用户名: 密码: 验证码:
基于二氧化锰纳米片的电化学生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电化学生物传感器的研究中,生物分子的固定化是一个关键问题。如何在电极表面有效地固定生物分子无论对于研究蛋白质的性质,还是研制新型电化学生物传感器都具有非常重要的意义。
     如果将纳米材料修饰在电极表面,基于其小尺寸效应和宏观量子隧道效应等特性,能够增大电流响应,降低检测限,大大提高检测的灵敏度,可以用于微量样品的分析。本论文采用新型的纳米片材料固定血红素蛋白分子,制备生物传感器,并研究其电化学性质。论文包括以下内容:
     1.采用新型的纳米材料MnO_2纳米片作为固定肌红蛋白(Mb)的载体,通过傅立叶红外(FTIR)和圆二色光谱(CD)检测发现,MnO_2纳米片固定后的Mb仍保持其原有的二级结构。利用MnO_2纳米片与Mb修饰玻碳电极,电化学测试表明,Mb在电极上实现了快速有效的直接电子转移。而对比实验发现,剥层前体层状MnO_2固定的Mb在电极上不能实现其直接电化学行为。MnO_2纳米片与Mb修饰的玻碳电极对底物H_2O_2、O_2和NaNO_2均有良好响应。此外,硫化物对Mb的催化活性有明显的抑制作用。电极具有良好的稳定性,放置14天以后,电极对H_2O_2的催化活性能保持91%。
     2.采用MnO_2纳米片作为固定细胞色素c(Cyt c)的载体,FTIR检测发现,MnO_2纳米片固定后的Cyt c仍保持着其原有的二级结构。电化学测试结果表明MnO_2纳米片固定的Cyt c保持了对底物H_2O_2的催化特性。论文对Cyt c与MnO_2纳米片之间进行静电组装的可能性进行了研究。交流阻抗测试表明组装过程中各层Cyt c与MnO_2纳米片的量随着层数的增加均匀增长。
A very important factor in biosensor research is the immobilization of biomolecules. Immobilization of biomolecules onto electrode surfaces is important in the understanding of protein properties and also in the development of novel biosensors.
     Modified electrodes based on nanomaterials combined with high surface area and good electrochemistry abilities can largely improved electrical responses and the detection sensitivity. We applied the novel MnO_2 nanosheet to the immobilization of heme proteins and investigated the electrochemical properties. The main contents of the thesis are given as follows:
     1. A novel nanomaterial - MnO_2 nanosheet was firstly applied to the immobilization of myoglobin (Mb) as a support matrix. Fourier transform infrared (FTIR) and Circular dichroism (CD) spectra showed that Mb almost retained secondary structure in the film. In MnO_2 nanosheet film, Mb realized its direct electron transfer and gave a pair of nearly reversible cyclic voltammetric peaks, whereas no redox pair was observed for Mb/the precursor layered manganese oxide film. Moreover, the immobilized Mb displayed the feature of a peroxidase and acted in an electrocatalytic manner in the reduction of hydrogen peroxide, nitrite and oxygen. The detection of sulfides was performed via the inhibiting action on the Mb/MnO_2 nanosheet/glassy carbon electrode (GCE). After 14 days, Mb/MnO_2 nanosheet/GCE retained 91% of its initial response to electrocatalytic reduction of hydrogen peroxide.
     2. MnO_2 nanosheet was also applied to the immobilization of cytochrome c (Cyt c) as a support matrix. FTIR spectra showed that Cyt c almost retained secondary structure in the film. In MnO_2 nanosheet film, the electrocatalytic manner in the reduction of hydrogen peroxide of Cyt c was retained. In additional, (Cyt c/MnO_2 nanosheet)_n layer-by-layer was fabricated on the surface of GCE. Electrochemical impedance spectroscopy was used to monitor the growth of the film. The amount of Cyt c and MnO_2 nanosheet in the bilayer increased linearly with the number of the bilayer.
引文
[1]郭子建.孙为银.生物无机化学[M].北京:科学出版社,2006.10-11
    [2]Armstrong F A, Hill H A O, Walton N J. Direct Electrochemistry of Redox Proteins[J]. Acc. Chem. Res., 1988, 21: 407-413
    [3]刘慧宏.庞代文.氧化还原蛋白质电化学研究[J].化学进展,2002.14:425-432
    [4]Wang Q L, Lu G X, Yang B J. Myoglobin/Sol-Gel Film Modified Electrode: Direct Electrochemistry, and Electrochemical Catalysis[J]. Langmuir, 2004, 20:1342-1347
    [5]贺平丽.血红素蛋白质在层层组装簿膜电极上的直接电化学和层层组装驱动力的研究[D].北京:北京师范大学.2004
    [6]项斯芬,姚光庆.中级无机化学[M1.北京:北京大学出版社.2005.289-294
    [7]沈同.王镜岩.生物化学[M].第二版.北京:高等教育出版社.2000.181-191
    [8]Fanelli A R, Antonini E, Povoledo D. Symposium on Protein Structure (Neuber A, ed)[M]. London: Methuen & Co. Ltd., 1958. 147
    [9]Eddowes M J, Hill H A O. Novel Method for the Investigation of the Electrochemistry of Metalloproteins: Cytochrome c[J]. J.Chem.Soc. Chem. Comm., 1977. 21: 771-772
    [10]King B C, Hawkridge F M. A Study of the Electron Transfer and Oxygen Binding Reactions of Myoglobin[J]. J. Electroanal. Chem., 1987, 237:81-92
    [11]Taniguchi I, Watanabe K, Tominaga M. et el. Direct Electron Transfer of Horse Heart Myoglobin at an Indium Oxide Electrode[J]. J. Electroanal. Chem., 1992, 333:331-338
    [12]Rusling J E Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films[J]. Acc. Chem. Res., 1998, 31:363-369
    [13]Rusling J E Nassar A E F. Enhanced Electron Transfer for Myoglobin in Surfactant Films on Electrodes[J]. J. Am. Chem. Soc., 1993. 115: 11891-11897
    [14]Nassar A E F. Willis W S. Rusling J F. Electron Transfer from Electrodes to Myoglobin: Facilitated in Surfactant Films and Blocked by Adsorbed Biomacromolecules[J]. Anal. Chem., 1995, 67:2386-2392
    [15]Nassar A E F. Bobbitt J M, Stuart J D, et el, Catalytic Reduction of Organohalide Pollutants by Myoglobin in a Biomembrane-like Surfactant Film[J]. J. Am. Chem. Soc., 1995, 117: 10986-10993
    [16]Onuoha A C, Rusling J F. Electroactive Myoglobin Surfactant Films in a Bicontinuous Micromulsion[J]. Langmuir, 1995, 11: 3296-3301
    [17]Huang Q, Lu Z, Rusling J F. Composite Films of Surfactants, Nafion, and Proteins with Electrochemical and Enzyme Activity[J]. Langmuir, 1996, 12:5472-5480
    [18]Nassar A E F, Zhang Z, Hu N F, et at. Proton-coupled Electron Transfer from Electrodes to Myoglobin in Ordered Biomembrane-like Films[J]. J. Phys. Chem. B, 1997, 101: 2224-2231
    [19]Alcantara K E, Rusling J F. Voltammetric Measurement of Michaelis-Menten Kinetics for a Protein in a Llipid Film Reacting with a Protein in Solution[J]. Electrochem. Commun., 2005, 7:223-226
    [20] Bianco P, Haladjian J. Electrochemistry of Cytochrome c_3 at a Lipid-modified Graphite Electrode[J]. J. Electroanal. Chem., 1994,367: 79-84
    [21] Hanzli'k J, Bianco P, Haladjian J. Voltammetric Behavior of Positively Charged Species at a Pyrolytic Graphite Electrode Modified with Lauric Acid[J]. J. Electroanal. Chem., 1995, 380: 287-290
    [22] Bianco P, Haladjian J. Control of the Electron Transfer Reactions Between C-type Cytochromes and Lipid-modified Electrodes[J]. Electrochim. Acta. 1994. 39: 911-916
    [23] Salamon Z, Tollin G. Reduction of Cytochrome c at a Lipid Bilayer Modified Electrode[J]. Bioelectrochem. Bioenerg.. 1991,25:447-454
    [24] Salamon Z, Tollin G. Interfacial Electrochemistry of Cytochrome c at a Lipid Bilayer Modified Electrode: Effect of Incorporation of Negative Charges into the Bilayer on Cyclic Voltammetric Parameters[J]. Bioelectrochem. Bioenerg., 1991, 26: 321-334
    [25] Salamon Z, Tollin G. Cyclic Voltammetric Behavior of [2Fe-2S] Ferredoxins at a Lipid Bilayer Modified Electrode[J]. Bioelectrochem. Bioenerg., 1992, 27: 381-391
    [26] de Groot M T, Merkx M, Koper M T M. Heme Release in Myoglobin-DDAB Films and Its Role in Electrochemical NO Reduction[J]. J. Am. Chem. Soc., 2005. 127: 16224-16232
    [27] de Groot M T, Merkx M, Koper M T M. Additional Evidence for Heme Release in Myoglobin-DDAB Films on Pyrolitic Graphite[J]. Electrochem. Commun., 2006, 8: 999-1004
    [28] Guto P M. Rusling J F. Myoglobin Retains Iron Heme and Near-native Conformation in DDAB Films Prepared From pH 5 to 7 Dispersions[J]. Electrochem. Commun.. 2006. 8: 455-459
    [29] Chen S, Tseng C. Comparison of the Direct Electrochemistry of Myoglobin and Hemoglobin Films and Their Bioelectrocatalytic Properties[J]. J. Electroanal. Chem. 2005, 575: 147-160
    [30] Ivanova E V, Magner E. Direct Electron Transfer of Haemoglobin and Myoglobin in Methanol and Ethanol at Didodecyldimethylammonium Bromide Modified Pyrolytic Graphite Electrodes[J]. Electrochem. Commun., 2005, 7: 323-327
    [31] Lu Q, Chen X X, Wu Y H, et al. Studies on Direct Electron Transfer and Biocatalytic Properties of Heme Proteins in Lecithin Film[J]. Biophys. Chem., 2005, 117: 55-63
    [32] Han X J. Huang W M, Jia J B, et al. Direct Electrochemistry of Hemoglobin in Egg-phosphatidylcholine Films and its Catalysis to H_2O_2[J]. Biosens. Bioelectron., 2002. 17: 741-746
    [33] Liu X J. Zhang W J, Huang Y X, et al. Enhanced Electron-transfer Reactivity of Horseradish Peroxidase in Phosphatidylcholine Films and its Catalysis to Nitric Oxide[J]. J. Biotechnol.. 2004.108:145-152
    [34] Okahata Y, Enna G. Taguchi K. et al. Electrochemical Permeability Control Through a Redox Bilayer Film[J]. J. Am. Chem. Soc., 1985, 107: 5300-5301
    [35] Okahata Y, Enna G. Permeability-controllable Membranes. 7. Electrochemical Responsive Gate Membranes of a Multibilayer Film Containing a Viologen Group as Redox Sites[J]. J. Phys. Chem.. 1988, 92: 4546-4551
    [36] Sun H, Ma H Y, Hu N F. Electroactive Hemoglobin-surfactant-polymer Biomembrane-like films[J]. Bioelectrochem. Bioenerg.. 1999, 49: 1-10
    [37]Hu Y J, Hu N F, Zeng Y H. Electrochemistry and Electrocatalysis with Myoglobin in Biomembrane-like Surfactant-polymer 2C_(12)N~+PA~-Composite Films[J]. Talanta, 2000, 50: 1183-1195
    [38]Ma H Y, Hu N F. Electrochemistry and Electrocatalysis with Myoglobin in 2C_(12)N~+PSS~-Mutibilayer Composite Films[J]. Anal. Lett, 2001, 34: 339-361
    [39]Chen X, Hu N F, Zeng Y, et al. Ordered Electrochemically Active Films of Hemoglobin. Didodecyldimethylammonium Ions, and Clay[J]. Langmuir, 1999, 15: 7022-7030
    [40]Wang L W. Hu N F. Direct Electrochemistry of Hemoglobin in Layer-by-layer Films with Poty(vinyl sulfonate) Grown on Pyrolytic Graphite Electrodes[J]. Bioelectrochemistry. 2001. 53:205-212
    [41]胡乃非,李漆.马红艳.肌红蛋白在双十二烷基二甲基溴化铵-粘土多双层复合薄膜电极上的电化学与电催化[J].高等学校化学学报.2001,22:450-454
    [42]Kroning S, Scheller F W, Wollenberger U, et al. Myoglobin-Clay Electrode for Nitric Oxide (NO) Detection in Solution[J]. Electroanalysis, 2004, 16: 253-259
    [43]Zhou Y L. Hu N F. Zeng Y H. et al. Heme Protein-Clay Films: Direct Electrochemistry and Electrochemical Catalysis[J]. Langmuir, 2002, 18: 211-219
    [44]鞠熀先.电分析化学与生物传感技术[M1.北京:科学出版社2006.290-301
    [45]Brown K R, Fox A P, Natan M J. Morphology-Dependent Electrochemistry of Cytochrome c at Au Colloid-Modified SnO_2 Electrodes[J]. J. Am. Chem. Soc, 1996. 118: 1154-1157
    [46]Liu S Q, Ju H X. Electrocatalysis via Direct Electrochemistry of Myoglobin Immobilized on Colloidal Gold Nanoparticles[J]. Electroanalysis, 2003, 15: 1488-1493
    [47]Zhang H. Lu H Y, Hu N F. Fabrication of Electroactive Layer-by-Layer Films of Myoglobin with Gold Nanoparticles of Different Sizes[J]. J. Phys. Chem. B, 2006, 110: 2171-2179
    [48]Feng J J, Zhao G. Xu J J, et al. Direct Electrochemistry and Electrocatalysis of Heme Proteins Immobilized on Gold Nanoparticles Stabilized by Chitosan[J]. Anal. Biochem., 2005, 342: 280-286
    [49]Yang W W. Li Y C, Bai Y, et al. Hydrogen Peroxide Biosensor Based on Myoglobin/colloidal Gold Nanoparticles Immobilized on Glassy Carbon Electrode by a Nafion Film[J]. Sensor. Actuat. B-Chem., 2006, 115: 42-48
    [50]Zhang J D. Oyama M. Gold Nanoparticle-attached ITO as a Biocompatible Matrix or Myoglobin Immobilization: Direct Electrochemistry and Catalysis to Hydrogen Peroxide[J]. J. Electroanal. Chem., 2005, 577: 273-279
    [51]Gu H Y, Yu A M, Chen H Y. Direct Electron Transfer and Characterization of Hemoglobin Immobilized on a Au Colloid-cysteamine-modified Gold Elcctrode[J]. J. Electroanal. Chem., 2001,516: 119-126
    [52]Xiao Y, Ju H X. Chen H Y. Hydrogen Peroxide Sensor Based on Horseradish Peroxidase-labeled Au Colloids Immobilized on Gold Electrode Surface by Cysteamine Monolayer[J]. Anal. Chim. Acta, 1999, 391: 73-82
    [53]Gan X, Liu T, Zhong J, et al. Effect of Silver Nanoparticles on the Electron T ransfer Reactivity and the Catalytic Activity of Myoglobin[J]. ChemBioChem., 2004. 5: 1686-1691
    [54]Gan X. Liu T, Zhu X L, et al. An Electrochemical Biosensor for Nitric Oxide Based on Silver Nanoparticles and Hemoglobin[J]. Anal. Sci., 2004, 20: 1271-1275
    [55]Topoglidis E, Cass A E G, Gilardi G, et al. Protein Adsorption on Nanocrystalline TiO_2 Films: An Immobilization Strategy for Bioanalytical Devices[J]. Anal. Chem., 1998, 70: 5111-5113
    [56]Topoglidis E, Campbell C J, Cass A E G, et al. Factors that Affect Protein Adsorption on Nanostructured Titania Films. A Novel Spectroelectrochemical Application to Sensing(J). Langmuir. 2001, 17: 7899-7906
    [57]Zhang Y, He P L, Hu N F. Horseradish Peroxidase Immobilized in TiO_2 Nanoparticle Films on Pyrolytic Graphite Electrodes: Direct Electrochemistry and Bioelectrocatalysis[J]. Electrochim. Acta, 2004, 49: 1981-1988
    [58]Li Q W, Luo G A, Feng J. Direct Electron Transfer for Heine Proteins Assembled on Nanocrystalline TiO_2 Film[J]. Electroanalysis, 2001,13: 359-363
    [59]Liu S Q. Dai Z H, Chen H Y, et al. Immobilization of Hemoglobin on Zirconium Dioxide Nanoparticles for Preparation of a Novel Hydrogen Peroxide Biosensor[J]. Biosens. Bioelectron.. 2004, 19: 963-969
    [60]Zhao G. Feng J J, Xu J J, et al. Direct Electrochemistry and Electrocatalysis of Heme Proteins Immobilized on Self-assembled ZrO_2 Film[J]. Electrochem. Commun., 2005, 7: 724-729
    [61]Cao D F, He P L. Hu N F. Electrochemical Biosensors Utilising Electron Transfer in Heme Proteins Immobilised on Fe_2O_4 Nanoparticles[J]. Analyst. 2003, 128: 1268-1274
    [62]张娟,徐静娟,陈洪渊.基于SiO_2纳米粒子固定辣根过氧化物酶的生物传感器[J].高等学校化学学报,2004,25:614-617
    [63]Lvov Y, Munge B. Giraldo O, et al. Films of Manganese Oxide Nanoparticles with Polycations or Myoglobin from Alternate-Layer Adsorption[J], Langmuir. 2000. 16: 8850-8857
    [64]Xu X. Tian B Z, Zhang S. et al. Electrochemistry and Biosensing Reactivity of Heme Proteins Adsorbed on the Structure-tailored Mesoporous Nb_2O_5 Matrix[J]. Anal. Chim. Acta, 2004,519:31-38
    [65]Yu X. Chattopadhyay D, Galeska I, et al. Peroxidase Activity of Enzymes Bound to the Ends of Single-wall Carbon Nanotube Forest Electrodes[J]. Electrochem. Commun.. 2003. 5: 408-411
    [66]Wang J X, Li M X. Shi Z J, et al. Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes[J]. Anal. Chem.. 2002. 74: 1993-1997
    [67]Wang L. Wang J X. Zhou F M. Direct Electrochemistry of Catalase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes[J]. Electroanalysis. 2004. 16: 627-632
    [68]Zhao G C, Zhang L, Wei X W, et al. Myoglobin on Multi-walled Carbon Nanotubes Modified Electrode: Direct Electrochemistry and Electrocatalysis[J]. Electrochem. Commun.. 2003. 5: 825-829
    [69]Zhao G C. Zhang L. Wei X W. An Unmediated H_2O_2 Biosensor Based on the Enzyme-like Activity of Myoglobin on Multi-walled Carbon Nanotubes(J). Anal. Biochem., 2004, 329: 160-161
    [70]Cai C X, Chen J. Direct Electron Transfer and Bioelectrocatalysis of Hemoglobin at a Carbon Nanotube Electrode[J]. Anal. Biochem., 2004, 325:285-292
    [71]Zhao G C. Yin Z Z, Zhang L, et al. Direct Electrochemistry of Cytochrome c on a Multi-walled Carbon Nanotubes Modified Electrode and its Electrocatalytic Activity for the Reduction of H_2O_2[J]. Electrochem. Commun., 2005, 7: 256-260
    [72]Zhang H. Fan L Z. Yang S H. Significantly Accelerated Direct Electron-Transfer Kinetics of Hemoglobin in a C60-MWCNT Nanocomposite Film[J]. Chem. Eur. J., 2006, 12: 7161-7166
    [73]Liu A H, Wei M D, Honma I, et al. Direct Electrochemistry of Myoglobin in Titanate Nanotubes Film[J]. Anal. Chem., 2005, 77: 8068-8074
    [74]Omomo Y, Sasaki T, Wang L Z, et al. Redoxable Nanosheet Crystallites of MnO: Derived via Delamination of a Layered Manganese Oxide[J]. J. Am. Chem. Soc.. 2003, 125: 3568-3575
    [75]Sasaki T, Watanabe M. Semiconductor Nanosheet Crystallites of Quasi-TiO_2 and Their Optical Properties[J]. J. Phys. Chem. B., 1997, 101: 10159-10161
    [76]Osada M, Ebina Y, Takada K, et al. Gigantic Magneto-Optical Effects in Multilayer Assemblies of Two-Dimensional Titania Nanosheets[J]. Adv. Mater., 2006, 18: 295-299
    [77]Liu Z, Ma R, Osada M, et al. Synthesis, Anion Exchange, and Delamination of Co-Al Layered Double Hydroxide: Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies[J]. J. Am. Chem. Soc., 2006, 128: 4872-4880
    [78]Sugimoto W. Iwata H. Yasunaga Y, et al. Preparation of Ruthenic Acid Nanosheets and Utilization of Its Interlayer Surface for Electrochemical Energy Storage[J]. Angew. Chem. Int. Ed.. 2003. 42: 4092-4096
    [79]Yui T. Mori Y, Tsuchino T, et al. Synthesis of Photofunctional Titania Nanosheets by Electrophoretic Deposition[J]. Chem. Mater. 2005. 17: 206-211
    [80]Liu Z H, Ooi K, Kanoh H. et al. Swelling and Delamination Behaviors of Birnessite-Type Manganese Oxide by Intercalation of Tetraalkylammonium Ions[J]. Langmuir, 2000. 16: 4154-4164
    [81]Wang L Y, Li C, Liu M. et al. Large Continuous. Transparent and Oriented Self-supporting Films of Layered Double Hydroxides with Tunable Chemical Composition[J]. Chem Commun., 2007, 123-128
    [82]Takei T, Kobayashi Y, Hata H, et al. Anodic Electrodeposition of Highly Oriented Zirconium Phosphate and Polyaniline-Intercalated Zirconium Phosphate Films[J]. J. Am. Chem. Soc. 2006. 128: 16634-16640
    [83]Kauppinen J K. Moffatt D J, Mantsch H H, et al. Fourier Self-Deconvolution A Method for Resolving Intrinsically Overlapped Bands[J]. Appl. Spectrosc. 1981. 35: 271-276
    [84]Nassar A E F. Willis W S. Rusting J F. Electron Transfer from Electrodes to Myoglobin: Facilitated in Surfactant Films and Blocked by Adsorbed Biomacromolecules[J). Anal. Chem., 1995,67:2386-2392
    [85]陈结霞.徐小龙.刘祥虎.pH值和金属离子对尖吻蝮蛇抗凝血因子Ⅱ二级结构的影响.无机化学学报,2006,22:69-72
    [86]Laviron E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems[J]. J. Electroanal. Chem., 1979, 101: 19-28
    [87]Zhao G Xu J J, Chen H Y. Interfacing Myoglobin to Graphite Electrode with an Electrodeposited Nanoporous ZnO Film[J]. Anal. Biochem., 2006. 350: 145-150
    [88]Wu Y H, Shen Q C, Hu S S. Direct Electrochemistry and Electrocatalysis of Heme-proteins in Regenerated Silk Fibroin Film[J]. Anal. Chim. Acta, 2006. 558: 179-186
    [89]Zhao L Y, Liu H Y, Hu N F. Electroactive Films of Heme Protein-coated Multiwalled Carbon Nanotubes[J]. J. Colloid Intcrf. Sci., 2006,296:204-211
    [90]Huang H, Hu N F, Zeng Y H, et al. Electrochemistry and Electrocatalysis with Heme Proteins in Chitosan Biopolymer Films[J]. 2002,308: 141-151
    [91]Meites L. Polarographic Techniques[M], 2nd ed. New York: Wiley, 1965. 282.
    [92]Liu H H, Tian Z Q, Lua Z X, et al. Direct Electrochemistry and Electrocatalysis of Heme-proteins Entrapped in Agarose Hydrogel Films[J]. Biosens. Bioelectron.. 2004, 20: 294-304
    [93]Lin R, Bayachou M, Greaves J, et al. Nitrite Reduction by Myoglobin in Surfactant Films[J]. 1997,119:12689-12690
    [94]Nassar A E F, Rusling J F. Electron Transfer between Electrodes and Hemc Proteins in Protein-DNA Films[J]. J. Am. Chem. Soc.. 1996, 118: 3043-3044
    [95]He P L. Hu N F, Rusling J F. Driving Forces for Layer-by-Layer Self-Assembly of Films of SiO_2 Nanoparticles and Heme Proteins[J]. Langmuir, 2004, 20: 722-729

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700