用户名: 密码: 验证码:
纳米结构氧化物锂离子电池负极材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池由于有高能量密度、高输出电压、无记忆效应和无环境污染等优点,得到越来越多的应用。不仅仅可以应用于各种便携式电子设备,在作为电动汽车动力电源和太阳能、风能等新能源的储能设备方面都有很大应用前景。目前商业化的锂离子电池广泛使用的负极主要是石墨类材料。但石墨理论容量低且有安全性问题,因此高理论容量、安全性好的新型负极材料得到越来越多的关注。氧化物负极材料具有理论容量高、循环性能好、安全性能高等优点,是替代石墨作为锂离子电池负极的理想材料,但导电性差、不可逆容量大和充放电前后体积变化大等问题制约其得到实际应用。研究表明,通过纳米化、碳包覆和形貌控制等方法可以提高材料导电性,缓解充电时的体积膨胀,改善材料的电化学性能。本论文采用碳包覆、化学沉积和水热等方法制备了氧化物纳米材料,利用X-射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等技术分析材料的形貌和结构等物理特征,采用恒电流充放电、循环伏安和交流阻抗谱等技术测试材料的电化学性能,并探讨了材料的结构和形貌与电化学性能之间的关系。主要研究内容和结果如下:
     与大尺寸的颗粒相比,纳米尺寸的颗粒具有较大的比表面,提供更多的锂离子进入通道,并使材料结构更稳定,从而有更好的电化学性能。本文采用尿素作沉淀剂,通过化学沉积的简单方法制备了纳米Co3O4颗粒。SEM和TEM测定显示颗粒直径在200nm以下。制备的Co3O4纳米材料,在100mA g-1电流密度下,首次放电比容量为802mAh g-1,100次循环后稳定在580mAh g-1左右,表现出良好的循环性能。而大尺寸的C0304颗粒在相同电流密度下100次循环后可逆容量仅有245mAh g-1。另外还采用水热的方法,以Co(NO3)2为原料,用尿素作为沉淀剂,先在85℃下沉积,然后升温到200℃继续反应,在表面活性剂PEG2000的存在下形成片状的前驱体,继续在空气气氛下煅烧后得到C0304。通过考察不同煅烧温度,发现在600℃时能得到多孔的Co3O4纳米片结构。在100mA g-1电流密度下充放电测试,其首次放电比容量为749mAh g-1,40次循环后容量仍在700mAh g-1以上。其良好的电化学性能归因于多孔片状结构具有与电解液接触面积大,电荷传递速率快,体积膨胀小的优点。
     采用水热的方法,以NiCl2为原料,先在85℃下沉积,然后升温继续反应,发现200℃时能形成片状的前驱体。前驱体的主要成分是NiOOH和Ni(HCO3)2,在经过高温灼烧后转变成NiO,其间释放出二氧化碳和水,在片层中留下不规则孔隙,从而得到多孔的片状氧化亚镍。SEM观测显示多孔纳米片的厚度在100nm左右,长和宽为几个微米。这种片状的二维结构及其中的孔隙增大了材料与电解液的接触面积,缩短了锂离子的扩散距离;同时充放电的体积变化可以沿平面方向延展,加上其中的孔隙可容纳一部分增加的体积,使得材料的结构更加稳定,大大提高了循环性能。100mAg-1电流密度下,多孔氧化亚镍纳米片首次放电容量为689mAhg-1,20次循环后比容量仍有644mAh g-1,显示了良好的循环性能。与之相比,85℃沉积得到的微米氧化亚镍颗粒在同样的电流密度下,20次循环后比容量只有208mAh g-1,说明片状多孔结构能有效提高材料的电化学性能。在400mAg-1电流密度下,多孔氧化亚镍纳米片经过50次循环后,放电比容量仍然接近400mAh g-1,显示在大倍率的充放电状况下材料也有很好的电化学性能。
     二氧化硅材料由于较差的导电能力而限制了其电化学性能。本文以蔗糖为碳源对纳米二氧化硅小球进行了碳包覆,制备了不同碳含量的样品。SEM和TEM测试表明蔗糖在高温下裂解形成的碳层均匀地包裹在二氧化硅纳米小球的周围。这些无定形碳在二氧化硅小球周围形成网络结构,不但能提高颗粒之间的电子传导率而且能限制充放电过程中的体积膨胀,从而提高材料的电化学性能。交流阻抗测试表明碳包覆能有效降低电荷传递阻抗。随着碳含量的增加,材料的比容量也得到提高,但碳含量超过一定比例时由于碳的比容量较小而使整个材料的比容量降低。其中碳含量为50%的包覆材料具有最高的放电比容量,首次放电容量达536mAh g-1,50次循环后容量仍保持在500mAh g-1以上,表现出良好的循环性能。充放电测试表明相同碳含量的材料,高温包覆处理的样品比简单混合的样品有更高的比容量。
     非石墨化的硬碳材料具有与电解液相容性好和安全性高的优点,也有望取代石墨作为锂离子电池负极材料,但存在不可逆容量大和储锂容量低的缺点。本论文研究了竹碳这种硬碳材料,通过球磨和表面硫酸处理等方法改善竹碳材料的电化学性能,并比较了颗粒粒径和硫酸处理时间对竹碳电极的电化学性能的影响。结果表明竹碳材料首次充放电效率随颗粒粒径的减小而降低,这是由于小粒径比表面增大而在形成SEI膜时损失较多的锂。硫酸处理可减少竹碳中金属杂质,在表面形成大量能与锂发生可逆反应的-HS03和-HS04基团,并在表面形成利于锂离子进出的孔道,有效提高材料的放电容量。其中18h硫酸处理的竹碳电极首次放电比容量可达328.2mAh g-1,50次循环后其比容量仍保持302.3mAh g-1,具有良好的电化学性能。
Lithium ion battery has a variety of applications due to its high energy density and no memory effect. It can not only be used in portable electronic devices, but also be promising in electric vehicle and energy storage devices. At present the mainly commercialized anode material is graphite. Graphite has a low theoretical capacity and safety problems, so researchers are seeking new materials with higher theoretical capacity and more safety. Oxide anode materials owing high theoretic capacity, good cycleability and good safety, are ideal candidates as anode mterials for lithium ion batteries. However, the disadvantages of poor conductivity, high irreversible capacity and dramatic volume change during cycling process hinder their practical applications. Studies indicate that nanocrystallization, carbon coating, morphology controlling can improve the conductivity and buffer the volume expansion during cycling process. In this Thesis, we prepare oxide nanomaterials by precipitation and hydrothermal method, and treat oxide nanomaterials by carbon coating. The as-prepared materials are characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The electrochemical performance is studied by Cyclic Voltammetry, a.c. impedance spectroscopy and galvanic charge and discharge. The relationship between morphologies and electrochemical performances is also discussed. The main contents and results listed below:
     CO3O4nanoparticles are prepared by simple chemical deposition method using urea as precipitating agent. SEM and TEM images display that the diameter of these particles is less than200nm. Compared with the large sized particles, nanometer sized particles have large specific surface which provide more channels for lithium ions and more stable structure, so they may have better electrochemical properties. The prepared CO3O4nanoparticles deliver initial discharge capacity of802mAh g-1at a current density of100mA g-1, and retain580mAh g-1over100cycles, showing good cycling performance. CO3O4nanoplates are prepared by hydrothermal method. The process includes depositing Co(NO3)2at85℃, hydrothermal synthesis at200℃to acquire lamellar precursor, and obtain CO3O4nanoplates by calcination in air atmosphere. It was found that the lamellar precursor calcinated at600℃can form porous CO3O4nanoplate. The electrochemical tests show that the porous CO3O4nanoplates deliver initial discharge capacity of749mAh g-1at a current density of 100mA g-1. After40cycles, the remaining capacity is above700mAh g-1. Its good electrochemical performance is attributed to the porous nanoplate structure having advantages of large area contacting with electrolyte, fast charge transfer rate and effectively buffering for volume change during cycling process.
     Porous NiO nanosheets are prepared by hydrothermal method. The flaky precursor is obtained at200℃and transforms into NiO by calcinations. CO2and H2O are released during the transforming process, forming many irregular pores on the nanosheets. SEM images show that thickness of the as prepared porous NiO nanosheets is about100nm, and the length and width is a few micrometers. The porous NiO nanosheets deliver initial discharge capacity of689mAh g-1at a current density of100mA g-1, and remain644mAh g-1after20cycles. Compared with porous NiO nanosheets, bulk NiO materials delivers capacity of208mAh g-1after20cycles at the same current density, which means that sheet-like porous structure can effectively improve the electrochemical performance of NiO. At a current density of400mA g-1, porous NiO nanosheets deliver reversible capacity of about400mAh g-1, which show good electrochemical performance at a high rate condition. The good cycling performance of porous NiO nanosheets is attributed to its flaky two-dimensional structure and the wherein pores, which can increase contact area with electrolyte, shorten lithium ion diffusion distance, buffer volume expansion during cycling process.
     SiO2didn't have good electrochemical performance because of its poor conductivity. In this thesis, carbon-coated SiO2nanobeads with different carbon content were prepared by using sucrose as carbon source. SEM and TEM pictures show that the SiO2nanobeads are embedded in amorphous carbon matrix. The amorphous carbon around silica beads form a network structure, which can improve the electronic conductivity between silica beads and buffer the volume expansion during cycling process, thereby improves the electrochemical properties. The a.c. impedance tests show that carbon layer coated on SiO2can effectively diminish interfacial impedance. The SiO2-C composite with50%carbon content delivers highest reversible capacity. It shows initial capacity of536mAh g-1and remains above500mAh g-1after50cycles, exhibiting good electrochemical performance. Charge and discharge tests show that the sample prepared by coating delivers higher specific capacity than those prepared by mixing with the same carbon content.
     Hard carbon has good compatibility with electrolyte and good safety, so it is also expected to replace graphite as anode material for lithium ion batteries. However, it has disadvantages of large irreversible capacity and low specific capacity. In this study, we focus on a hard carbon material of bamboo charcoal. The bamboo charcoal samples are prepared by milling and sulfuric acid treating. The effect of particle size and sulfuric acid treated time on the electrochemical performance of bamboo charcoal is investigated. The results show that initial Coulombic efficiency drops with the decresing of particle size. It is because that small size particle has big surface and lose more lithium during formation of SEI film. Sulfuric acid treatment can raise the specific capacity of bamboo charcoal by reducing the metal impurities, forming-HSO3and-HSO4groups which can reversibly react with lithium ion, taking channels on the surface for lithium ion migratting. The bamboo charcoal electrode prepared by sulfuric acid treatment for18h has a discharge capacity of328.2mAh g-1and it remains302.3mAh g-1after50cycles, exhibiting good electrochemical property.
引文
[1]毕道治,电动车电池的开发现状及展望[J],电池工业,2000,2:56-63
    [2]金明钢,我国固态锂离子电池工业发展近况[J],电池工业,2000,2:88-92
    [3]赵健,杨维芝,赵佳明,锂离子电池的应用开发[J],电池工业,2000,1:31-36
    [4]杨遇春,二次锂电池进展[J],电池,1993,23(5):230-233
    [5]K. Brandt, Historical development of secondary lithium batteries [J], Solid State Ionics,1994,69(3-4):173-183
    [6]吴宇平,万春荣,姜长印等.锂离子二次电池[M],北京:化学工业出版社,2002
    [7]M. B. Armand, Materials for Advanced Batteries (Murphy D. W., Broodhead J., Steele B. C. H.,Editors) [M], New York, Plenum Press,1980
    [8]T. Nagaura, K. Tozawak. Lithium ion rechargeable battery [J], Prog. Batts. Sol. Cells,1990,9:209-217
    [9]陈德钧,电池的近期发展与锂离子电池[J],电池,1996,26(3):139-143
    [10]杨捷,锂离子电池的特点与使用[J],现代电视技术,2003,5:93-94
    [11]G. Amatucci, J. M. Tarascon. Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries [J], Journal of The Electrochemical Society,2002, 149(12):K31-K46
    [12]R. Koksbang, J. Barker, H. Shi, M. Y. Saidi. Cathode materials for lithium rocking chair batteries [J], Solid State Ionics,1996,84:1-21
    [13]周恒辉,慈云祥,刘昌炎,锂离子电池电极材料研究进展[J],化学进展,1998,10(1):85-93
    [14]黄可龙,王兆翔,刘素琴,锂离子电池原理与关键技术[M],北京:化学工业出版社,2008:34-35
    [15]刘昌炎,锂离子电池隔膜研究进展[J],新材料产业,2006,9:48-53
    [16]吴宇平,戴晓兵,马军旗等,锂离子电池—应用与实践[M],化学工业出版社,2004
    [17]M. Wakihara, Recent developments in lithium ion batteries [J], Materials Science and Engineering R,2001,33, (4):109-134
    [18]H. Shi, J. Batker, M. Y. Saidi, et al., Graphite structure and lithium intercalation [J], J. Journal of Power Sources,1997,68 (2):291-295
    [19]杨书廷,刘立君,吕庆章等,修饰石墨用做锂离子负极材料的研究[J],功能材料,2000,31(4):436-438
    [20]P.Yu, J.A.Ritter, R.E.Whlet, et al., Ni-composite microenepaulated graphite as the negative eleeortde in lithium-ion batteries-Ⅰ:Initial irreversible capacity study[J], J. Eletrochem. Soc.,2000,147(4):1280-1285
    [21]P. Yu, J. A. Ritter, R. E. White, et al., Ni-composite microencapsulated graphite as the negative electrode in lithium-ion batteries-Ⅱ:Electrochemical impedance and self-discharge studies [J], J. Electrochem. Soc.,2000,147(6):2081-2085
    [22]Y. P. Wu, C. Jiang, C. Wan, R. Holze, Anode materials for lithium ion batteries from mild oxidation of natural graphite [J], J. Appl. Electrochem,2002,32: 1011-1017
    [23]T. Nakajima, J. Li, K. Naga, et al., Surface structure and electrochemical properties of surface-fluorinated petroleum cokes for lithium ion battery [J], J. Power Sources,2004,133:243-251
    [24]Y. Ping, S.H. Bala, A.R. James, et al., Palladium-microencapsulated graphite as the negative elect rode in Li ion cells [J], J. Power Sources,2000,91(2):107-117
    [25]Y. Ping, J.A. Ritter, R.E. White, et al., Ni composite microencapsulated graphite as the negative electrode in lithium ion batteries [J], J. Electrochem Soc,2000, 147(4):1280-1285
    [26]吴宇平,万春荣,姜长印,锂离子电池负极材料的制备[J],电池,2000,30(3):143-146
    [27]H. Buqa, P. Golob, M. Winter, et al., Modified carbons for improved anodes in lithium ion cells [J], J Power Sources,2001,97-98:122-125
    [28]W. Hongyu, Y. Masaki. Carbon-coated natural graphite prepared by chemical vapor decomposit ion process, a candidate anode material for lithium-ion battery [J]. J. Power Sources,2001,93(1):123-129
    [29]A. Soonho, K. Youngduk, J. K. Kyung, et al., Development of high capacity, high rate Li ion batteries utilizing metal fiber conductive additives [J], J. Power Sources,1999,81-82:896-901
    [30]J. L. Tirado, Inorganic Materials for the Negative Electrode of Lithium-Ion Batteries:State-of-the-art and Future Prospects [J]. Materials Science & Engineering R-Reports.2003,40(3):103-136
    [31]M. W. Verbmgge, B. J. Koch, Lithium intercalation of carbon-fiber microelectrodes [J], J. Electrochem Soc,1996,143,24-31
    [32]H. Li, X. J. Huang, L. Q. Chen, et al., The Crystal Structural Evolution of Nano-Si Anode Caused by Lithium Insertion and Extraction at Room Temperature [J]. Solid State Ionics.2000,135(1-4):181-191
    [33]J. Yang, Y. Takeda, N. Imanishi, et al., SiOx-Based Anodes for Secondary Lithium Batteries [J], Solid State Ionics,2002,152:125-129
    [34]P.J. Zuo, G.P. Yin, Y.L. Ma, Electrochemical stability of silicon/carbon composite anode for lithium ion batteries [J], Electrochimica Acta,2007,52: 4878-4883
    [35]N. Dimov, S. Kugino, M. Yoshio. Carbon-coated silicon as anode material for lithium ion batteries:advantages and limitations [J]. Electrochimica Acta,2003,48: 1579-1587
    [36]Z.S. Wen, J. Yang, B.F. Wang, et al., High capacity silicon/carbon composite anode materials for lithium ion batteries [J], Electrochem Commun,2003,5:165-168
    [37]Z.J. Luo, D.D. Fan, X.L. Liu, et al., High performance silicon carbon composite anode materials for lithium ion batteries [J], J. Power Sources,2009,189:16-21
    [38]M.K. Datta, P.N. Kumta. Silicon and carbon based composite anodes for lithium ion batteries [J], J. Power Sources,2006,158:577-563
    [39]W.R. Liu, J.H. Wang, H.C. WU, et al., Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries [J], J. Electrochem Soc, 2005,152(9):A1719-A1735
    [40]Y.L. Kim, H.Y. Lee, S.W. Jang, Electrochemical characteristic of Co-Si ally and multilayer films as anodes for lithium ion microbatteries [J], Electrochim Acta,2003, 48(18):2593-2597
    [41]S.W. Song, K.A. Striebel, R.P. Reade, et al., Electrochemical studies of nanocrystalline Mg2Si thin film electrodes prepared by pulsed laser deposition [J], J Electrochem Soc,2003,150(1):A121-A127
    [42]J. Wolfenstine, CaSi2 as an anode for lithium-ion batteries [J], J Power Source, 2003,124(1):241-245
    [43]J. S. Sakamoto, C. K. Huang, S. Surampudi, et al., The Effects of Particle Size on SnO Electrode Performance in Lithium-Ion Cells [J], Materials Letters.1998, 33(5-6):327-329
    [44]C. Kim, M. Noh, M. Choi, Critieal size of a nano SnO2 eleetrode for Li-secondary battery [J], Chem Mater,2005,17(12):3297-3302
    [45]G.X. Wang, L. Sun, D.H. Bradburst, etal., Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling [J], J. Alloy. ComPd.,2000, 299:L12-L15
    [46]Mukaibo H, Sumi T, Yokoshima T, et al., Electrodeposited Sn-Ni alloy film as a high Capacity anode material for lithium-ion secondary batteries [J], Electrochem. Solid State Lett.,2003,6(10):A218-220
    [47]H.L. Zhao, H.L. Dong, Z.Q. Lu, et al., Carbonthermal synthesis of SnxSb anode material for secondary lithium-ion battery [J], J. Alloy. Compd.,2005,395:192-200
    [48]Y. Idota, T. Kubota, A. Matsufuji, et al., Tin-based amorphous oxide:a high-capacity lithium-ion-storage material [J], Science,1997,276(5317):1395-1397
    [49]T. Ohzuku, A. Ueda. Why transition metal (di) oxides are the most attractive materials for batteries [J], Solid State Ionics,1994,69(3-4):201-211
    [50]P. Poizot, S. Laruelle, S. Crugeon, et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J], Nature,2000,407:496-499
    [51]S. Grugeon, S. Laruelle, R. Herrera-Urbina, et al., Particle size effects on the electrochemical performance of copper oxides toward lithium[J], J. Electrochem. Soc., 2001,148(4):A285-A292
    [52]曹彬,徐金威,丁玲红等,Ti02纳米管的电化学性能研究[J],电化学,2006,12(4):445-447
    [53]J. W. Xu, Y. F. Wang, Z. H. Li, et al., Preparation and Electrochemical Properties of Carbon-Doped TiO2 Nanotubes as an Anode Material for Lithium-Ion Batteries [J], J. Power Sources,2008,175(2):903-908
    [54]L. Cheng, H.J. Liu, J.J. Zhang, et al., Nanosized Li4Ti5O12 Prepared by molten salt as an eleetrode material for hybrid electrochemical super-capacitor [J], Journal of the Electrochemical Society,2006,153(8):1472-1477
    [55]K. Nakahara, R. Nakajima, T. Matsushima, et al., Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells [J]. J. Power Sources,2003,117(1-2):131-136
    [56]Y. Lan, J. W. Liu, X. P. Gao, et al., Electrochemical Lithium Insertion of Nanosized TiO2 [J], Electrochemistry (in Chinese),2004,10(2):133-136
    [57]C. G. Nie, Z. L. Gong, L. Sun, et al., Lithium Insertion into TiO2 (B) Nanobelts Synthesized by the "Soft Chemical" Method [J], Electrochemistry (in Chinese),2004, 10(3):330-333
    [58]G. X. Wang, Y. Chen, K. Konstantinov, et al., Investigation of cobalt oxides as anode materials for Li-ion batteries [J], J. Power Sources,2002,109:142-147
    [59]G. X. Wang, Y. Chen, K. Konstantinov, et al., Nanosize cobalt oxides as anode materials for lithium-ion batteries [J], Journal of Alloys and Compounds,2002, 340:L5-L10
    [60]Y.M. Kang, K.T. Kim, J.H.Kim, et al., Electrochemical properties of CO3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteries [J], J. Power Sources,2004,133(2):252-259
    [61]S. Bijani, M. Gabas, L. Martinez, et al., Nanostructured Cu2O Thin Film Electrodes Prepared by Electrodeposition for Rechargeable Lithium Batteries [J], Thin Solid Films,2007,515(13):5505-5511
    [62]P.L.T aberna, S. Mitra, P Poizot, et al., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications [J], Nature Materials,2006,5 (7):567-573
    [63]Y. Takeda, M. Nishijima, M. Yamahata, et al., Lithium secondary batteries using a lithium cobalt nitride Li2.6Co0.4N as the anode [J], Solid State Ionics,2000, 130(1-2):61-69
    [64]R. Alcantara, J.L. Tirado, J.C. Jumas, et al., Electrochemical reaction of lithium with CoP3 [J], J. Power Sources,2002,109:308-312
    [65]K. Wang, J. Yang, J. Xie, et al., Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling [J], Electrochem. Commun.,2003, 5:480-483
    [66]D. C. S. Souza, V. Pralong, A. J. Jacobson, et al., A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry [J], Science,2002,296:2012-2015
    [67]D. C. C. Silva, O. Crosnier, G. Ouvrard, et al., Reversible lithium uptake by FeP2 [J], Electrochem. Solid-State Lett.,2003,6:A162-A165
    [68]O. Crosnier, C. Mounsey, H. P. Subramanya, et al., Crystal Structure and Electrochemical Behavior of Li2CUP:a surprising reversible crystalline-amorphous transformation [J], Chem. Mater.,2003,15:4890-4892
    [69]C. Delmas, H. Cognac-Auradou, J. M. Cocciantelli, et al., The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation [J], Solid State Ionics,1994,69(3-4):257-264
    [70]Y. Kim, J.B. Goodenough, Lithium intercalation into ATi2(PS4)3(A=Li, Na, Ag) [J], Electrochem. Commun.,2008,10:497-501
    [71]P. Novak, K. Muller, K.S.V. Santhanam, et al., Electrochemically active polymers for rechargeable batteries [J], Chem. Rev.,1997,97(1):207-282
    [72]T. Brousse, R. Retoux, Thin-film crystalline SnO2-lithium electrode [J], J Electrochem Soc,1998,145(1):1-41
    [73]J. L. Morales, L. Sanchez, F. Martin et al., Nanostructured CuO Thin Film Electrodes Prepared by Spray Pyrolysis:a Simple Method for Enhancing the Electrochemical Performance of CuO in Lithium Cells [J], Electrochim. Acta.,2004, 49(26):4589-4597
    [74]X.H. Huang, J.P. Tu, X.H. Xia, et al., Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries [J], J. Power Source, 2009,188:588-591
    [75]Y. Wang, Z.W. Fu, Q.Z. Qin, A Nanocrystalline Co3O4 Thin Film Electrode for Li-ion Batteries [J], Thin Solid Films,2003,441(1-2):19-24
    [76]I. A. Coutney, W. R. Mckinnon, J. R. Dahn, On the aggragation of tin in SnO composite glasses caused by the reversible reaction with lithium [J], Journal of Electrochemistry Society,1999,146(1):59-68
    [77]X. J. Zhang, D. G. Zhang, X. M. Ni, et al. Optical and Electrochemical Properties of Nanosized CuO via Thermal Decomposition of Copper Oxalate [J], Solid-State Electronics,2008,52(2):245-248
    [78]黄可龙,刘人生,杨幼平等,单分散性纳米Co304的制备及电化学性能研究[J],电源技术,2007,31(9):680-682
    [79]F. Belliard, P. A. Connor, J. T. S. Irvine, Novel Tin Oxide-Based Anodes for Li-Ion Batteries [J], Solid State Ionics,2000,135(1-4):163-167
    [80]何则强,熊利芝,肖卓炳等,纳米SnO的溶胶-凝胶法制备与电化学性能[J],无机化学学报,2006,22(2):253-257
    [81]X. H. Huang, X. H. Xia, Y.F. Yuan, et al., Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries [J], Electrochim. Acta.,2011, 56(14):4960-4965
    [82]H. B. Wang, Q. M. Pan, Y. X. Cheng, et al., Evaluation of ZnO nanorod array with dandelion-like morphology as negative electrodes for lithium-ion batteries [J], Electrochim. Acta.,2009,54:2851-2855
    [83]F. Zhou, X. M. Zhao, H. G. Zheng, et al., Synthesis and electrochemical properties of ZnO 3D nanostructures [J], Chemistry Letters,2005,34(8):1114-1115
    [84]L. B. Chen, N. Lu, C. M. Xu, et al., Electrochemical performance of poly cry syalline CuO nano wires as anode material for Li ion batteries [J], Electrochim. Acta.2009,54(17):4198-4201
    [85]M. Wan, D. L. Jin, R. Feng, et al., Pillow-shape porous CuO as anode material for lithium-ion batteries [J], Inorganic Chemistry Communications,2011,14:38-41
    [86]S. Q. Wang, J. Y. Zhang, C. H. Chen, Dandelion-Like Hollow Microspheres of CuO as Anode Material for Lithium-Ion Batteries [J], Scripta Materialia,2007,57(4): 337-340
    [87]Q. Q. Xiong, J. P. Tu, Y. Lu, et al., Synthesis of Hierarchical Hollow-Structured Single-Crystalline Magnetite (Fe3O4) Microspheres:The Highly Powerful Storage versus Lithium as an Anode for Lithium Ion Batteries [J], J. Phys. Chem. C,2012, 116(10):6495-6502
    [88]Y. M. Lin, P. R. Abel, A. Heller, et al., α-Fe2O3 Nanorods as anode material for lithium ion batteries [J], J. Phys. Chem. Lett.,2011,2(22):2885-2891
    [89]郑洪河,陈有行,石磊等,室温离子液体对水热生长纳米α-Fe2O3形貌与电性能的影响[J],河南师范大学学报,2006,34(1):1-1
    [90]D. Deng, J. Y. Lee, Hollow Core-Shell Mesospheres of Crystalline SnO2 Nanoparticle ggregates for High Capacity Li+Ion Storage [J], Chem. Mater.,2008, 20:1841-1846
    [91]X. H. Huang, C. B. Wang, S. Y. Zhang, et al., CuO/C microspheres as anode materials for lithium ion batteries [J], Electrochim. Acta.,2011,56(19):6752-6756
    [92]L. Yuan, K. Konstantinov, G. X. Wang, et al., Nano-structured SnO2-carbon composites obtained by in situ spray pyrolysis method as anode in lithium batteries [J], J. Power Source,2005,146(1-2):180-184
    [93]J. Wang, H.L. Zhao, X.T. Liu, et al., Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries [J], Electrochim. Acta., 2011,56(18):6441-6447
    [94]J. P. Liu, Y. Y. Li, R. M. Ding, et al., Carbon/ZnO nanorod array electrode with significantly improved lithium storage capacity [J], J. Phys. Chem. C,2009,113: 5336-5339
    [95]F. Belliard, J. T. S Irvine, Electrochemical performance of ball-milled ZnO-SnO2 System as anodes in lithium-ion battery [J], J. Power Source,2001,97-98:219-222
    [96]H. Morimoto, M. Tatsumisago, T. Minami, Anode properties of amorphous 50SiO·50SnO Powders synthesized by mechanical milling [J], Electrochem. Solid-State Lett.,2001,4(2):A16-A18
    [97]C. M. Park, W. S. Chang, H. Jung, Naonostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries [J], Electrochem. Commun.,2009,11: 2165-2168
    [98]M. Y. Ma, Z. Q. He, Z. B. Xiao, Synthesis and electrochemical properties of SnO2-CuO nanocomposite powders [J], Transactions of nonferrous metals society of china,2006,16(4):791-794
    [1]严凤霞,王筱敏.现代光学仪器分析选论[M].上海:华东师范大学出版社,1992
    [2]马礼敦.高等结构分析[M].上海:复旦大学出版社,2001
    [3]吴浩青,李永舫.电极过程动力学[M].北京:高等教育出版社,1998
    [4]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用(第二版)[M].北京:化学工业出版社,2005
    [5]田昭武.电化学研究方法[M].北京:科学出版社,1984
    [6]查全性,等.电极过程动力学导论(第三版)[M].北京:科学出版社,2002
    [1]P. Poizot, S. Laruelle, S. Grugeon, et al., Searching for new anode materials for the Li-ion technology:time to deviate from the usual path [J], J. Power Sources,2001, 97-98:235-239
    [2]H. Yang, Y. Hu, X. Zhang, et al., Mechanochemical synthesis of cobalt oxide nanoparticles [J], Mater. Lett.,2004,58:387-389
    [3]S.W. Oh, HJ. Bang, Y.K. Sun, Effect of calcination temperature on morphology, crystallinityand electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis [J], J. Power Sources,2007, 173:502-509
    [4]T. Yu, Y.W. Zhu, X.J. Xu, et al., Controlled growth and field-emission properties of cobalt oxide nanowalls [J], Adv. Mater.,2005,17:1595-1599
    [5]H. Zhang, J. Wu, C. Zhai, et al., From cobalt nitrate carbonate hydroxide hydrate nanowires to porous CO3O4 nanorods for high performance lithium-ion battery electrodes [J], Nanotechnology,2008,19:035711-035715
    [6]T. He, D. Chen, X. Jiao, et al., Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation hanostructures and tunable particle size [J], Langmuir,2004,20:8404-8408
    [7]蔡振平,锂离子电池负极材料Co304的制备及性能[J],电源技术,2003,27,(4):370-372
    [8]C. Lin, J. A. Ritter, B. N. Popov, Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors [J], J. Electrochemical Soc,1998, 143:4097-4103
    [9]李亚栋,贺蕴普,李龙泉等,液相控制沉淀法制备纳米级Co304微粉[J],高等学校化学学报,1999,20(4):519-522
    [10]Z. Yuan, F. Huang, C. Feng, et al., Synthesis and electrochemical performance of nanosized Co3O4 [J], Mater. Chem. Phys.,2003,79:1-4
    [11]Y. Liu, C. Mi, L. S, X. Zhang, Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries [J], Electrochim. Acta,2008,53:2507-2513
    [12]W. Y Li, L. N. Xu, J. Chen, Co3O4 nanomaterials in lithium-ion batteries and gas sensors [J], Adv. Funct. Mater.,2005,15:851-857
    [13]J. Yang, Y. Wu, B. Xie, Y. Xie, et al., Moderate temperature synthesis of nanocrystalline Co3O4 via gel hydrothermal oxidation [J], Mater. Chem. Phys.,2002, 74:234-237
    [14]Y. Li, Z. W. Tan, Q. Z. Qin, A nanocrystalline thin film electrode for li-ion batteries [J], Thin Solid Films,2003,441:19-24
    [15]T. He, D. Chen, X. Jiao, et al., Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation hanostructures and tunable particle size [J], Langmuir,2004,20:8404-8408
    [16]X.Y. Shi, S.B. Han, R.J. Sanedrin, et al., Formation of cobalt oxide nanotubes: Effect of intermolecular hydrogen bonding between Co(Ⅲ) complex precursors incorporated onto colloidal templates [J], Nano Lett.,2002,2:289-293
    [17]R. Xu, H.C. Zeng, Mechanistic investigation on salt-mediated formation of free-standing Co304 nanocubes at 95℃ [J], J. Phys. Chem. B.,2003,107:926-930
    [18]R. Dedryvere, S Laruelle, S. Grugeon, et al., XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode [J], J. Electrochem. Soc.,2005,152:A689-A696
    [19]Y. Yu, Y. Shi, C. H. Chen, Nanoporous Cuprous Oxide/Lithia Composite Anode with Capacity Increasing Characteristic and High Rate Capability [J], Nanotechnology, 2007,18(5):055706
    [1]S. W. Oh, H. J. Bang, Y. C. Bae, et al., Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4,CuO, and NiO)prepared via ultrasonic spray pyrolysis [J], J. Power. Sources,2007,173:502-509
    [2]X. H. huang, Y. F. Yuan, Z. Wang, et al., Electrochemical properties of NiO/Co-P nanocomposite as anode materials for lithium ion batteries [J], J. Alloy. Compd.2011, 509:3425-3429
    [3]X. H. Huang, J. P. Tu, B. Zhang, et al., Electrochemical properties of NiO-Ni nanocomposite as anode material for lithium ion batteries [J], J. Power. Sources,2006, 161:541-544
    [4]Q. M. Pan, L. M. Qin, J. Liu, et al., Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries [J], Electrochim. Acta. 2010,55:5780-5785
    [5]C. H. Xu, J. Sun, L. Gao, Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage propertie [J], J. Power. Sources,2011,196:5138-5142
    [6]M. Y. Cheng, B. J. H. wang, Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery [J], J. Power. Sources,2010,195:4977-4983
    [7]C. Zhong, J. Z. Wang, S.L. Chou, et al., Nanocrystalline NiO hollow spheres in conjunction with CMC for lithium-ion batteries [J], J. Appl. Electrochem.,2010, 40:1415-1419
    [8]L. Liu, Y. Li, S. M. Yuan, et al., Nanosheet-Based NiO Microspheres:Controlled Solvothermal Synthesis and Lithium Storage Performances [J], J. Phys. Chem. C. 2010,114:251-255
    [9]L. Yuan, Z. P. Guo, K. Konstantinov, et al., Spherical Clusters of NiO Nanoshafts for Lithium-Ion Battery Anodes [J], Electrochem. Solid-State Lett.,2006, 9(11):A524-A528
    [10]M. M. Rahman, S.L. Chou, C. Zhong, et al., Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention [J], Solid State Ionics,2010,180:1646-1651
    [11]I. R. M. kottegoda, N. H. Idris, L. Lu, et al., Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge-discharge application [J], Electrochim. Acta.,2011,56:5815-5822
    [12]S. A. Needlham, G. X. Wang, H. K. Liu, Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries [J], J. Power. Sources,2006,159:254-257
    [13]X. F. Li, A. Dhanabalan, K. Bechtold, et al., Binder-free porous core-shell structured Ni/NiO congfiguration for application of high performance lithium ion batteries [J], Electrochem. Commun.,2010,12:1222-1225
    [14]Y. F. Yuan, X. H. Xia, J. B. Wu, et al., Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries [J], Electrochem. Commun.,2010,12:890-893
    [15]X. H. Huang, J. P. Tu, C. Q. Zhang, et al., Net-structured NiO-C nanocomposite as Li-intercalation electrode material [J], Electrochem. Commun.,2007,9:1180-1184
    [16]E. Hosono, S. Fujihara, I. Honma, et al., The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure [J], Electrochem. Commun.,2006,8:284-288
    [17]Y. J. Mai, J. P. Tu, X. H. Xia, et al., Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries [J], J. Power. Sources, 2011,196:6388-6393
    [18]C. Wang, D. L. Wang, Q. M. Wang, et al., Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery [J], J. Power Sources,2010,195:7432-7437
    [19]H. Liu, G. X. Wang, J. Liu, et al., Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance [J], J. Mater. Chem.,2011,21:3046-3052
    [20]X. H. Huang, J. P. Tu, C. Q. Zhang, et al., Hollow mircospheres of NiO as anode materials for lithium-ion batteries [J], Electrochim. Acta.,2010,55:8981-8985
    [1]W.J. Weydanz, M. Wohlfahrt-Mehrens, R.A. Huggins, A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries [J], J. Power Sources,199981:237-242
    [2]Z.P. Guo, J.Z. Wang, H.K. Liu, et al, Study of silicon/polypyrrode composite as anode materials for Li-ion batteries [J], J. Power Sources,2005,146:448-451
    [3]U. Kasavajjula, C.S. Wang, A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J], J. Power Sources,2007,163:1003-1039
    [4]H. Ikuta, T. Morita, A. Modeki, et al., in:Extended Abstracts of the 9th International Meeting on Lithium Batteries [M], Edinburgh, UK, July 1998.
    [5]H. Li, X. Huang, L. Chen, et al., A high capacity Nano-Si composite anode material for lithium rechargeable batteries [J], Electrochem. Solid-State Lett.1999, 2:547-549
    [6]T. Kim, S. Park, S.M. Oh, Solid-State NMR and Electrochemical Dilatometry Study on Li+Uptake/Extraction Mechanism in SiO Electrode [J], J. Electrochem.Soc. 2007,154(12):A1112-A1117
    [7]J. H. Kim, C. M. Park, H. Kim et al., Electrochemical behavior of SiO anode for Li secondary batteries [J], J. Electroanalytical Chemistry,2011,661:245-249
    [8]T. Zhang, J. Gao, H. P. Zhang, et al., Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries [J], Electrochem. Commun.,2007,9:886-890
    [9]B. Gao, S. Sinha, L. Fleming, Alloy formation in nanostructured silicon [J],2001, 13:816-819
    [10]Q. Sun, B. Zhang, Z. W. Fu, Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries [J], Applied Surface Science,2008,254:3774-3779
    [11]W. S. Chang, C. M. Park, J. H. Kim, et al., Quartz (SiO2):a new energy storage anode material for Li-ion batteries [J], Energy Environ. Sci., DOI: 10.1039/c2ee00003b
    [12]W. B. Xing, A. M. Wilson, K. Eguchi, et al., Pyrolyzed Polysiloxanes for Use as Anode Materials in Lithium-Ion Batteries [J], J. Electrochem. Soc.1997,144(7): 2410-2416
    [13]Y. S. Hu, R. D. Cakan, M. M. Titirici, et al., Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries [J], Angew. Chem. Int. Ed,2008,47:1645-1649
    [14]X. X. Yuan, Y. J. Chao, Z. F. Ma, et al., Preparation and characterization of carbon xerogel (CX) and CX-SiO composite as anode material for lithium-ion battery [J], Electrochem. Commun.,2007,9:2591-2595
    [15]A. Veluchamy, C. H. Doh, D. H. Kim, et al., Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries [J], J. Power Sources,2009,188:574-577
    [16]C. H. Doh, C. W. Park, H. M. Shin, et al., A new SiO/C anode composition for lithium-ion battery [J], J. Power Sources,2008,179:367-370
    [17]Q. S. K. Hanai, T. Ichikawa, M. B. Phillipps, et al., Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries [J], J. Power Sources,2011,196:9774-9779
    [18]H. Nara, T. Yokoshima, T. Momma, et al., Highly durable SiOC composite anode prepared by electrodeposition for lithium secondary batteries [J], Energy Environ. Sci.,2012,5:6500-6505
    [19]B. K. Guo, J. Shu, Z. X. Wang, et al., Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries [J], Electrochem. Commun., 2008,10:1876-1878
    [1]H. Azuma, H. Imoto, S. Yamada, et al., Advanced carbon anode materials for lithium ion cells [J], J. Power Sources,1999,81-82:1-7
    [2]Y. P. Wu, S. B. Fang, Y. Y. Jing, Carbon anodes for a lithium secondary battery based on polyacrylonitrile [J], J. Power Sources,1998,75:201-206
    [3]H. H. Schonfelder, K. Kitoh, H. Nemoto, Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbon [J], J. Power Sources, 1997,68:258-262
    [4]尹鸽平,周德瑞,程新群等,掺硼酚醛树脂热解碳的制备及嵌锂性能研究[J],高技术通讯,2001,3:98-100
    [5]C. X. Chang, J. F. Xiang, M. Li, et al., Improved disordered carbon as high performance anode material for lithium ion battery [J], J. Solid State Electrochem. 2009,13:427-431
    [6]M. Yoshio, H. Y. Wang, Y. S. Lee, et al., Naphthalene sulfonate formaldehyde (NSF)-resin derived carbon beads as an anode material for Li-ion batteries [J], Electrochim. Acta,2003,48:791-797
    [7]E. Buiel, J. R. Dahn, Li-insertion in hard carbon anode materials for Li-ion batteries [J], Electrochim. Acta,1999,45(1-2):121-130
    [8]I. Isaev, G. Salitra, A. Soffer, et al., A new approach for the preparation of anodes for Li-ion batteries based on activated hard carbon cloth with pore design [J], J. Power Sources,2003(119-121):28-33
    [9]Y. J. Kim, H. J. Lee, S. W. Lee, et al., Effects of sulfuric acid treatment on the microstructure and electrochemical performance of a polyacrylonitrile (PAN)-based carbon anode [J], Carbon,2005,43:163-169
    [10]H. Fujimoto, K. Tokumitsu, A. Mabuchi, et al., The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors [J], J. Power Sources,2010,195:7452-7456
    [11]Y. Y. Zhou, X. H. Li, H. J. Guo, et al., Study on the performance of carbon-graphite composite coated by pitch. Journal of Functional Materials [J],2007, 38 (6):955-957
    [12]G. P. Yin, X. Q. Cheng, Y. Z. Gao, et al., Influence of phosphorus-doping on lithium intercalation behavior of hard and soft carbons [J], Materials science & technology,2003,11(2):159-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700