAKAWA H. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a highsolar-energy conversion efficiency up to 5.6% [J], Chemical Communications, 2001, 1(6): 569-566.
    16. CAHEN D. HODES G. GR?TZEL M. GUILLEMOLES J F. RIESS I. Nature of Photovoltaic Action in Dye-Sensitized Solar Cells [J], The Journal of Physical Chemistry B, 2000, 104(9): 2053-2059.
    17. RüHLE S. DITTRICH T. Investigation of the Electric Field in TiO2/FTO Junctions Used in Dye-Sensitized Solar Cells by Photocurrent Transients [J], The Journal of Physical Chemistry B, 2005, 109(19): 9522-9526.
    18. RüHLE S. CAHEN D. Electron Tunneling at the TiO2/Substrate Interface Can Determine Dye-Sensitized Solar Cell Performance [J], The Journal of Physical Chemistry B 2004, 108(46): 17946-17951.
    19. FERBER J. LUTHER J. Modeling of Photovoltage and Photocurrent in Dye-Sensitized Titanium Dioxide Solar Cells [J], The Journal of Physical Chemistry B, 2001, 105(21): 4895-4903.
    20. BISQUERT J. GARCIA-BELMONTE G. FABREGAT-SANTIAGO F. Modeling the electric potential distribution in the dark in nanoporous semiconductor electrodes [J], Journal of Solid State Electrochemistry, 1999, 3: 337-347.
    21. ALARCóN H. BOSCHLOO G. MENDOZA P. SOLIS J L. HAGFELDT A. Dye-Sensitized Solar Cells Based on Nanocrystalline TiO2 Films Surface Treated with Al3+ Ions: Photovoltage and Electron Transport Studies [J], The Journal of Physical Chemistry B, 2005, 109(39): 18483-18490.
    22. BARBéC J. ARENDSE F. COMTE P. JIROUSEK M. LENZMANN F. SHKLOVER V. CR?TZEL M. Nanocrystalline Titaninum Oxide Electrodes for Photovoltaic Application [J], The Journal of the American Ceramic Society, 1997, 80(12): 3157-3171.
    23. MAHROV B. BOSCHOLL G. HAGFELDT A. DLOCZIK L. DITTRICH TH. Photovoltage study of charge injection from dye molecules into transparent hole and electron conductors [J], Applied Physics Letters, 2004, 84(26): 5455-5457.
    24. ZHANG Q L. WANG D J. WEI X. XIE T F. LI Z H. LIN Y H. YANG M. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure [J], Thin Solid Films, 2005, 491(1-2): 242-248.
    25. DITTRICH TH. WEIDMANN J. KOCH F. UHLENDORF I. LAUERMANN I. Temperature- and oxygen partial pressure-dependent electrical conductivity in nanoporous rutile and anatase [J], Applied Physics Letters, 1999, 75(25): 3980-3982.
    26. YANG J H. WARREN D S. GORDON K C. MCQUILLAN A J. Electronic states and photoexcitation processes of titanium dioxide nanoparticle films dip coated from aqueous Degussa P25 photocatalyst suspension [J], Jornal of Applied Physics, 2007, 101(2): 023714(7 pages).
    27. DUZHKO V. TIMOSHENKO V Y. KOCH F. DITTRICH TH. Photovoltage in nanocrystalline porous TiO2 [J], Physical Review B, 2001, 64(7): 075204(7 pages).
    28.张清林,王德军,魏霄,肇启东,林艳红,杨敏,利用瞬态光电压技术对纳米TiO2薄膜电极中光生电荷传输机理的研究[J],高等学校化学学报,2006, 27(3): 550-552.
    29. TIMOSHENKO V YU. DUZHKO V. DITTRICH TH. Diffusion Photovoltage in Porous Semiconductors and dielectrics [J], Physica Status Solidi A: Applied Research, 2000, 182(1): 227-232.
    30. BEDNYI B I. BAIDUS N V. TYBULEWICZ A. Effect of recombination in the space charge region of the illuminance characteristics of the surface photo-emf of GaAs and InP [J], Semiconductors, 1993, 27(7): 620-622.
    31. DITTRICH TH. DUZHKO V. KPCH F. KYTIN V. RAPPICH J. Trap-limited photovoltage in ultrathin metal oxide layers [J], Physical Review B, 2002, 65(15): 155319(5 pages).
    32. DUZHKO V. KOCH F. DITTRICH TH. Transient photovoltage and dielectric relaxation time in porous silicon [J], Jornal of Applied Physics, 2002, 91(11): 9432-9434.
    33. ANTA J A. MORA-SERóI. DITTRICH TH. BISQUERT J. Dynamics of Charge Separation and Trap-Limited Electron Transport in TiO2 Nanostructures [J], The Journal of Physical Chemistry C, 2007, 111(37): 13997-14000.
    34. GR?TZEL M., Photoelectrochemical cells [J], Nature, 2001, 414: 338-344.
    35. KAY A. GR?TZEL M. Dye-Sensitized Core-Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide, Chemistry of Materials, 2002, 14(7): 2930-2935.
    36. NANU M. SCHOONMAN J. GOOSSENS A. Inorganic Nanocomposites of n- and p-Type Semiconductors: A New Type of Three-Dimensional Solar Cell [J], Advanced materials, 2004, 16(5): 453-456.
    37. PALOMARES E. CLIFFORD J N. HAQUE S A. LUTZ T. DURRANT J R. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers [J], Journal of theAmerican Chemical Society, 2003, 125(2): 475-482.
    38. DITTRICH TH. DUZHKO V. Photovoltage in Free-Standing Mesoporous Silicon Layers [J], Physica Status Solidi A: Applied Research, 2003, 197(1): 107-112.
    39. DUZHKO V. DITTRICH TH. Diffusion photovoltage in poly (p -phenylenevinylene) [J], Jornal of Applied Physics, 2001, 89(8): 4410-4412.
    40. RüHLE S. CAHEN D. Electron Tunneling at the TiO /Substrate Interface Can Determine Dye-Sensitized Solar Cell Performance [J],2The Journal of Physical Chemistry B, 2004, 108(46): 17946-17951.
    41. KRONIK L. SHAPIRA Y. Surface photovoltage phenomena theory, experiment, and applications [J], Surface Science Reports, 1999, 37: 1-206.
    42. NAZEERUDDIN M K. KAY A. RODICIO I. HUMPRY-BAKER R. MüLLER E. LISKA P. VLACHOPOULOS N. GR?TZEL M. Conversion of light to electricity by cis-X2 bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J], Journal of the American Chemical Society, 1993, 115(14): 6382-6390.
    43. ZAKHIDOV A A. BAUGHMAN R H. LQBAL Z. Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths [J], Science, 1998, 282(5390): 897-901.
    44.王建,王成伟,李燕等, Ag/AAO纳米有序阵列复合结构等效光学参量的确定[J],物理学报, 2005, 54 (12): 5920-5925.
    45. Y. A. Vlasov, N. Yao, D. Norris,Advanced Materials, 1999, 11, 165.
    46. WIJNHOVEN J E G J. WILLEM L V. Preparation of Photonic Crystals Made of Air Spheres in Titania [J], Science, 1998, 281(5378): 802-804.
    47. HOLLAND B T. BLANDFORD C F. STEIN A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids [J], Science, 1998, 281(5376): 538-540.
    48. LUKENS W W. YANG P. STUCKY G D. Synthesis of Mesocellular Silica Foams with Tunable Window and Cell Dimensions [J], Chemistry of Materials, 2001,13(1): 28-34.
    49.黄平,徐可为,憨勇,基于表面生物学改性的多孔状二氧化钛/磷灰石复合薄膜的制备[J],硅酸盐学报, 2002, 30(3): 316-320.
    50. LIU Z F. JIN Z G. QIU J J. LIU X X. WU W B. LI W. Preparation and characteristics of ordered porous ZnO films by a electrodeposition method usingPS array templates [J], Semiconductor Science and Technology, 2006, 21(1): 60–66.
    51. SUN F. CAI W. LI Y. JIA L. LU F. Direct Growth of Mono- and Multilayer Nanostructured Porous Films on Curved Surfaces and Their Application as Gas Sensors [J], Advanced Materials, 2005, 17(23): 2872-2877.
    52. BARBéC J. ARENDSE F. COMTE P. JIROUSED M. LENZMANN F. SHKLOVER V. GR?TZEL M. Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Application [J], Journal of The American Ceramic Society, 1997, 80(12): 3157-3171.
    1. BRAHIMI R. BESSEKHOUAD Y. BOUGUELIA A. TRARI M. CuAlO2/TiO2 heterojunction applied to visible light H2 production [J], Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186(2-3): 242-247.
    2. SADEGHI M., LIU W. ZHANG T-G. STAVROPOULOS P. LEVY B. Role of Photoinduced Charge Carrier Separation Distance in Heterogeneous Photocatalysis: Oxidative Degradation of CH3OH Vapor in Contact with Pt/TiO2 and Cofumed TiO2-Fe2O3 [J], The Journal of Physical Chemistry, 1996, 100(50): 19466-19474.
    3. SHANKAR K. MOR G K. PRAKASAM H E. VARGHESE O K. GRIMES C A. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells [J], Langmuir, 2007, 23(24): 12445-12449.
    4. Kamat P V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion [J], The Journal of Physical Chemistry C, 2007, 111(7): 2834-2860.
    5. TAMAKI J. SHIMANOE K. YAMADA Y. YAMAMOTO Y. MIURA N. YAMAZOE N. Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method [J], Sensors and Actuators B: Chemical, 1998, 49(1-2): 121-125.
    6. LI J. ZENG H. SUN S. LIU J P. WANG Z L. Analyzing the Structure of CoFe-Fe3O4 Core-Shell Nanoparticles by Electron Imaging and Diffraction [J], The Journal of Physical Chemistry B, 2004, 108(37): 14005-14008.
    7. Boal A K. 2004 In: Rotello V(ed) Nanoparticles-Building blocks fornanotechnology [M], New York: Kluwer Academic/Plenum Publishes, pp1-27.
    8. SUN S H. MURRAY C B. WELLER D. FOLKS L. MOSER A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J], Science, 2000, 287(5460): 1989-1992.
    9. PORTET D. DENIZOT B. RUMP E. LEJEUNE J J. JALLET P. Nonpolymeric Coatings of Iron Oxide Colloids for Biological Use as Magnetic Resonance Imaging Contrast Agents [J], Journal of Colloid and Interface Science, 2001, 238(1): 37-42.
    10. (a) ROULLIN V G. DEVERRE J R. LEMAIRE L. HINDRE F. JULIENNE M C V. VIENET R. BENOIT J P. Anticancer drug diffusion within living rat brain tissue : an experimental study using [3H] (6)-5-fluorouracil-loaded PLGA microspheres [J], European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53(3), 293-299. (b) PEREZ M. O’LOUGHLIN T. SIMERONE F J. WEISSLEDER R. JOSEPHSON L. DNA-Based Magnetic Nanoparticle Assembly Acts as a Magnetic Relaxation Nanoswitch Allowing Screening of DNA-Cleaving Agents [J], Journal of the American Chemical Society, 2002, 124(12) : 2856-2857. (c) PEREZ J M.,SIMEONE F J. TOSOURKAS A. JOSEPHSON L. WEISSLEDER R. Peroxidase Substrate Nanosensors for MR Imaging [J], NANO LETTERS, 2004, 4(1): 119-122.
    11. KUHARA M. TAKEYAMA H. TANAKA T. MATSUNAGA T. Magnetic Cell Separation Using Antibody Binding with Protein A Expressed on Bacterial Magnetic Particles [J], Analytical Chemistry, 2004, 76(21): 6207-6213.
    12. YOZA B. ARAKAKI A. MARUYAMA K. TAKEYAMA H. MATSUNAGA T. Fully automated DNA extraction from blood using magnetic particles modified with a hyperbranched polyamidoamine dendrimer [J], Journal of Bioscience and Bioengineering, 2003, 95(1): 21-26.
    13. Rudolph C. Plank C. Lausier J. Schillinger U. Müller R. H. Rosenecker J. Oligomers of the Arginine-rich Motif of the HIV-1 TAT Protein Are Capable of Transferring Plasmid DNA into Cells [J], Journal of Biological Chemistry, 2003, 278(13): 11411-11418.
    14. LAZARO F J. ABADIA A R., ROMERO M S., GUTIERREZ L. LAZARO J. M. MORALES P. Magnetic characterisation of rat muscle tissues after subcutaneous iron dextran injection [J], Biochim et Biophysica Acta (BBA), 2005, 1740(3): 434-445.
    15. GLEICH B. WEIZENECKER J. Tomographic imaging using the nonlinearresponse of magnetic particles [J], Nature, 2005, 435(7046): 1214-1217.
    16. GIRI J. THAKURTA S G. BELLARE J. NIGAM A K. BAHADUR D. Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles [J], Journal of Magnetism and Magnetic Materials, 2005, 293(1): 62-68.
    17. DONCHEV V. KIRILOV K. IVANOV TS. GERMANOVA K. Surface photovoltage phase spectroscopy– a handy tool for characterisation of bulk semiconductors and nanostructures [J], Materials Science and Engineering B: Solid State Materials for Advanced Technology, 2006, 129(1-3): 186-192.
    18. ZHAO Q D. XIE T F. PENG L L. LIN Y H. WANG P. PENG L. WANG D J. Size- and Orientation-Dependent Photovoltaic Properties of ZnO Nanorods [J], The Journal of Physical Chemistry C, 2007, 111(45): 17136-17145.
    19. LELAND J K. BARD A J. Photochemistry of colloidal semiconducting iron oxide polymorphs [J], The Journal of Physical Chemistry, 1987, 91(19): 5076-5083.
    20. SANCHEZ C. HENDEWERK M. SIEBER K. SOMARJAI G. Synthesis, bulk, and surface characterization of niobium-doped Fe2O3 single crystals [J], Journal of Solid State Chemistry, 1986, 61(1): 47-55.
    21. KRONIK L. SHAPIRA Y. Surface photovoltage phenomena theory, experiment, and applications [J], Surface Science Reports, 1999, 37: 1-206.
    22. BERANEK R. NEUMANN B. SAKTHIVEL SH. JANCZAREK M. DITTRICH TH. TRIBUTSCH H. KISCH H. Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies [J], Chemical Physics, 2007, 339(1-3): 11-19.
    23. MAHROV B. BOSCHLOO G. HAGFELDT A. DLOCZIK L. DITTRICH TH. Photovoltage study of charge injection from dye molecules into transparent hole and electron conductors [J], Applied Physics Letters, 2004, 84(26): 5455-5457.
    24. ZHANG Q L. WANG D J. WEI X. XIE T F. LI Z H. LIN Y H. YANG M. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure [J], Thin Solid Films, 2005, 491(1-2): 242-248.
    25. Damm C. Müller F W. Israel G. Models for description of the influence of light intensity on the parameters of the transient photo-EMF of organic photoconductors [J], Physical Chemistry Chemical Physics, 2001, 3(18): 4096-4101.
    26. DUZHKO V. KOCH F. DITTRICH TH. Transient photovoltage and dielectric relaxation time in porous silicon [J], Jornal of Applied Physics, 2002, 91(11): 9432-9434.
    27. GLEITZER C. NOWOTNY J. REKAS M. Surface and bulk electrical properties of the hematite phase Fe2O3 [J], Applied Physics A: Materials Science & Processing, 1991, 53(4): 310-316.
    28. BATISTA E R. FRIESNER R A. A Self-Consistent Charge-Embedding Methodology for ab Initio Quantum Chemical Cluster Modeling of Ionic Solids and Surfaces: Application to the (001) Surface of Hematite (α-Fe2O3) [J], The Journal of Physical Chemistry B, 2002, 106(33): 8136-8141.
    29. Kim Ch Y. Bedzyk M J. Study of growth and oxidation of vanadium films onα-Fe2O3 (0001) [J], Thin Solid Films, 2006, 515(4): 2015-2020.
    30. WRóBEL D. LUKASIEWICZ J. GOC J. WASZKOWIAK A. ION R. Photocurrent Generation in an Electrochemical Cell with Substituted Metalloporphyrins [J], Journal of Molecular Structure, 2000, 555(1-3): 407-417.
    31. STERNBERG E D. DOLPHIN D. BRüCKNER C. Porphyrin-based Photosensitizers for Use in Photodynamic Therapy [J], Tetrahedron, 1998, 54(17): 4151-4202.
    32. CROSSLEY M J. BURN P L. An Approach to Porphyrin-based Molecular Wires: Synthesis of a Bis (porphyrin) tetraone and Its Conversion to a Linearly Conjugated Tetrakisporphyrin System [J], Journal of The Chemical Society. Chemical Communications, 1991, 21: 1569-1571.
    33. GIRAUDEAU A. LOUATI A. CALLOT H J. GROSS M. Electrochemical Reduction and Demetalation of Silver and Thallium Porphyrins [J], Inorg Chem, 1981, 20(3): 769-712.
    34. YU M. LIU G F. ZHAO Q D. WANG D J. JIANG X. Synthesis and Characterization of meso-Tetrakis-(p-methoxyphenyl) porphyrin Rare Earth Chloride [J], Chinese Journal of Chemistry, 2005, 23(8): 1021-1026.
    35. SEIJI A. TOMOKO Y. IWAO Y. ATSUHIRO O. Excitation Relaxation of Zinc and Free-base Porphyrin Probed by Femtosecond Fluorescence Spectroscopy [J], Chemical Physics Letters, 1999, 309(3-4): 177-182.
    36. BALLARIN B. SEEBER R. TASSI L. TONELLI D. Electrochemical Synthesis and Characterization of Polythiophene Conducting Polymers Functionalised by Metal-containing Porphyrin Residue [J], Synthetic Metals, 2000, 114(3): 279-285.
    37. HUMPHREY J. KUCIAUSKAS D. Charge-transfer States Detemine Iron Porphyrin Film Third-order Nonlinear Optical Properties in the Near-IR Spectral Region [J], The Journal of Physical Chemistry B, 2004, 108(32): 12016-12023.
    38. SHI Y Y. ZHENG W Q. LI X Q. et al. Fluorescence Property of a Series of Hydroxylphenyl Porphyrins [J], Chemical Journal of Chinese University, 2005, 26(1): 9-12.
    39. SHAN N. ZHENG W Q. FA H B. WANG X Q. Metallization and Characterization of Meso-5-(p-hydroxyphenyl)-10, 15, 20-triphenylporphyrin [J], Journal of Jilin University: Science Edition, 2007, 45(2): 283-287.
    40. FA H B. ZHAO L. WANG X Q. Synthesis of a Mesoporphyriin Dimer by Direct Condensation between Two Meso-carboxy Group of Porphyrin Ring [J], Chemical Journal of Chinese University, 2006, 27(1): 17-19.
    41. FA H B. YIN W. ZHENG W Q. LI D. SHAN N. WANG X Q. Pluorescence Properties of Porphyrin Dimers Incorporating an Anhydride Linker [J], Chemical Research in Chinese University, 2006, 22(6): 684-687

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700