用户名: 密码: 验证码:
功能纳米复合粉体的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的发展,包含2种或2种以上纳米尺度功能材料的纳米复合粒子已经成为当前材料学中一个越来越活跃的研究方向,磁性核壳纳米复合粒子正是其中之一。由于氢能源具有效率高、污染小等优点,将逐步取代化石燃料而成为将来主要的能源形式。氢能源使用过程中一个关键的环节是找到一个很好的储存氢的方式。
     本文采用直流电弧等离子体法以磁性金属和氧化物的微米粉为原料,成功制备了Ni/MnO,Ni/TiO_2,Fe-MnO_2,Fe-TiO_2纳米复合粉体,通过XRD,TEM,和红外分析检测方法,确定了这四种纳米复合粒子都是核壳结构纳米粒子。热分析说明Ni/MnO和Fe-MnO_2的氧化物外壳极大的提高了内核金属的氧化温度。根据定量氧辅助V-L-S机制,金属核在复合粒子生长的过程中起到的催化作用,是核壳结构形成的重要因素。并通过对电磁参数的分析发现不同的氧化物外壳,对纳米复合粒子的电磁性能有特殊的影响,外壳氧化物含量的增加,降低了粉体的电磁参数。
     本文中对直流电弧法制备的Mg-Cu合金纳米粒子进行了分析。XRD的结果说明改变原料的配比,对产物的影响不大。结合热力学原理说明了Mg-Cu合金纳米粒子的形成规律。在对Mg-Cu合金纳米粒子进行储氢性能测试过程中,发现直流电弧法制备的Mg-Cu合金纳米粒子在经过一次活化后就有良好的储氢性能。Mg-Cu合金纳米粒子在623K、598K、573K下最大吸氢量分别为2.05 wt%、1.97wt%、1.90wt%。
With the development of nano-technology, nanocompsite particles which contain two or more nano-scale functional materials are an active study field of material. Magnetism core/shell nanocompsite particles are one of that. Hydrogen energy will surely take the place of fossil fuels as the new energy source in the future due to its advantages, such as high efficiency and low price. Hydrogen storage is the key problem in practical applications.
     In this article, Ni/MnO, Ni/TiO_2, Fe-MnO_2 and Fe-TiO_2 nanocompsite particles are prepared by the arc-discharge method using magnetism metals and oxides as the raw materials. Four nanocompsite particles are core/shell structure nanoparticles proved by XRD, TEM and FT-IR. The thermal analysis shows Ni/MnO and Fe-MnO_2 nanocompsite particles can improve the oxidation temperature of the core metals. The formation of nanoparticles was effectively explained by an extended mechanism of the Vapor-Liquid-Solid (VLS) with the existence of stoichiometric oxygen. The metal core plays an essential catalyst in the formation of the core/shell structure. The results of electromagnetism parameter analysis show that the different oxide shells have special effect to the electromagnetism parameter of the nanocompsite particles. Otherwise, the electromagnetism parameters of the nanocompsite particles decrease with increase of oxide shell.
     Mg-Cu alloy nanoparticles prepared by arc-discharge method are analyzed in this article. The results of XRD shows, the production is hardly affected by changing the proportion of the raw material. The formation rule of Mg-Cu alloy nanoparticles is illustrated according to thermodynamics. The Mg-Cu alloy nanoparticles have well hydrogen absorption properties after one time activation, during the test of hydrogen absorption capability of Mg-Cu alloy nanoparticles. The maximize of hydrogen absorption of Mg-Cu alloy nanoparticles is 2.05 wt%,1.97 wt% and 1.90 wt% at 623K,598K and 573K.
引文
[1] 白春礼.纳米科技发展趋势分析.纳米科技,2005,(5):3-7.
    [2] 张芳德.功能纳米材料研究的新进展.功能信息材料.2004,1(1):3-10.
    [3] 张莉芹,袁泽喜.纳米技术和纳米材料的发展及应用.武汉科技大学学报(自然科学版),2003,26(3):234-238.
    [4] 石敏先,黄志雄.新型吸波材料的研究进展.材料导报,2007,21(3):37-39.
    [5] 庄叶凯,郑典模.核-壳复合纳米粒子的研究现状及展望.江西化工,2006,3(1):18-19.
    [6] 景茂祥,沈湘黔.纳米磁性金属电磁波吸收剂的研究进展及展望.材料导报,2005,19(12):14-15.
    [7] 付真金,罗江山,廖其龙.纳米金属包覆材料研究进展.中国粉体技术,2006,4:37-40.
    [8] 刘威,钟伟,都有位.核/壳结构复合纳米材料研究进展.材料导报,2007,21(3):59-62.
    [9] Blackwell J J, Morales M P, O' Grady K Et al. Interactions and hysteresis behaviourof Fe/Si0_2 nanocomposites. J. Magn. Magn. Mater, 2002, 242-245:1103-1105.
    [10] Zhong Z Y, Mastai Y, Koltypin Yet al. Sonochemical Coating of Nanosized Nickel on Alumina Submicrospheres and the Interaction between the Nickeland Nickel Oxide with the Substrate. Chem. Mater, 1999, 11:2350-2359.
    [11] Pol V G, Motiei M, Gedanken Aet al. Sonochemical Deposition of Air-Stable Iron Nanoparticles on Monodispersed Carbon Spherules. Chem. Mater., 2003, 15:1378-1384.
    [12] Pol V G, Reisfeld R, Gedanken A. Sonochemical Synthesis and Optical Properties of Europium Oxide Nanolayer Coated on Titania. Chem. Mater., 2002, 14:3920-3294.
    [13] 张小塔,宋武林,胡木林等.核壳结构纳米复合材料的研究进展.材料导报,2006,20(Ⅶ):209-211.
    [14] John L W. Broadband magnetic microwave absorbers: fundamental limitations.IEEE Transactions on Magnetics, 1993, 29(6): 4209-4210.
    [15] 梁雅琼.溶胶-凝胶法制备纳米LiFe_(5-x)Re_x0_8(x=0=0.05)及其吸波性能的研究:(硕士学位论文).内蒙古大学,2003.
    [16] F Schuth, B Bogdanovic, M Felderhoff. Light metal hydrides and complex hydrides for hydrogen storage. Chemical Communications, 2004:2249-2258.
    [17] Seiler A., Schlapbach L., Waldkirch TH. et al. Surface analysis of Mg_2Ni-Mg, Mg_2Ni and Mg_2Cu, J. Less-Common Met., 1980, 73:193-199.
    [18] Tsushio Y., Tessier P., Enolci H., Akiba E. Hydrogenation properties of Mg_1 xM 1xCu_2(M1=La and Nd) with larger interstitial sites than MgCu_2. J. Alloys Comp., 1998, 280:262-264.
    [19] 墨伟,孙洪亮,张海昌等.纳米镁储氢材料吸放氢动力学性能的研究进展[J].电化学,2006,12(1):9-15.
    [20] L. Zaluski, A. Zaluska, J. O. Strom-Olsen. Nanocrystalline metal hydrides. J.Alloys Compd., 1997, 253-254:70-79.
    [21] R. Kirchheim, T. Motschele, W. Kieninger et al. Hydrogen in amorphous and nanocrystalline metals. Mater. Sci. Eng., 1988, 99:457-462.
    [22] FuJii H, Orimo S, Ikeda K. Bydriding properties of a nano-/amorphous-structure Mg-Ni-H system. J Alloys Compd, 1997, 253-254:80.
    [23] 房文斌,张文丛,于振兴等.镁基储氢材料颗粒尺寸对吸放氢动力学性能的影响.稀有金属材料与工程.2005,34:1017-1020.
    [24] Birringer R, Gleiter H, Pkleinandy H. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Phys. Lett. A, 1984, 102(8):365.
    [25] 梁焕珍,毛铭华.超细粉末的制备技术.材料导报,1992,6(2):13-17.
    [26] 严红革,陈振华,黄培云.金属超微粉末制备技术中的几个问题.材料导报,1997,11(1):16-18.
    [27] Murty B S, Rangnathan S. Novel materials synthesis by mechanical alloying/milling. Int. Matter. Rev., 1998, 43:101-141.
    [28] Koch C C, Cavin 0 B, McKamey C Get al. Preparation of "amorphous" Ni_(60)NB_(40)by mechanical alloying. Appl. Phys. Lett., 1983, 43:1017-1019.
    [29] 赵维臣.水雾化法制取铜粉.世界有色金属,1993,9:21-22.
    [30] Yu K N, Hu S Q, Kang Yet al. First European East-West Symp on Materials and Process, 1990:1989.
    [31] 谭富彬,赵玲,刘林等.纳米银粉的液固相化学制备方法及特性.贵金属,1999,20(3):9-12.
    [32] Gong W, Li B, Zhao Z R et al. Ultrafine particles of Fe, Co, and Ni ferromagnetic metals.J. Appl. Phys., 1991, 69(8):5119-5121.
    [33] 何峰,张正义,肖耀福等.新型电解法制备超细金属粉末的研究.功能材料.1998,29:249-251.
    [34] 王菊香,潘进,赵询等.超声电解法制备超细金属粉的研究.金属功能材料,1997,(3):115-118.
    [35] 李钟华,张秀媚,杨亭阁.纳米技术与纳米材料.化工进展,1996,83(2):20-22.
    [36] Ong Estela T, Sendijarevic Vahid. Process for preparing nanosized powder. US, Pat, 5698483.1995.
    [37] Pulickel M Ajayan, Linda S Schadler, Paul V Braun. Nanocomposite Science and Technology. New York: Wiley-VCH, 2003.
    [38] Michael Rieth. Nano-Engineering in Science and Technology. Singgapore: World Scientific Publishing, 2003.
    [39] Gary Bodes. Electrochemistry of Nanomaterials. New York: Wiley-VCH, 2001.
    [40] Michael Pycraft Hughes. Nanoelectromechanics in Engineering and Biology. Florida: CRC. Press, 2003.
    [41] 魏智强,温贤伦,王君等.阳极弧等离子体制备镍纳米粉.中国有色金属学报,2003,13(5):1136-1140.
    [42] 蒋渝,刘明,杨彦明等.等离子弧流溅射法制备纳米镍粉中的氢作用机制.稀有金属材料与工程,2005,3(34):475-478.
    [43] 张立德,牟季美.纳米材料和纳米结构.科学出版社,2001.
    [44] 张立德.超细粉体制备与应用技术.中国石化出版社,2001.
    [45] 王彦吉,宋增福.光谱分析与色谱分析.北京:北京大学出版社,1995.
    [46] 朱旭光.镁基纳米粒子的制备,表征及储氢性能:(硕士学位论文).大连:大连理工大学,2007.
    [47] I. Ardelean, Simona Cora, Raluca Ciceo Lucacel, et al. EPR and FT-IR spectroscopic studies of B_2O_3-Bi_2O_3-MnO glasses. Solid State Sciences, 2005, 7:1438-1442.
    [48] Dong X L, Zhang Z D, Jin S R et al. Surface Characterizations of Ultrafine Ni Particles. Nanostruct. Mater., 1998, 10:585-592.
    [49] Dimesso L, Heider, Hahn L H. Synthesis of nanocrystalline Mn-oxides by gas condensation. Solid State Ionics, 1999, 123:39-46.
    [50] Zhang X F, Dong X L, nuang Het al. Synthesis, growth mechanism and magnetic properties of SiO_2-coated Co nanocapsules. Acta Mater., 2007, 55:3727-3733.
    [51] Zhang X F, Dong X L, Huang H et al. Synthesis, structure and magnetic properties of SiO_2-coated Fe nanocapsules. Sci. Eng. A, 2007, 454-455:211-215.
    [52] Dean I. A. Lange's Handbook of Chemistry, 14th ed. editor. Mc Graw-Hill: New York, 1992, Sec. 6, P101.
    [53] Kuno M, Oku T, Suganuma K. Encapsulation of Cobalt Oxide Nanoparticls and Ar in Boron Nitride Nanocapsules. Scripta Mater., 2001, 44:1583-1586.
    [54] Jiao J. Carbon encapsulated nanoparticles of Ni, Co, Cu, and Ti. Seraphin S. J. Appl. Phy. 1998, 83:2442-2448.
    [55] 步文博,徐洁.吸波材料基础理论的探讨及展望.江苏陶瓷,2001,34(2):3-6.
    [56] S. S. Kim, S. T. Kim, J. M. Ahn et al. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density. J. Magn. Magn. Mater., 2004, 271:39-45.
    [57] Y. D. Deng, X. Liu, B. Shen et al. Preparation and microwave characterization of submicrometer-sized hollow nickel spheres. J. Magn. Magn. Mater., 2006, 303:181-184.
    [58] R. Ravindran, K. Gangopadhyay, S. Gangopadhyay et al. Permittivity enhancement of aluminum oxide thin films with the addition of silver nanoparticles. Appl. Phys. Lett., 2006, 89, 263511.
    [59] 钟武波,铁磁性纳米粒子电磁性能及表面改性研究:(硕士学位论文).大连:大连理工大学,2005.
    [60] 唐芳琼,侯莉萍,郭广生.单分散纳米二氧化钛的研制.无机材料学报,2001,16(4):615-619.
    [61] Dong X 1 et al. The preparation and characterization of ultrafine Fe-Ni particles. J. mater. Res, 1999, 14(2):398-406.
    [62] Harizanov O, Ivanova T, Harizanova A. Study of sol-gel TiO_2 and TiO_2-MnO obtained from a peptized solution. Materials Letters, 2001, 49:165-171.
    [63] 孟哲,贾振斌,魏雨.δ-FeOOH的制备及热处理产物的FTIR光谱.过程工业学报,2004,4(2):146-149.
    [64] Yusoff A N, Abdullah M H, Ahmad S H et al. Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys., 2002, 92(2): 876-882.
    [65] Cramer E M, Nielsen H P, Schonfeld F W. Light Metal Age, 1947, 5:6.
    [66] J. J. Reilly, R. H. Hiswall. The Reaction of Hydrogen with Alloys of Magnesium and Copper. Inorganic Chemistry, 1967, 6:2220-2223.
    [67] J. J. Reilly, R. H. Wiswall. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg_2NiH_4. Inorganic Chemistry, 1968, 7:2254-2256.
    [68] Huaiyu Shao, Yuntao Wang, Hairuo Xu et al. Preparation and hydrogen storage properties of nanostructure Mg_2Cu alloy. Journal of Solid State Chemistry, 2005, 178:2211-2217.
    [69] 李法兵,蒋利军,杜军等.Mg-Cu合金的储氢特性研究.武汉理工大学学报.2006,28(2):332-335.
    [70] T. Chen, H. W. Chang, M. K. Lei. Prediction of intermetallics formation during metal ion implantation into Al at elevated temperature. Nuclear Instruments and Methods B, 2005, 240:653-660.
    [71] Pretorius R, Marais T K, Theron C C. Thin film compound phase formation sequence: An effective heat of formation model. Mater. Sci. Eng., R, 1993, 10:1-83.
    [72] Pretorius R, Vredenberg A M, Saris F W. Prediction of phase formation sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule. J. Appl. Phys., 1991, 70(7):3636-3646.
    [73] Bene R W. First nucleation rule for solid-state nucleation in metal-metal thin-film systems. Appl. Phys. Lett., 1982, 41:529-531.
    [74] R. Pretorius, R. de Reus, A. M. Vredenberg et al. Use of the effective heat of formation rule for predicting phase formation sequence in Al-Ni systems. Mater. Lett., 1990, 9:494-499.
    [75] Gary Sandrock. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds, 1999, 293-295:877-888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700