用户名: 密码: 验证码:
功能炭膜的设计、制备及其气体分离性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜分离技术作为二十世纪发展起来的一种多学科交叉的新兴分离技术,已广泛应用工业生产的各个领域。尤其是气体分离膜在清洁能源(氢能)的开发利用、温室气体CO_2的捕集、分离及回收利用、天然气的纯化以及空气分离等诸多方面有广阔的应用前景。炭分子筛膜(简称“炭膜”)是一种新颖的具有分子筛分功能的炭基膜材料,因具有较高的气体分离选择性、良好的热和化学稳定性,引起了各国科学家的极大关注和研究热情。但目前炭膜的气体渗透性较低,并仍然存在着气体分离膜难以解决的难题即气体的分离选择性与渗透性之间的矛盾关系。如何突破这一矛盾关系,制备出高渗透通量、高分离选择性的气体分离炭膜,是实现炭膜大规模产业化应用的关键与前提。
     从材料的结构设计出发,通过在炭膜前驱体前体中引入纳米尺度的功能基团,利用纳米粒子的界面和尺度效应,在微介观层面上合理设计炭膜前驱体的微结构与组成;调控炭膜的极微孔尺度与分布;赋予炭膜功能化;提高炭膜的气体渗透通量;实现高渗透通量、高选择性的新型功能炭膜的可控制备;是解决气体的分离选择性与渗透性之间的矛盾关系,实现炭膜产业化应用的重要途径。
     基于上述思路与构想,本论文以制各具有高渗透通量、高分离选择性的新型气体分离功能炭膜为研究目标,在炭膜前驱体的结构设计、制备方法以及炭膜的气体分离机理,功能基团的作用机制等方面进行了有益研究探索。取得了如下的创新研究成果:
     以无机纳米氧化物粒子(SiO_2,TiO_2)为功能基团,采用“溶胶-凝胶”技术制备了纳米氧化物/炭功能膜(第三章)。利用无机粒子间的孔道以及无机粒子与炭母体间产生的微相分离所形成的超微孔,增加气体分子在炭膜中渗透、扩散通道,提高炭膜对气体的渗透能力。结果表明:纳米氧化物粒子及其无机网络结构增强了膜的气体渗透性能,所制备的TiO_2杂化炭膜对单组分O_2,渗透系数为520.30 Barrer,O_2/N_2分离系数达到8.4。该类材料的成功制备为发展新一代的功能炭膜材料提供了新思路。
     尽管无机纳米氧化物的引入明显地提高了炭膜的气体渗透能力,但并没有很好的改善气体的渗透性与分离选择性的矛盾关系,其原因是无机纳米氧化物不属多孔材料,纳米粒子本身无法提供气体的渗透通道。为此,在第四章中,我们以具有规则、有序孔道结构的纳米沸石分子筛(4A、ZSM-5、T)为功能基团,成功地设计制备出系列沸石分子筛/炭杂化功能炭膜。利用其发达有序的微孔通道及纳米粒子与炭母体间所形成的界面间隙(超微孔结构),实现气体在炭膜中的快速渗透,提高炭膜的气体渗透性。结果证明:沸石分子筛的引入,在保持较高的气体分离选择性的条件下,大幅度提高了炭膜的气体渗透性;并发现沸石分子筛的种类、含量、粒度以及炭化工艺条件对功能炭膜的气体分离性能有决定性影响。经工艺条件的优化设计,以纳米级ZSM-5为功能基团制备的ZSM-5杂化炭膜,对O_2的渗透系数达到671.23 Barrer,O_2/N_2分离系数达11.4。并实现了在温和可控的条件下,通过控制ZSM-5的含量、粒度及炭化工艺条件来调控炭膜的极微孔尺度和分布,制备高渗透通量、高分离选择性的功能炭膜。
     为了提高炭膜对特定气体分子的“分子识别”能力及渗透选择性能,实现其对气体混合物的有效分离,本论文试图在炭膜中引入了一些具有特殊作用的功能基团,以增强特定气体分子在炭膜中的渗透、扩散能力。如为了提高CO_2分子在炭膜中的渗透、扩散能力,选用对CO_2分子具有较强的吸附、扩散能力的T型分子筛为功能基团,成功地制备了T/C功能炭膜。结果表明:分子筛的晶体粒度和形态对所制备的T/C功能膜的气体分离性能有很大的影响,采用小晶体粒度的T型沸石分子筛制备的T/C功能膜对CO_2/CH_4混合气中CO_2的渗透系数达到1 532 Barrer,CO_2/CH_4分离系数达到179,功能炭膜的气体分离系数可以通过调整分子筛的晶体粒度和形态来控制。
     为了进一步的提高气体在功能炭膜中的渗透、扩散速率,我们对引入的功能基团进行了“扩孔”,设计并制备以有序介孔材料为功能基团的SBA-15/C和MCM-48/C功能炭膜,在炭膜母体中形成“介孔-微孔”复合孔结构体系。利用气体分子在介孔材料孔道中的快速传输作用,增加气体在炭膜中的渗透性能(第五章)。研究表明:有序介孔材料提供的宽阔、畅通的孔道体系,可以实现对小气体分子的快速扩散。并发现引入具有三维孔道体系的MCM-48功能炭膜对气体分子的输送能力要明显高于引入二维孔道体系的SBA-15功能炭膜,MCM-48/C功能膜对H_2,CO_2,O_2的平均渗透系数分别可达到3838.22,2508.01,527.12 Barrer,CO_2/CH_4,CO_2/N_2,O_2/N_2的理想分离系数分别达到:100.3,39.2,8.2。气体分子在炭膜中的分离机理是基于努森扩散辅助的“分子筛分”机理。这为进一步探索该类具有独特“介孔-微孔”复合孔道体系的功能膜材料的研究奠定了基础。
     碳纳米管与有序介孔炭材料是近年来出现的新型纳米炭材料,它们的特殊结构特征显示它们对气体分子具有很高的传输能力。在第六章,我们将碳纳米管和有序介孔炭CMK-3材料引入炭膜前躯体,制各了碳纳米管/炭和有序介孔炭/炭功能炭膜。研究发现:碳纳米管/炭功能炭膜的气体渗透性有明显提高,但其分离系数有所降低。有序介孔炭CMK-3的掺杂量以及恒温时间对所制备的CMK-3/C功能膜气体渗透性能有重要影响。CMK-3含量增加,气体渗透系数增大,理想分离系数减小;而炭化恒温时间的则与其相反。本论文对对新型的炭/炭复合型炭膜的探索将进一步拓宽功能炭膜的的研究领域,对构建新型的炭膜结构,对实现高渗透、高选择性功能炭膜的可控制备具有重要意义。
Membrane separation technology is a new and interdisciplinary separation technology developed in the 20th century, which has been widely investigated and used in the world. Especially, membrane-based gas separation technology has attracted much attention in various fields such as the developing and utilization of clean energy (H_2), the greenhouse gas carbon dioxide separation and recovery, the natural gas purification and oxygen/nitrogen separation. Carbon molecular sieving membrane (Carbon membrane) is a novel inorganic membrane material with molecular sieve ability, and it has attached more attention owing to its high selectivity, thermal stability and good chemical stability. However, the strong trade-off relationship between the gas permeability and selectivity make it impossible to satisfy the industry requirement. How to solve the trade-off bottleneck problem and to prepare high performance carbon membranes is a key point for its industrialization.
     One important approach to solve the challenging task mentioned above is to design the structure of the precursor by incorporating functional groups and to tune the ultramicropores distribution using the "interface effect" formed between the membrane matrix and the functional groups.
     In this dissertation, in order to prepare high performance carbon membranes with high gas permeability as well as high permselectiviy, valuable explorations have been carried out on designing the structure of the precursor, developing new synthetic strategies and investigating the gas separation mechanism of the as-synthesized membranes. The main results are summarized as below:
     A novel nano-oxide/polyimide organic precursor is designed and prepared based on the "sol-gel" technique, which is used to produce nano-oxide / carbon composite membrane (Chapter 3). The interfacial gaps between inorganic particles and the carbon phase are believed to help to increase the gas diffusion ability and to improve the gas permeability. As such the gas permeability of the as-synthesized composite membrane is significantly improved. For single gas test, the composite membrane has an intrinsic O_2/N_2 selectivity of 8.4 with O_2 permeability of 520.30 Barrers. The fabrication of this kind of membrane material provides a new impetus to developing new generation of "inorganic-inorganic" composite membranes.
     In order to improve the gas permeability without decrease the selectivity of the synthesized membrane material, novel carbon/zeolite membrane materials are designed and prepared by incorporating zeolites (4A, ZSM-5, T) into the membrane precursors (Chapter 4). The micropores of the zeolite and the interfacial pores between zeolite and carbon will help the gas diffusion and increase the gas permeability. The results show that the membrane separation performance is affected by the zeolite type, zeolite loadings, the particle size and the pyrolysis parameters. The permeability of O_2 in ZSM-5/carbon membrane (10wt. %, 700℃) is 671.23 Barrer with the O_2/N_2 selectivities of 11.4. This kind of functional membrane can be able synthesized by tuning the zeolite loadings and the pyrolysis temperatures.
     In order to separate CO_2/CH_4 gas pairs, zeolite T/carbon membranes were prepared by incorporating zeolite T into the carbon matrix. The gas selectivity (CO_2/CH_4) of the membranes for both single gas and mixed-gas (CO_2/CH_4: 50/50 mol. %) can be controlled in a wide range by changing the zeolite T particle size and morphology without altering the final pyrolysis temperatures and zeolite loadings.
     In chapter 5, mesoporous material/carbon membranes are designed and prepared by incorporating SBA-15 and MCM-48 into the polyamic acid. The results show that the as-prepared membranes show excellent gas separation performance compared to pure carbon membranes, which indicated that the wide pore size of the mesoporous materials help improve gas diffusion rate in the membranes. The MCM-48/carbon membrane shows higher gas permeability than that of SBA-15/carbon membrane. The permeabilities of pure gas H_2, CO_2, O_2 in MCM-48/carbon membrane are 3838, 2508, 527 Barrer, and the selectivity of CO_2/CH_4, CO_2/N_2, O_2/N_2 are 100.3, 39.2, 8.2, respectively. The main gas separation mechanism of the functional membrane is "Knudsen Diffusion assisted molecular sieving mechanism". These kinds of membrane materials are expected to bring new opportunities for preparation of unique "mesoporous - microporous" composite membranes.
     Carbon nanotubes (CNTs) and ordered mesoporous carbon are novel carbon materials; however, they cannot separate gas molecules effectively. In chapter 6, multi-walled carbon nanotubes (MCNTs) and ordered mesoporous carbon CMK-3 are chosen as fillers to prepare MCNTs/C and CMK-3/C membranes. The results show that the loading of CMK-3 and the holding time at final pyrolysis temperature significantly affect the gas separation performance of the CMK-3/C membranes. The gas permeabilities of the CMK-3/C functional membranes increase with the CMK-3 loading increase as well as decrease the holding time. This research is expected to broaden the research field of carbon membranes and it is helpful for controlled synthesis of high performance carbon membrane materials.
引文
[1]王学松.现代膜技术及其应用指南.北京:化学工业出版社,2005.
    
    [2]时钧,袁权,高从增.膜技术手册.北京:化学工业出版社,2001.
    
    [3] Mulder M H V. Basic Principles of Membrane Technology. Dordrecht: Kluwer Academic Press, 1991.
    
    [4]徐铜文.膜化学与膜技术.合肥:中国科技大学出版社,2003.
    
    [5]汪锰,王湛,李政雄.膜材料及其制备.北京:化学工业出版社,2003.
    
    [6]陈勇,王从厚,吴鸣.气体膜分离技术与应用.北京:化学工业出版社,2004.
    
    [7] Baker R W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res., 2002, 41(6): 1393-1411.
    
    [8] Tanaka K, Kita H, Okano M, et al. Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides. Polymer, 1992, 33(3): 585-592.
    
    [9]刘茉娥.膜分离技术应用手册.北京:化学工业出版社,2001.
    
    [10] Henis J M S, Tripodi K. Compsite hollow fiber membranes for gas separation: the resistance model approach. J. Membr. Sci., 1981, 8 (3): 233-246.
    
    [11] Pinnau I, Casillas C G, Morisato A, et al. Hydrocarbon/hydrogen mixed gas permeation in poly (1-trimethylsilyl-1-propyne) (PTMSP), poly (1-phenyl-1-propyne) (PPP), and PTMSP/PPP blends. J. Polym. Sci. Part B: Polymer Physics, 1996, 34 (15): 2613-2621.
    
    [12]徐南平,邢卫红,赵宜江.无机膜分离技术与应用.北京:化学工业出版社,2003.
    
    [13] IsmailA F, David L I B. A review on the latest development of carbon membranes forgas separation. J. Membr. Sci., 2001, 193(1): 1-18.
    
    [14] Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation - a review.Carbon, 2004, 42(2): 241-259.
    
    [15] Steel K M, Koros W J. Investigation of porosity of carbon materials and related effectson gas separation properties. Carbon, 2003, 41 (2) : 253-266.
    
    [16] Cornelius C, Hibshman C, Marand E. Hybrid organic-inorganic membranes. Sep. Purif.Technol., 2001, 25(1-3): 181-193.
    
    [17] Rama R G V, Balamurugan S, Meyer D E, et al. Hybrid bioinorganic smart membranes thatincorporate protein-based molecular switches. Langmuir, 2002, 18(5): 1819-1824
    
    [18] Mascia L, Zhang Z. Carbon fibre composites based on polyimide/silica ceramers: aspectsof structure-properties relationship. Composites, 1996, 27(12): 1211-1221.
    
    [19] Nunes S P, Pernemann K V, Ohlrogge K, et al. Membranes of poly (ether imide) andnanodispersed silica. J. Membr. Sci., 1999, 157(2): 219-226
    [20] Caruso F, Lichtenfeld H, Giersig M, et al. Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles. J. Am. Chem. Soc., 1998, 120(33): 8523-8524.
    
    [21] Beake B D, Chen S, Hull J B, et al. Nanoindentation Behaviour of Clay/Poly(ethylene oxide) Nanocomposites. J. Nanosci. Nanotech. 2002, 2(1):73-79.
    
    [22] Bottino A, Capannelli G, Asti V D, et al. Sep. Purif. Technol., 2001, 22: 269-275
    
    [23] Brinker C J, Sehgal R, Hietala S L, et al. Sol-gel strategies for controlled porosity inorganic materials. J. Membr. Sci., 1994, 94(1) :85-102.
    
    [24] Hatori H, Yamada Y, Shiraishi M, et al. Carbon molecular sieve films from polyimide. Carbon, 1992, 30(4):719-720.
    
    [25] Suda H, Haraya K. Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide. J. Phys. Chem. B, 1997, 101(20): 3988-3994.
    
    [26] Fuertes A B, Centeno T A. Carbon molecular sieve membranes from polyetherimide. Microporous Mesoporous Mater., 1998, 26(1-3):23 - 26.
    
    [27] Barbosa-Coutinho E, Salim V M M, Borges C P. Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon, 2003, 41(9): 1707-1714.
    
    [28] Hayashi J, Yamamoto M, Kusakabe K et al., Simultaneous improvement of permeance and permselectivity of 3, 3' ,4,4' -biphenyltetracarboxylic dianhydride-4, 4' -oxydianiline polyimide membrane by carbonization. Ind. Eng. Chem. Res., 1995, 34:4364-4370.
    
    [29] Kim Y K, Park H B, Lee Y M. Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties. J. Membr. Sci., 2005, 255:265-273.
    
    [30] Yamamoto M, Kusakabe K, Hayashi J et al. Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube. J. Membr. Sci. , 1997, 133:195-205.
    
    [31] Vu D Q, Koros W J, Miller S J. Effect of Condensable Impurities in CO2/CH4 Gas Feeds on Carbon Molecular Sieve Hollow-Fiber Membranes. Ind. Eng. Chem. Res., 2003, 42:1064-1075.
    
    [32] Hatori H, Yamada Y, Shiraishi M. Preparation of macroporous carbon films polyimide by phase inversion method. Carbon, 1992, 30:303-306.
    
    [33] Tin P S, Chung T. S, Hill A J. Advanced Fabrication of Carbon Molecular Sieve Membranes by Nonsolvent Pretreatment of Precursor Polymers. Ind. Eng. Chem. Res., 2004, 43: 6476-6483.
    
    [34] Coutinho E B, Salim V M M, Borges C P. Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon, 2003, 41:1707-1714.
    
    [35] Sedigh M G, Xu L, Tsotsis T T, et al. Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes. Ind. Eng. Chem. Res., 1999, 38:3367-3380.
    [36] Shiflett M B, Foley H C. On the preparation of supported nanoporous carbon membranes. J. Membr. Sci., 2000, 179:275-281.
    
    [37] Bird A J, Trimm D L Carbon molecular sieves used in gas separation membranes. Carbon, 1983, 21:177-183.
    
    [38] Acharya M, Raich B A, Foley H C et al. Metal-supported carbogenic molecular sieve membranes: synthesis and applications. Ind. Eng. Chem. Res., 1997, 36:2924-2930.
    
    [39] Acharya M, Foley H C. Spray-coating of nanoporous carbon membrane for air separation. J. Membr. Sci., 1999, 161:1-7.
    
    [40] Shiflett M B, Foley H C. Ultrasonic deposition of high-selectivity nanoporous carbon membranes. Science, 1999, 285:1902-1905.
    
    [41] Sedigh M G, Onstot W J, Xu L, et al. Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieves membranes. J. Phys. Chem. A, 1998, 102:8580-8589
    
    [42] Wang H, Zhang L, Gavalas G R. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization. J. Membr. Sci., 2000, 177:25-31
    
    [43]Fitzer E, Schaefer W, Yamada S. Formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin. Carbon, 1969, 7(6): 643-648.
    
    [44] Fitzer E, Schafer W. The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon, 1970, 8(3): 353-364.
    
    [45] Wang S, Zeng M, Wang Z. Asymmetric molecular sieve carbon membranes. J. Membr. Sci., 1996, 109(2):267-270.
    [46] Kita H, Maeda H, Tanaka K, et al. Carbon molecular sieve membrane prepared from phenolic resin. Chem. Lett., 1997, (2): 178-180.
    
    [47] Centeno T A, Vilas J L, Fuertes A B. Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. J. Membr. Sci., 2004, 228(1): 45-54.
    
    [48] Gupta A, Harrison I R. Small-angle X-ray scattering (SAXS) in carbonized phenolic resins. Carbon, 1994, 32(5): 953-960.
    
    [49] Ko T H, Kuo W S, Chang Y H. Raman Study of the microstructure changes of phenolic resin during pyrolysis. Polym. Compos. 2000, 21(5): 745-750.
    
    [50] Zhou W, Yoshino M, Kita H et al. Carbon Molecular Sieve Membranes Derived from Phenolic Resin with a Pendant Sulfonic Acid Group. Ind. Eng. Chem. Res., 2001, 40:4801-4807.
    
    [51] Fuertes A B. Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes. Carbon, 2001, 39:697-706.
    
    [52] Zhou W, Yoshino M, Kita H et al. Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin. J. Membr. Sci., 2003, 21: 55-67.
    
    [53] 魏微,胡浩权,尤隆渤.酚醛树脂基气体分离炭膜制备.大连理工大学学报. 2000, 40:692-695.
    [54] Lamond T G, Metcalfe J E, Walker P L. 6A molecular sieve properties of Saran-type carbons. Carbon, 1965, 3(1): 59-63.
    
    [55] Kitagawa H, uki N. Adsorptive properties of carbon molecular sieve from Saran. Carbon, 1981, 6(4): 470-472.
    
    [56] Rao M B, Sircar S. Performance and pore characterization of nanoporous carbon membranes for gas separation. J. Membr. Sci., 1996, 110(1): 109-118.
    [57] Centeno T A, Fuertes A B. Carbon molecular sieve gas separation membranes based on poly (vinylidene chloride-co-vinyl chloride). Carbon, 2000, 38(7): 1067-1073.
    [58] David L I B, Ismail A F. Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O_2/N_2 separation, J. Membr. Sci, 2003, 213(1-2) :285-291.
    
    [59] Hamamoto Y, Alam K C A, Saha B B, et al. Study on adsorption refrigeration cycle utilizing activated carbon fibers. Part 1. Adsorption characteristics. International Journal of Refrigeration, 2006, 29(2): 305-314.
    
    [60] Schindler E, Maier F. Manufacture of porous carbon membranes. US patent 4919860, 1990.
    
    [61] Yoneyama H, Nishihara Y. Porous hollow carbon fiber film and method of manufacturing the same. EP patent 0394449, 1990.
    
    [62] Linkov V M, Sanderson R D, Jacobs E P. Carbon membranes from precursors containing low-carbon residual polymers. Polym. Inter., 1994, 35:239-245.
    
    [63] Geiszler V C. Polyimide precursors for carbon membranes. University of Texas, PhD thesis, 1997.
    
    [64] Smith S P J, Linkov V M, Sanderson R D et al. Preparation of hollow-fiber composite carbon - zeolite membranes. Micro. Mat., 1995, 4:385-391.
    
    [65] Linkov V M, Sanderson R D, Rychkov B A. Composite carbon - polyimide membranes, Mater. Lett., 1994, 20:43-48.
    
    [66] Liang C, Sha G, Guo S. Carbon membrane for gas separation derived from coal tar pitch. Carbon, 1999, 37(9): 1391-1397.
    
    [67] Koresh J E, Soffer A. Molecular sieve carbon permselective membrane part 1. Presentation of a new device for gas mixture separation. Sep. Sci. & Tech., 1983, 18(8): 723-734.
    
    [68] Gilron J, Soffer A. Knudsen diffusion in microporous carbon membranes with molecular sieving character. J. Membr. Sci. 2002, 209(2): 339-352.
    
    [69] Grainger D, Hagg M B. Evaluation of cellulose-derived carbon molecular sieve membranes for hydrogen separation from light hydrocarbons. J. Membr. Sci. 2007, 306(1-2): 307-317.
    
    [70] Lie J A, Hagg M B. Carbon membranes from cellulose: Synthesis, performance and regeneration. J. Membr. Sci. 2006, 284(1-2): 79-86.
    
    [71] Hatori H, Yamada Y, Shiraishi M, et al. Carbon molecular sieve films from polyimide. Carbon, 1992, 30(4):719-720.
    [72] Tanihara N, Shimazaki H, Hirayama Y, et al. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber. J. Membr. Sci., 1999, 160(2): 179-186.
    
    [73] Hayashi J-i, Yamamoto M, Kusakabe K, et al. Simultaneous improvement of permeance and permselectivity of 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride-4, 4'-oxydianiline polyimide membrane by carbonization. Ind. Eng. Chem. Res., 1995, 34(12): 4364-4370.
    
    [74] Kools W F C. Membrane formation by phase inversion in multicomponent polymer systems. Mechanisms and morphologies: [Doctoral dissertation]. University of Twente, 1998.
    
    [75] Wang H, Zhang L, Gavalas G R. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization. J. Membr. Sci., 2000, 177(1-2) :25 - 31.
    [76] Wang L-J, Hong F ON. Carbon-based molecular sieve membranes for gas separation by inductively-coupled-plasma chemical vapor deposition. Microporous Mesoporous Mater., 2005, 77 (2-3): 167-174.
    [77] Acharya M, Foley H C. Spray-coating of nanoporous carbon membranes for air separation. J. Membr. Sci., 1999, 161(1-2): 1-5.
    [78] Baker R W. Membrane Technology. Kirk Othmer Encyclopedia of Chemical Technology. Singapore: John Wiley & Sons, Vol. 16, 1995, p178.
    [79] Ghosal A S., Koros W J. Air separation properties of flat sheet homogeneous pyrolytic carbon membranes. J. Membr. Sci., 2000, 174(2): 177-188.
    [80] Zhou W, Yoshino M, Kita H, et al. Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group. Ind. Eng. Chem. Res, 2001, 40(22): 4801-4087.
    [81] Kim Y K, Park H B, Lee Y M. Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties. J. Membr. Sci., 2003, 226(1): 145-158.
    [82] Kim Y K, Lee J M, Park H B, et al. The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups. J. Membr. Sci., 2004, 235: 139-146.
    [83] Tin P S, Chung T S, Hill A J. Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers. Ind. Eng. Chem. Res, 2004, 43: 6476-6483.
    [84] Barsema J N, Balster J, Jordan V, et al. Functionalized carbon molecular sieve membranes containing Ag-nanoclusters. J. Membr. Sci, 2003, 219: 47-57.
    [85] Yoda S, Hasegawa A, Suda H, et al. Preparation of a platinum and palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation. Chem. Mater, 2004, 16: 2363-2368.
    [86] Zhang L X, Chen X H, Zeng C F, et al. Preparation and gas separation of nano-sized nickel particle-filled carbon membranes. J. Membr. Sci, 2006, 281: 429-434.
    
    
    [87] Lie J A, Hagg M B. Carbon membranes from cellulose and metal loaded cellulose [J].Carbon, 2005, 43: 2600-2607.
    
    [88] Hatori H., T. Kobayashi, Y. Hanzawa, et al. Mesoporous carbon membranes from polyimideblended with poly (ethylene glycol). J. Appl. Polym. Sci, 2001, 79: 836-841.
    
    [89] Kim Y K, Park H B, Lee Y M. Carbon molecular sieve membranes derived from thermallylabile polymer containing blend polymers and their gas separation properties. J. Membr.Sci, 2004, 243: 9-17.
    
    [90] Kim Y K, Park H B, Lee Y M. Gas separation properties of carbon molecular sieve membranesderived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight ofpolyvinylpyrrolidone. J. Membr. Sci, 2005, 251: 159-167.
    
    [91] Park H B, Suh I Y, Lee Y M. Novel pyrolytic carbon membranes containing silica:preparation and characterization. Chem. Mater, 2002, 14: 3034-3046.
    
    [92] Park H B, Lee Y M. Pyrolytic carbon - silica membrane: a promising membrane materialfor improved gas separation. J. Membr. Sci, 2003, 213: 263-272.
    
    [93] Park H B, Jung C H, Kim Y K, et al Pyrolytic carbon membranes containing silica derivedfrom poly (imide siloxane): the effect of siloxane chain length on gas transport behaviorand a study on the separation of mixed gases. J. Membr. Sci, 2004, 235: 87-98.
    
    [94] Jones C W, Koros V J. Carbon molecular sieve gas separation membranes preparation andcharacterizationbased on polyimide precursors. Carbon, 1994, 32:1419-1425.
    
    [95] Kita H, Nanbu K, Hamano T, et al. Carbon molecular sieving membranes derived fromLignin-based materials. J. Polym. Environ, 2002, 10(3) :69-75.
    
    [96] SudaH, HarayaK. Alkene/alkane permselectivities of a carbon molecular sieve membrane.J. Chem. Soc. Chem. Commun., 1997, 47:93-94
    
    [97] Hayashi J, Hirotaka M, Masatake Y et al. Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon. J. Membr. Sci, 1997,124:243-251.
    
    [98] Itoh N, Haray K. A carbon membrane reactor. Catalysis Today, 2000, 56:103-111.
    
    [99] Sznejer G, SheintuchM. Application of a carbon membrane reactor for dehydrogenationreactions. Chemical Engineering Science, 2004, 59(10):2013 - 2021.
    
    [100] Tanaka K, Kita H, Okano M, et al. Permeability and permselectivity of gases influorinated and non-fluorinated polyimides. Polymer, 1992, 33(3): 585-592.
    
    [101]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985.
    
    [102]陶铸,煤化学.北京:冶金工业出版社,1984.
    
    [103]大谷杉朗,真田雄三,中科院沈阳金属所和兰州炭素厂研究所合译.炭化工学基础.1985.
    
    [104]许并社.纳米材料及应用技术.北京:化学工业出版社,2004.
    
    [105] Short M A, Walker P L J. Measurement of interlayer spacings and crystal sizes in turbostratic carbons. Carbon, 1963, 1(1): 3-9.
    
    [106] Edwards I A S. Structure in carbons and carbon forms. Introduction to Carbon Science. London: Editor Marsh H. Butterworths, 1989, 1-32.
    
    [107] Wang S B, Lu G Q. Effects of acidic treatments on the pore and surface properties of Ni-catalyst supported on activated carbon. Carbon, 1998, 36(3): 283-292.
    
    [108]刘粤惠,刘平安,X射线衍射分析原理与应用.北京:化学工业出版社,2003.
    
    [109] Stetnescu R, Jipa S, Setnescu T, et al. IR and X-ray characterization of theferromagnetic phase of pyrolysed polyacrylonitrile. Carbon, 1999, 37(1): 1-6.
    
    [110] Gurudatt K, Tripathi V S. Studies on changes in morphology during carbonization andactivation of pretreated viscose rayon fabrics. Carbon, 1998, 36(9): 1371-1377.
    
    [111] Braun A, Bartsh M, Schnyder B, et al. X-ray scattering and adsorption studies ofthermally oxidized glassy carbon. J. Non-Crystalline Solids, 1999, 260(1-2): 1-4.
    
    [112]董炎明.高分子分析手册.北京:中国石化出版社,2004.
    
    [113] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solidsystems with special reference to the determination of surface area and porosity. Pure Appl.Chem., 1985, 57(4): 603-619.
    
    [114] Dubinin M M. Adsorption properties and microporous structures of carbonaceousadsorbents. Carbon, 1987, 25(5): 593-598.
    
    [115] Gregg S J, Sing K S W. Adsorption, Suface Area and Porosity, 2nd. London: AcademicPress, 1982.
    
    [116] Sing K S W. Surface Area Determination (Everett DH, Ottewill RH Edited), London:Butterworths, 1970.
    
    [117] Carrott P J, Roberts R A, Sing K S W. Standard nitrogen adsorption data for nonporouscarbons. Carbon, 1987, 25(6): 769-770.
    
    [118] Horvath G, Kawazoe K. Method for the calculation of effective pore size distributionin molecular sieve carbon. J. Chem. Eng. Japan, 1983, 16(5): 470-475.
    
    [119] Seaton N A, Walton J P R, Quirke N. A new analysis method for the determination ofthe pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon,1989, 27(6): 853-861.
    
    [120] Moore T T, Damle S, Williams P J, et al. Characterization of low permeability gasseparation membranes and barrier materials; design and operation considerations. J. Membr.Sci., 2004, 245(1-2): 227-231.
    
    [121] Schumacher E E, Ferguson L. A convenient apparatus for measuring the diffusion ofgases and vapors through membranes. J. Am. Chem. Soc., 1927, 49(2): 427-428.
    
    [122] Barrer, R. M. Permeation, diffusion and solution of gases in organic polymers. Trans.Faraday Soc., 1934, 35: 628-643.
    
    [123] Meares P. The diffusion of gases through polyvinyl acetate. J. Am. Chem. Soc., 1954,76(13): 3415-3422.
    
    [124] Pye D G, Hoehn H H, Panar M. Measurement of gas permeability of polymers. I.Permeabilities in constant volume/variable pressure apparatus. J. Appl. Polym. Sci. 1976,20(7):1921-1931.
    
    [125] O' Brien K C, Koros W J, Barbari T A, et al. A new technique for the measurement ofmulticomponent gas transport through polymeric films. J. Membr. Sci., 1986, 29 (3): 229-238.
    
    [126] Mohammadi A T, Matsuura T, Sourirajan S. Design and construction of gas permeationsystem for the measurement of low permeation rates and permeate compositions. J. Membr.Sci., 1995, 98(3): 281-286.
    
    [127] Stern S A, Gareis P J, Sinclair T F, et al. Performance of versatile variable-volumepermeability cell. Comparison of gas permeability measurements by the variable-volume andvariable-pressure methods. J. Appl. Polym. Sci., 1963, 7(6): 2035-2051.
    
    [128] Brubaker D W, Kammermeyer K. Apparatus for measuring gas permeability of sheetmaterials. Anal. Chem., 1953, 25 (3) : 424-426.
    
    [129] Landrock A H, Proctor B E. The simultaneous measurement of oxygen and carbon dioxidepermeabilities of packaging materials. Tappi Journal, 1952, 35:241-246.
    
    [130]章永化,龚克成,Sol-Gel法制备有机/无机纳米复合材料的进展.高分子材料科学与工程.1997.13(4):14-19.
    
    [131] Konno H, Nakahashi T, Inagaki M. State analysis of nitrogen in carbon film derived from polyimide Kapton. Carbon, 1997, 35(5): 669-674.
    
    [132] Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T. The mechanism of polyimide pyrolysis in the early stage. Carbon, 1996, 34(2): 201-208.
    
    [133]李传峰,钟顺和.聚酰亚胺-二氧化硅杂化膜的制备与表征.催化学报,2001,22(5):449-452.
    
    [134]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学.北京:科学出版社,2004.
    
    [135] Bein T. Synthesis and applications of molecular sieve layers and membranes. Chem. Mater.1996, 8(8): 1636-1653.
    
    [136] Lubomira T, Valentin P V.nanozeolites: Synthesis, crystallization mechanism, andapplication. 2005, 17: 2494-2513.
    
    [137] Bu X, Feng P, Stucky G D. large cage zeolite structure with multidimensional 12-ringchannels. Science. 1997, 278 (5348) : 2080-2085.
    
    [138] Oscar I, Reyes M, Miguel M , et al. Continuous zeolite membrane reactor foresterification of ethanol and acetic acid. Chemical Engineering Journal.2007, 131(1-3):35-39.
    
    [139] J. M. Duval, B. Folkerts and M. H. V. Mulder. Adsorbent filled membranes for gasseparation. Part 1. Improvement of the gas separation properties of polymeric membranesby incorporation of microporous adsorbents. J. Membr. Sci., 80(1993): 189-198.
    
    [140] Birgul S, Atalay-Oral T C, Tatter M, et al. Effect of zeolite particle size on theperformance of polymer - zeolite mixed matrix membranes. J. Membr. Sci., 175(2000): 285-296.
    
    [141] Weitkamp J. Zeolites and catalysis. Solid State Ionics. 2000, 131:175-188.
    
    [142] Lai Z, Bonilla G, Diaz I, et al. Microstructral Optimizaition of Zeolite membranefor Organic Vapor Separation. Science, 2003, 300 (5618) : 456-460.
    
    [143] Kalipcilar H, Bowen T C, Noble R D et al. synthesis and separation performance ofSSZ-13 zeolite membranes on tubular supports. Chem.Mater. 2002, 9:3458-3464.
    
    [144] Mabande G T P, Noack M, AvhaleA, et al. Permeation properties of bi-layeredAl-ZSM-5/Silicalite-1 membranes. Microporous Mesoporous Mater., 2007, 98(1-3): 55-61.
    
    [145] Yin X, Zhu G, Yang W et al. Stainless-steel-net supported zeolite NaA membrane withhigh permeance and high permselectivity for Oxygen over Nitrogen. Adv. Mater. 2005, (17):2006-2010.
    
    [146] Bonaccorsi L, Proverbio E. Microvave assisted crystallization of zeolite A from densegels. J. Cryst. Grownth. 2003, 247(2): 555-562.
    
    [147]张雄福,刘海鸥,王金渠等.用亚微米级晶种涂层合成NaA沸石膜及其结构表征.催化学报.2004,25(7):586-590.
    
    [148] Xu X, Bao Y, Song C, et al. Synthesis, characterization and single gas permeation properties of NaA zeolite membrane. J. Membr. Sci. 2005, 249:51-64.
    
    [149]邹本雪,张雄福,王同华等.新型管式炭载体上型沸石膜的制备与性能.无机材料学报.2006,21(1):204-210.
    
    [150] Mabande G T P, Pradhan G, Schwieger W, et al. A study of Silicalite-1 and Al-ZSM-5membrane synthesis on stainless steel supports. Micropor. Mesopor. Mater.. 2004,75:209-220.
    
    [151] Lee S. J, Lee Y. J, Lee T. E, et al. Synthesis of zeolite as ordered muticrystal arrays.Science. 2003, 301(5634): 818-821.
    
    [152] Oscar de la Iglesia, Silvia Irusta, Reyes Mallada, et al. Preparation andcharacterization of two-layered mordenite-ZSM-5 bi-functional membranes. MicroporousMesoporous Mater., 2006, 93(1-3): 318-324.
    
    [153] Lai Z, Tsapatsis M, Nicolich J P. Siliceous ZSM-5 Membranes by Secondary Growth ofb-Oriented Seed Layers. AdV. Funct. Mater., 2004, 14(7), 716-729.
    
    [154] Wang Z, Yan Y, Controlling Crystal Orientation in Zeolite MFI Thin Films by DirectIn Situ Crystallization. Chem. Mater. 2001, 13(3): 1101-1107.
    
    [155] Li S, Li Z, Bozhilov K N, et al. TEM Investigation of Formation Mechanism ofMonocrystal-Thick b-Oriented Pure Silica Zeolite MFI Film. J. Am. Chem. Soc. 2004, 126(34):10732-10737.
    
    [156] Seike T, Matsuda M, Miyake M. Preparation of b-axis-oriented MFI zeolite thin filmsusing slow dissolution of source material. J. Am. Ceram. Soc. 2004, 87(8): 1585-1587.
    [157] Thompsom R W, Huber M J. Analysis of the growth of molecular sieve zeolite NaA in a batch precipitation system J. Cryst. Gr., 1982, 56(3): 711-722.
    [158] Koegler J H, Van B H, Jansen J C. Growth model of oriented crystals of zeolite Si-ZSM-5. Zeolites, 1997, 4(19): 262-269.
    [159] Van G R, Sotelo J L, Menendez J M, et al. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous Mesoporous Mater. 2000, 39(1-2), 135-147.
    [160] Liu Q L, Wang T H, Qiu J S, et al A novel carbon/ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation. Chem. Commun, 2006, (11): 1230-1232.
    [161] Liu Q L, Wang T H, Liang C H, et al Zeolite married to carbon: A new family of membrane materials with excellent gas separation performance. Chem. Mater, 2006, 18(26), 6283-6288.
    [162] Gorring R L, Diffusion of Normal Paraffins in Zeolite T Occurrence of Window Effect. Journal of Catalysis, 1973, 31:13-26
    [163] Yang S, Evmiridis NT, Synthesis and characterization of an offretite/erionite type zeolite. Microporous Mater. 1996, 6(1): 19-26.
    [164] Cichocki A, Koscielniak P, Michalik M, et al. Experimental designs applied to hydrothermal synthesis of zeolite ERI+OFF (T) in the Na_2O-K_2O-Al_2O_3-SiO_2-H_2O system. Part 1. Diganostic study. Zeolites, 1997, 18:25-32.
    [165] Cui Y, Kita H, Ken-Ichi Okamoto. Zeolite membrane: Preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability. Journal of Membrane Science, 2004, 236(1-2): 17-27.
    [166] Cui Y, Kita H, Okamoto K. Preparation and gas separation properties of zeolite T. membrane. Chem. Commun., 2003, (17) 2154-2455.
    [167] Cui Y, Kita H, Okamoto K. PreparaTion and gas separaTion performance of zeoliTe T membrane J. Mater. Chem. 2004, 14(5), 924-932.
    [168] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710-712.
    [169] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27): 10834-10843.
    [170] Feng X, Fryxell G E, Wang L Q. Functionalized Monolayers on Ordered Mesoporous Supports. Science.1997, 276: 923-926.
    [171] Liu J, Feng X, Fryxell G E, et al. Hybrid Mesoporous Materials with Functionalized Monolayers. Adv. Mater. 1998, 10(2): 161-165.
    [172] Ying J, Mehnert C, Wong M. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chem. Int. Ed. 1999, 38(1-2): 56-57.
    [173] Yiu H, Botting C, Botting N P. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve. Phys. Chem. Chem. Phys. 2001, 3(15) 2983-2985.
    [174] Han Y J, Stucky G D, Butter A. Mesoporous Silicate Sequestration and Release of Proteins. J. Am. Chem. Soc. 1999, 121(42): 9897-9898.
    [175] Raimondo M, Perez G, Sinibaldi M, et al. Mesoporous M41S materials in capillary gas chromatography. Chem. Commun. 1997(15): 1343-1344.
    [176] Gallis K W, Araujo J T, Duff K J, et al. Alignment of Mesostructured Silica on a Langmuir-Blodgett Film. Adv. Mater. 1999, 11(17): 1452-1458.
    [177] Zhao J W, Gao F, Fu Y L, et al. Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. Chem. Commun. 2002, (7): 752-753.
    [178] Kloetstra K R, Bekkum H V, Jansen J C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization. Chem. Commun. 1997,(23): 2281-2282.
    [179] Huang L, Guo W, Deng P, et al. Investigation of Synthesizing MCM-41/ZSM-5 Composites. J. Phys. Chem. B 2000, 104(13): 2817-2823.
    [180] Liu Y, Zhang W, Pinnavaia T J. Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds. Angew. Chem. Int. Ed. Engl. 2001, 40(7): 1255-1258.
    [181] Zhang Z, Han Y, Zhu L. Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure. Angew. Chem. Int. Ed. 2001, 40(7) : 1258-1262.
    [182] Trong D, Kaliaguine Serge. Large-Pore Mesoporous Materials with Semi-Crystalline Zeolitic Frameworks. Angew. Chem. Int. Ed. 2001, 40(17): 3248-3251.
    [183] Cooper C, Burch R. Mesoporous materials for water treatment processes. Water Res, 1999, 33 (18): 3689-3694.
    [184] Bruzzoniti M C , Mentasti E , Sarzanini C ,et al. Retention properties of mesoporous silica-based materials. Anal. Chim. Acta, 2000, 422 (2): 231-238.
    [185] Zhao X S, Lu G Q. Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study. J. Phys. Chem. B, 1998, 102(9): 1556-1561.
    [186] Liang C, Dai S, Guiochon G. Use of gel-casting to prepare HPLC monolithic silica columns with uniform mesopores and tunable macrochannels. Chem. Comm., 2002 (22) : 268-2681.
    [187] Alsyouri H M, Lin Y. S. Gas Diffusion and Microstructural Properties of Ordered Mesoporous Silica Fibers. J. Phys. Chem. B, 2005, 109(28): 13623-13629.
    [188] Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 1998, 279:548-552.
    [189] Kosslick H, Lischke G, Landmesser H, et al. Acidity and Catalytic Behavior of Substituted MCM-48. J. Catal, 1998, 176(1): 102-114.
    [190] Kim S, Ida J, Guliants V V, et al. Tailoring Pore Properties of MCM-48 Silica for Selective Adsorption of CO_2. J. Phys. Chem. B, 2005, 109(13): 6287-6293.
    [191] Chen F G, Huang L M, Li Q Z. Synthesis of MCM-48 Using Mixed Cationic-Anionic Surfactants as Templates. Chem mater, 1997, 9(12): 2685-2686.
    [192] Zhao W, Li Q. Synthesis of Nanosize MCM-48 with High Thermal Stability. Chem. Mater., 2003, 15(22): 4160-4162.
    [193] Schumacher K, Grun M, Unger K. Novel synthesis of spherical MCM-48. Microporous Mesoporous Mater, 1999, 27(2-3): 201-206.
    [194] Lee K, Kim Y H, Han S B, et al. Osmium Replica of Mesoporous Silicate MCM-48: Efficient and Reusable Catalyst for Oxidative Cleavage and Dihydroxylation Reactions. J. Am. Chem. Soc., 2003, 125(23): 6844-6845.
    [195] Sayari, A. Novel Synthesis of High-Quality MCM-48 Silica. J. Am. Chem. Soc, 2000, 122(27) : 6504-6505.
    [196] Shao Y, Wang L, Zhang J, et al. Synthesis of Hydrothermally Stable and Long-Range Ordered Ce-MCM-48 and Fe-MCM-48 Materials. J. Phys. Chem. B., 2005, 109(44): 20835-20841.
    [197] Gai L, Jiang H, Ma W, et al. Solution-Liquid-Solid-Induced Tip-Growth of Filled-GaN Nanotubes on MCM-48 Microspheres. J. Phys. Chem. C., 2007, 111(6): 2386-2390.
    [197] Kaneda M, Tsubakiyama T, Carlsson A, et al. Structural Study of Mesoporous MCM-48 and Carbon Networks Synthesized in the Spaces of MCM-48 by Electron Crystallography. J. Phys. Chem. B., 2002, 106(6): 1256-1266.
    [198] Iijima S. Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58.
    [199] Heer W A, Bacsa W S, Ugarte D, et al. Aligned carbon nanotubes films: production and optical and electronic properties. Science, 1995, 268: 845-847.
    [200] Tans S J, Devoret M H, Dai H, et al. Individual single-walled carbon nanotubes as quantum wires. Nature, 1997, 386: 474-477.
    [201] Bochrath M, Cobden D H, Mceuen P L, et al. Single-electron transport in ropes of carbon nanotubes. Science 1997, 275: 1922-1925.
    [202] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotube. Nature, 1996, 381:678-680.
    [203] Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999, 286:1127-1129.
    [204] Lim H, Shin H S, Shin H J, er al. Lithium Ions Intercalated into Pyrene-Functionalized Carbon Nanotubes and Their Mass Transport: A Chemical Route to Carbon Nanotube Schottky Diode. J. Am. Chem. Soc, 2008, 130(7): 2160-2161.
    [205] Hiraoka T, Yamada T, Hata K, et al. Synthesis of Single- and Double-Walled Carbon Nanotube Forests on Conducting Metal Foils. J. Am. Chem. Soc, 2006, 128(41): 13338-13339.
    [206] Peng, H. Aligned Carbon Nanotube/Polymer Composite Films with Robust Flexibility, High Transparency, and Excellent Conductivity. J. Am. Chem. Soc, 2008, 130(1): 42-43.
    [207] Chen Y, Liu H, Ye T, et al. DNA-Directed Assembly of Single-Wall Carbon Nanotubes. J. Am. Chem. Soc., 2007, 129(28): 8696-8697.
    [208] Li X, Zhang L, Wang X, et al. Langmuir-Blodgett Assembly of Densely Aligned Single-Walled Carbon Nanotubes from Bulk Materials. J. Am. Chem. Soc., 2007, 129(16): 4890-4891.
    [209] Niyogi S, Boukhalfa S, Chikkannanavar S B. Selective Aggregation of Single-Walled Carbon Nanotubes via Salt Addition. J. Am. Chem. Soc, 2007, 129(7): 1898-1899.
    [210] Kaneko T, Li Y, Nishigaki S, et al. Azafullerene Encapsulated Single-Walled Carbon Nanotubes with n-Type Electrical Transport Property. J. Am. Chem. Soc, 2008, 130(9): 2714-2715.
    [211] Chen H, ShollDS. Rapid Diffusion of CH_4/H_2 Mixtures in Single-Walled Carbon Nanotubes. J. Am. Chem. Soc, 2004, 126(25): 7778-7779.
    [212] Horvath J D, Koritnik A, Kamakoti P, et al. Enantioselective Separation on a Naturally Chiral Surface. J. Am. Chem. Soc, 2004, 126(45): 14988-14994.
    [213] Holt J K, Park H G, Wang Y M, et al. Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes Science, 2006, 312, (5776): 1034-1037.
    [214] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. J. Phys. Chem. B., 1999, 103(37: 7743-7746.
    [215] Sakamoto Y, Kaneda M, Terasaki O, et al. Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature, 2000, 408, 449-453.
    [216] Jun S, Joo S H, Ryoo R, et al. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. J. Am. Chem. Soc., 2000, 122(43): 10712-10713.
    [217] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412, 169-172.
    [218] Lee J S, Joo S H., Ryoo R. Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters. J. Am. Chem. Soc, 2002, 124(7): 1156-1157.
    [219] Zhang F, Meng Y, Gu D, et al. A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Ia3d Bicontinuous Cubic Structure. J. Am. Chem. Soc, 2005, 127(39): 13508-13509.
    [220] Wang J, Liu Q. An Ordered Mesoporous Aluminosilicate Oxynitride Template to Prepare N-Incorporated Ordered Mesoporous Carbon. J. Phys. Chem. C., 2007; 111(20): 7266-7272.
    [221] Wan Y, Shi Y, Zhao, D. Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons. Chem. Mater., 2008, 20(3): 932-945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700