用户名: 密码: 验证码:
SrFe_(12)O_(19)/AFe_2O_4磁性纳米复合材料的吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有吸收电磁波特性的材料,在近几年,已成为材料研究和应用的热点。对于理想的吸波材料,对材料特性要求是具有强吸收、吸收频段宽、材料厚度薄、重量轻等特点。但是,到目前为止,还没有找到一种吸波材料能够满足这些特性要求。因此,对现有吸波材料进行恰当设计和改性就成了吸波材料研究的重点。六角晶M型锶铁氧体吸波材料,因其自然共振频率较高,在高频下不容易产生趋肤电流,介电常数也比较小,可与其它吸波材料混合使用来对吸波涂层的电磁参数进行适当调节等优点而成为极其重要的一类电磁波吸波剂。另一方面,它的不足之处是吸波性能对制备工艺的敏感性很强。要进一步显著提高单一铁氧体材料的磁导率μr很困难。而尖晶石型铁氧体吸波材料具有良好的温度稳定性,具有最高的饱和磁化强度ΜS,其微波磁导率较大,优点非常明显。但是尖晶石型铁氧体吸波材料在微波波段频率下,因为受“趋肤效应”的限制,粒度不能太大,而且粒度要分布均匀,其体积分数也不能过大。由此可知,磁铅石型铁氧体吸波材料与尖晶石型铁氧体吸波材料相比较,电磁特性具有很强的互补性,如果把二者有效和适当地结合起来,有可能制备出高效的吸波剂。为此,本文着重讨论了设计和制备新一类型软磁尖晶石型铁氧体包覆硬磁锶铁氧体的“核壳型”电磁波吸波材料。设计和制备这种吸波材料的“核壳型”复合粒子的出发点,就是利用二者在其电磁性能上的互补性,并且希望能够充分发挥复合形式的作用,即“核壳型”结构以及“核”和“壳”的各种特殊界面效应,使这种复合结构也能对电磁波的吸收做出明显贡献。
     本文首先通过不同制备方法之间的对比,得出溶胶凝胶法的优越性。然后在传统制备工艺方法的基础上进行了改进,制备出了尖晶石型铁氧体和磁铅石型铁氧体纳米粉;之后分别以两种不同材料作为核,以另外一种材料作为壳,采用改进后的凝胶工艺方法,制备出了包覆型纳米复合颗粒。对样品用XRD、SEM、TEM和VSM以及矢量网络分析仪等分析方法和手段,对颗粒的形貌和吸波性能进行了检测和分析。
     检测和分析结果显示:
     1.采用共沉淀法和传统的溶胶凝胶法这两种不同方法制备出的纳米颗粒,其粒径都会着随温度的升高而增大,但是,溶胶凝胶法制备出的样品的颗粒粒径小、且分布均匀;在溶胶凝胶法制备过程中,对比以硝酸盐为原料和以乙酸盐为原料制备出的样品,后者的粒径比较小。
     2.在溶胶凝胶法制备过程中,加入葡萄糖和丙烯酰胺后,制备出磁铅石型SrFe_(12)O_(19)纳米粉,虽然纳米颗粒的粒径也会随温度升高而增大,但是,与改进前相比较,样品的颗粒粒度均匀、粒径小、分散性也得到较大改善。
     3.采用改进后的网络凝胶法,以磁铅石型SrFe_(12)O_(19)为核,制备出系列核/壳结构SrFe_(12)O_(19)/AFe_2O_4纳米粉,在实验中发现,在核/壳质量比为1:2、退火温度为1050℃条件下热处理10小时、升温速率保持在10℃/min时,得到的颗粒呈球形、分散性好、粒径在30-45nm左右,且分布均匀。随着复合材料中核材料SrFe_(12)O_(19)质量的减小,质量磁化强度(Ms)的值从SrFe_(12)O_(19)核心材料的42.6emu/g增加到SrFe_(12)O_(19)/NiFe_2O_4纳米复合材料的51.4emu/g。而SrFe_(12)O_(19)/NiFe_2O_4纳米复合材料的内稟矫顽力(Hc)是336Oe,在SrFe_(12)O_(19)(5395Oe)和NiFe_2O_4(160Oe)之间。当SrFe_(12)O_(19)/NiFe_2O_4纳米复合粉体的质量比为1:2时,吸波性能达到最大值9dB,是一种性能优良的吸波剂。
     4.以AFe_2O_4为核,制备出核/壳结构AFe_2O_4/SrFe_(12)O_(19)(A为Ni、Zn、Co)纳米粉。分析结果显示粉体的纯度高、粒径小、颗粒度均匀、分散性好。当核材料发生改变时,质量磁化强度(Ms)和内稟矫顽力(Hc)也会发生不同趋势和不同程度的改变,分析发现,发生这些变化的原因都与核壳结合处的原子替换有关。
In recent years, It has become the electromagnetic wave absorption material study and application of hot spots. On the material property requirements is a strong absorption, absorption spectrum width, material thickness thin, light weight characteristics etc. But so far, has not found any kind of material can meet these requirements. So to existing materials appropriate modification and design became the focus of research. Hexagonal crystal M type strontium ferrite because of its natural resonant frequency in high frequencies higher, not easy to generate hasten skin current, dielectric constant is lesser, can be mixed with other absorbing materials for absorbing coatings used to adjust the electromagnetic parameters etc and become a kind of very important electromagnetic wave absorbing agent. Its defect is absorbing properties on the preparation process is very sensitive. To further improve the single ferrite materials magnetic conductivity is difficult. But spinel ferrite absorbing material has good stability, the highest temperature of saturation magnetization intensity, the microwave magnetic conductance larger, the advantage very obvious. But spinel ferrite absorbing material in microwave frequency is restricted by "because skin effect" and granularity cannot too big, and distribution uniformity, volume fraction can not be too big. Thus, magnetic lead stone type ferrite absorbing material and spinel ferrite absorbing material electromagnetic characteristics have strong complementary, effectively combines the two may create efficient absorbing agent. In this paper a new dedicated to design and preparation spinel ferrite magnetic hard magnetic strontium coated the "nuclear shell mould manganese-zinc electromagnetic wave absorbing materials". Design and preparation such "core-shell type" composite particle starting point is to use both electromagnetic properties of complementary, and still hope to be able to play compound form also is "core-shell type" structure and "nuclear" and the "shell" of various special interface effect effect, make they can also contribute to the electromagnetic wave absorption.
     This paper first through the contrast between the different processing methods, it is concluded that the superiority of sol-gel method. Then in traditional preparation process methods improved, based on prepared the spinel ferrite and magnetic lead stone type ferrite nano powder; Later in two different materials respectively, nuclear power as in a different material as the shell, using modified sol-gel process, prepared the coated nanostructured composite particles. Samples by XRD, SEM of VSM, TEM and network analyzer and vector analysis method and means, of particle morphology and absorbing properties are tested and analyzed.
     Test and analysis results show:
     1. The total precipitation and traditional by sol-gel method of the two different methods of preparation out, its size will nanoparticle since the temperature increases and increase, however, sol-gel process) out of the samples of particle size is small, and distributes uniformly; In the process of sol-gel process), contrast nitrate as raw materials and acetic acid salt as raw material with a sample preparation, the latter size smaller.
     2. In sol-gel process) process, join acrylamide and glucose and preparing a magnetic lead stone type SrFe_(12)O_(19) nanometer powder, although nanoparticles size will also increases with temperature rise, however, and improved compared samples before the grain size, particle size uniform, small, dispersion also get improved considerably.
     3. Using the improved polymer network sol-gel method, SrFe_(12)O_(19) by magnetic lead stone type for nuclear, preparation of a series of SrFe_(12)O_(19) / AFe_2O_4 core/shell structure nanoparticles, in experiments found in core/shell mass ratio of 1:2, annealing temperature of 1050℃conditions heat treatment 10 hours, heating rate remained in 10℃/ min, get a spherical shape, the granules dispersion of good size in 30 - about 45nm, distribution and evenly. With nuclear materials in composite materials SrFe_(12)O_(19)quality and decreasing quality of magnetic intensity (Ms) SrFe_(12)O_(19) value from the core material emu/g per increased to SrFe_(12)O_(19)/NiFe_2O_4 nanocomposites emu/g am. And SrFe_(12)O_(19)/NiFe_2O_4 nanocomposites intrinsic coercive force (Hc) is SrFe_(12)O_(19) (5395Oe 336Oe, in NiFe_2O_4 (160Oe) and in between. When SrFe_(12)O_(19)/NiFe_2O_4nano powder quality than for 1:2, 9dB maximum absorbing properties, is a fine performance absorbing agent.
     4. The AFe_2O_4/SrFe_(12)O_(19) (A is Ni, Co, Zn) core/shell structure powders, which were prepared use spinel AFe_2O_4 as nuclear materials, have high purity, uniformity of particle size, small size, and good dispersion. The results show that particle high purity, spheroidization small, even, good dispersion particle degree. When the nuclear material change, quality magnetized intensity (Ms) and intrinsic coercive force (Hc) will also happen different trends and different degree of change, analysis found that, as the cause of the changes with core-shell attaches to replace the atoms concerned.
引文
[1]张海军,张良芳等.BaPbZnCo-Y型铁氧体的柠檬酸溶胶-凝胶合成及其微波性能研究.功能材料, 2003, 1:37-43
    [2]卓长平,张雄等.纳米六角晶系铁氧体吸波材料的制备方法及研究进展.材料导报, 2005, 1:109-112
    [3]孙杰,刘建华等.尖晶石型Ni0.8Zn0.2Fe2O4纳米晶体的制备及电磁性能研究.无机材料导报, 2005, 5:1077-1082
    [4]吕庆荣,方庆清等.钴铁氧体纳米晶粒的结构及磁特性研究.安徽大学学报(自然科学版), 2006, 2:71-74
    [5]余仁光.新型雷达吸收材料研究进展.兵器材料科学与工程, 2004, 2: 62-73.
    [6]陈康华.雷达吸波材料的研究进展.功能材料, 2005, 8( 36) :1151-1154
    [7] Wileoxon J P. Method for the preparation of metal colloids in inverse micelles and product preferred by the method. Unites States Patent, 1992, No.5147841
    [8]阎鑫,胡小玲,岳红,等.纳米级尖晶石型铁氧体的制备进展.材料导报,2002, 16(8) :42-44
    [9] Tamaura Y, Tabata M. Reduction of Carbon Dioxide to Carbon Using Cation-Exess Magnetite. Nature,1990,364: 255-257
    [10] Yoshida T, Nishizawa K, Tabata M, et al. Methanation of CO2 on H2-reduced Ni (II)-or Co (II)-bearing ferrites at 200℃. JOURNAL OF MATERIALS SCIENCE, 1993,28:1220-1226
    [11] Moumon N, Lisiecki I, Pileni M P. Micellar Factors Which play a role in the control of thenanosize particles of cobalt Ferrite, Supramol. Sci., 1995, 29(34): 161-163
    [12] Pillai V, Shah D O. Synthesis of high–coercivity cobalt ferrite particles using water–in–oilmicroemulsion, Journal of Magnetism and Magnetic Materials, 1996, 163(1-2): 243-245
    [13] Laurence B, Philippe T, Abel R, et al. Relations between magneto- optical properties andreactivity in cobalt-manganese ferrite thin films powders. Journal of Magnetism and Magnetic Materials,1996,153:389-396
    [14] Lee J G, Park J Y, Oh Y J, et al. Magnetic properties of CoFe2O4 thin films prepared by asol-gel method, J Appl Phys, 1998, 84(5): 2801-2804
    [15] Cheng F X, Peng Z Y, Xu Z G, et al. The sol-gel preparation and AFM study of spinel CoFe2O4 thin film. Thin Solid Film, 1999, 339: 109-113
    [16] Georgea M, John A M, Nair SS, et al. Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. Journal of Magnetism and Magnetic Materials.2006, 302(1):190-195
    [17] Wang H W, Kung S C . Crystallization of nanosizcd Ni-Zn ferritepowders prepared by hydrothermal method . Journal of Magnetism and Magnetic Materials,2004,270(1-2):230-236
    [18] Kale A, Gubbala S, Misra R D K. Magnetic behavior of nanocrystailine nickel ferrite synthesized by the reverse micelle technique. Journal of Magnetism and Magnetic Materials, 2004,277(3):350-358
    [19] Wang H B, Liu J H, Li W F, et al. Structural, dynamic magnetic and dielectric properties of Ni0.15Cu0.2Zn0.65Fe2O4 ferrite produced by NaOH co-precipitation method. Journal of Alloys and Compounds.2007461(1-2):373-377
    [20]张密林等.M-超微铁氧体粉末合成方法的进展.功能材料, 1996, 27: 202
    [21] Yoahio.O.K.,Magnetic T Properties of SrFe12O19 particles obtained by the glass-cramic method. Mat Mat Sci Lett, 1984, 3:1007-1009
    [22]都有为等.铁氧体.江苏科学技术出版社, 1996, 35-40
    [23] Zhong W, Ding W P, Zhang N, et al, Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique. Journal of Magnetism and Magnetic Materials, 1997, 168(1-2):196-202
    [24]周可省,黄克龙等.吸波材料的物理机制及其设计.中南工业大学学报,2001,32( 6): 617-621
    [25]张雄.包覆钡铁氧体的多孔玻璃微珠吸波材料制备与性能.无机材料学报,2006, 21(4): 861-866
    [26] Wei J, Liu J H, Li S M. Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres. Journal of Magnetism and Magnetic Materials, 2007, 321(2): 414-417
    [27]孙旭东等.璃微珠表面镍铁氧体包覆层的制备和性能.硅酸盐学报, 2008 ,36(12):1781-1784.
    [28]张晏清,张雄.包覆钡铁氧体的多孔玻璃微珠吸波材料制备与性能.无机材料学报, 2006, 21( 4): 861-866
    [29]娄明连.含SrFe12O19铁氧体吸波材料磁织构化处理效应的研究.安徽大学学报, 2001, 25( 1): 37-41
    [30]冯全源.高取向度的毫米波锶钙六角多晶铁氧体.物理学报, 2002, 51( 11):2612-2616
    [31] Xian T, Yang H, Feng W J. et al. Preparation of high-quality BiFeO3nanopowders via apolyacrylamide gel route. Journal of Alloys and Compounds, 2009,68(2):341-357
    [32] Brito P C A, Gomes R F, Macedo M A et al. SrFe12O19 prepared by the proteic sol–gel process.Physica B, 2006, (384): 91–93
    [33] LOU M L,KAN T. Research on the Effect of Magnetic Texture Treatment of Ferrite EM Wave Absorption Materials which Contain SrM. Journal of Anhui University (nature sciences edition) , 2001, 25(1):37-41
    [34] Liu M P, Shen X Q, Song F Z et al. One-dimensional SrFe12O19/SrSiO3 composite nanofibers: Preparation, structure and magnetic pro-perties. Mater.Chem.Phys, 2010, (124): 970-975
    [35] Wang Y , Li Q , Zhang C R et al. Effect of Fe/Sr mole ratios on the formation and magnetic properties of SrFe12O19 microtubules prepared by sol–gel method. Journal of Magnetism and Magnetic Materials, 2009, 321(9): 3368–3372
    [36] Anis-ur-Rehman M, Asghar G, Variation in structural and dielectric properties of co-precipitated nanoparticles strontium ferrites due to value of PH. Journal of Alloys and Compounds, 2011, 509(2): 435-439
    [37] Pullar R C, Taylor M D, Bhattacharya A K. A halide free route to the manufacture of micro- structurally improved M ferrite (BaFe12O19 and SrFe12O19) fibres. Journal of the European Ceramic Society, 2002, 22(12): 2039–2045
    [38] Wang Z Y, Zhong L M, Lv J L et al. Microwave-assisted synthesis of SrFe12O19 hexaferrites. Journal of Magnetism and Magnetic Materials, 2010 322 (18): 2782–2785
    [39] Jiang J, Ai L H. SrFe12O19/ZnO hybrid structures: Synthesis, characterization and properties. Journal of Alloys and Compounds, 2010, 502 (2): 488–490
    [40]魏克珠.烧结Ni—Zn铁氧体的微波吸收性能.电子工程信息,1997,(11):27-29.
    [41]陈家钊,黄婉霞等.PZT对Ni—Zn铁氧体衰减电磁波能力的影响.复合材料学报, 1997, 14(3): 41-44
    [42] Umare S S, Ningthoujam R S, Sharma S J, et al. M?ssbauer and magnetic studies on nanocrystalline NiFe2O4 particles prepared by ethylene glycol route. Hyperfine Interact, 2008, 184 (1-3): 235–243
    [43] Yang H M, Zhang X C, Ao W Q, et al. Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Materials Research Bulletin, 2004, 39 (6): 833-837
    [44] Zhang C Y, Shen X Q, Zhou J X, et al. Preparation of spinel NiFe2O4 fibres by organic gel-thermal decomposition process. Journal of Sol-Gel Science andTechnology, 2007, 42 (1): 95-100
    [45] Pradee A, Priyadharsini P, Chandrasekaran G. Production of single phase nano size NiFe2O4 particles using sol-gel auto combustion route by optimizing the preparation conditions. Materials Chemistry and Physics, 2008, 112 (2): 572-576
    [46] Azadmanjiri J, Seyyed EbrahimiS A, Salehani H K. Magnetic p roperties of nanosize NiFe2O4 particles synthesized by sol-gel auto combustion method. Ceramics International, 2007,(33): 1623-1625
    [47] Sonal Sl, Kailash C. Magnetic and Mossbauer spectral studies of x(NiFe2O4) +(1-x)(SrFe12O19),x=0,0.2,0.4,0.6,0.8 and 1.0 nanocomposites, Hyperfine Interact, 2008, (183): 93–97
    [48] Ye C H, Xu Z G, Zhu T et al. A large low field colossal magnetoresistance in the La0.7Sr0.3MnO3 and CoFe2O4 combined system. Journal of Applied Physics, 2000, 87 (9): 5588-5590
    [49]席力,田航,刘杰,等. (SrFeO3)x(CoFe2O4)1-x复合体中增强的室温磁电阻效应.兰州大学学报, 2008, 44(1): 108-111
    [50] Yang.H, Feng W J, Cao Z E, et al. A polymer-network gel route to oxide composite nanoparticles with core/shell structure. Materials Letters, 2008, 63(29): 655-657
    [51] Chun H.A large low field colossal magnetoresistance in the and combinated system. Appl,Phys,2000,87(9):5588-5590
    [52]刘锦宏,张凌飞,李发伸等.低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性.物理学报, 2007, 56(10): 6050-6054
    [53] Lee P Y, Ishizaka K, Suematsu H, et.al. Magnetic and Gas Sensing Property of Nanosized NiFe2O4 Powders Synthesized by Pulsed Wire Discharge. Journal of Nanoparticle Research, 2006, (1): 29-35
    [54] Zhang D. Templated fabrication of NiFe2O4 nanorods: Characterzation,magnetic and electrochemical properties. Soild State Sciences, 2009, 11 (1): 113-117
    [55] Masala O, Hoffman D, Sundaram N et al.Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa. Solid State Sci, 2006, 8(9): 1015– 1022
    [56] Maeda T, Sugimoto S. Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth-iron-boron compounds. J.Magn.Magn.Mater, 2004, (281): 195-205
    [57]李巧玲.针状纳米晶复合SrM铁氧体的制备及磁性研究.稀有金属材料与工程,2009,4(38):373-377
    [58]潘喜峰.钴基金属包覆锶铁氧体复合粉末的制备和吸波性能研究:[上海交通大学博士学位论文].2008,14-17
    [59]冯海涛.SnO2纳米材料制备与微波吸收性能研究:[兰州大学博士学位论文].2010,5-7
    [60]闫陇刚.金属-氧化物复合材料的微波吸收性能:[兰州大学博士学位论文].2010,21-24
    [61]倪侠.钴-氧化物纳米复合材料的微结构及磁性与微波磁性研究:[兰州大学博士学位论文].2008,11-13
    [62]周正有.La-Sr-Mn-O掺杂及复合材料结构和磁电运性性质研究:[南昌大学博士学位论文].2008,13-14
    [63]周军.低温水热法及熔盐法制备磁性粉末及其表征:[中国海洋大学硕士学位论文].2006,7
    [64]刘翠枝.宽频带多层吸波材料制备与性能研究:[北京交通大学硕士学位论文].2009,11-12
    [65]肖钢.多层吸波材料计算设计及优化研究:[哈尔滨工程大学硕士学位论文].2003,9-10
    [66]杨旭.制备FeCo和FeNi薄膜的高频磁性研究:[兰州大学硕士学位论文].2010,13-14
    [67]吕宏亮.纳米磁性金属陶瓷电磁性能研究:[山东大学硕士学位论文].2008,19-21
    [68]耿丹.La0.7Sr0.3MnO/MFe2O4磁性纳米复合材料制备与性能研究:[兰州理工大学硕士学位论文].2010,17-23
    [69]张雪峰.吸波材料优化匹配的理论分析.材料科学与工艺,2008,5:596-599

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700