用户名: 密码: 验证码:
纳米材料修饰电极强化微生物燃料电池产电特性与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境与能源问题已然成为影响人类生存与发展的核心问题。近些年,微生物燃料电池(Microbial fuel cell, MFC)能够利用微生物催化直接将燃料的化学能转化为电能,是一种能实现污水净化同时产电的新技术,因此受到了广泛关注。
     现阶段MFC输出功率密度偏低和构建成本过高限制了其在工程中的实际应用。随着反应器结构材料的优化,源于电极表面微生物催化反应的活化内阻逐渐成为制约MFC功率提升的关键;构建成本则主要来源于阴极用于催化氧气还原的贵金属,寻找廉价高效的化学催化剂,或者利用微生物代替化学催化剂形成生物阴极可以有效降低MFC的构建成本。
     针对以上存在问题,本论文通过简单的方法实现对阳极电极的表面改性,提高微生物与阳极电极之间的电子转移速率,改善阳极性能;在阴极,开发出廉价高效的氧气还原复合催化剂用以替代贵金属Pt,或者采用生物阴极取代贵金属催化剂,筛选出廉价高效的适合生物阴极的电极材料以及利用简单高效方法修饰生物阴极材料,降低构建成本的同时提高MFC的性能,从而在材料制备和应用方面为实现MFC的大规模实际应用提供有价值的参考数据和切实可行的实施方案。得到如下主要结果与结论:
     (1)通过层层自组装法制备了介孔碳修饰的碳纸电极,循环伏安法(Cyclicvoltammetry,CV)与电化学阻抗法(Electrochemical impedance spectroscopy,EIS)表明,相比于未经介孔碳修饰的碳纸,其具有更好的稳定的电化学性能,如增大了反应活化面积和电子转移速率,适宜应用于MFC阳极。以介孔碳修饰的碳纸作为阳极的MFC获得了237mW m-2功率密度,为未经介孔碳修饰的碳纸作为阳极的1.9倍(128mW m-2),同时期启动时间也缩短了68%,阳极极化损失也大大降低。
     (2)原位合成的二氧化锰碳纳米管复合催化剂(‘in-situ MnO2/CNTs’),在中性缓冲溶液中对氧气有很好的还原催化活性。扫描电镜(Scanning electron microscope,SEM)显示MnO2充分均匀的修饰于CNTs表面,且在高强度超声后仍能稳定的附着在CNTs管壁。将‘in-situ MnO2/CNTs’修饰于碳纸电极上,应用于MFC阴极,最大输出功率密度达到了210mW m2,与Pt/C相当(229mW m2),表明‘in-situ MnO2/CNTs’可以作为一种廉价高效的氧气还原催化剂替代Pt/C而应用于MFC阴极。
     (3)阴极材料的选择对生物阴极型MFC极为重要。主要探究了常用的几种材料石墨毡(Graphite felt,GF)、碳纸(Carbon paper)和不锈钢网(Stainless steel mesh,SSM)在MFC生物阴极中的应用比较,GF-MFC的电流密度和最大功率密度分别为350mA m2和109.5mW m2,高于CP-MFC(210mA m2and32.7mW m2)和SSM-MFC(18mA m2and3.1mW m2)。三种材料对应的MFC均获得了较高的COD去除率,GF-MFC获得了最大的库伦效率11.7%。三种材料中,石墨毡最适合于应用于双室型生物MFC中的阴极中。
     (4)通过简单可扩大化的方法制得了CNTs修饰SSM电极CNTs-SSM。SEM显示CNTs均匀的分布在不锈钢网表面,形成了一个三维网状结构,其表面积也随之提高。经过高强度的超声,修饰在不锈钢网表面的CNTs也不会脱落,说明CNTs与不锈钢网的结合非常稳固。CNTs-SSM-MFC的最大功率密度达到147mW m2,是SSM-MFC(3mW m2)的49倍之多。CV测试证明生物阴极上的生物膜可以催化还原氧气,且CNTs-SSM生物阴极表现出氧气催化还原效率远远高于SSM生物阴极。SSM在生产过程中可以极为方面的调整期纤维直径、孔隙,这可以为其在MFC的实际应用提供进一步的优化。此外,SSM易折易弯曲的特性可以使得在MFC实际应用中根据需要构建相应结构形状的CNTs-SSM生物阴极,如立方形、圆柱形或者条状。
Energy and water supply are two of the biggest challenges facing humanity in thecoming decades. In comparison with conventional fuel cells and waste treatment equipment,microbial fuel cells (MFC) are promising clean energy sources for simultaneous wastetreatment while harvesting electricity, which have been greatly developed in recent years.
     Currently, MFC is still in its infant and its future is filled with many challenges. Toeffectively apply MFC in commercial and practical application, challenges including lowerpower output and high cost have to be tackled first. As the optimization of material andconfiguration, ohmic resistance was sharply decreased. As a result, activation resistanceoriginated form the electrode reactions became the main limiting factor of the power outputimprovement. The high cost mainly resulted from the noble metal cathode, which used foroxygen reduction reaction. Developing an efficient and cost-effective cathodic electrocatalystor using biocathode instead of noble metal electrocatalyst was the solutions.
     In this study, modification of the carbon anode material was used to increase the electrontransfer between the anode and the biocatalyst, thus improving anode performance. To lowerthe cost of cathodes and simultaneously improve oxygen reduction reaction, non-noble metalsand biocathode (self-regeneration, low cost, sustainability) have been investigated as cathodiccatalysts. For biocathode, several commonly used biocathode materials were tested andcompared. Moreover, modification of the biocathode was used to increase its performance.Some innovative findings have been found as follows:
     (1) A novel mesoporous carbon (MC) modified carbon paper has been constructed usinglayer-by-layer self-assembly method and is used as anode in an air-cathode single-chambermicrobial fuel cell (MFC) for performance improvement. Using cyclic voltammetry (CV) andelectrochemical impedance spectroscopy (EIS), we have demonstrated that the MC modifiedelectrode exhibits a more favorable and stable electrochemical behavior, such as increasedactive surface area and enhanced electron-transfer rate, than that of the bare carbon paper. TheMFC equipped with MC modified carbon paper anode achieves considerably betterperformance than the one equipped with bare carbon paper anode: the maximum powerdensity is81%higher and the startup time is68%shorter. CV and EIS analysis confirm thatthe MC layer coated on the carbon paper promotes the electrochemical activity of the anodicbiofilm and decreases the charge transfer resistance from300to99. In addition, the anodeand cathode polarization curves reveal negligible difference in cathode potentials butsignificant difference in anode potentials, indicating that the MC modified anode other thanthe cathode was responsible for the performance improvement of MFC. In this paper, we have demonstrated the utilization of MC modified carbon paper to enhance the performance ofMFC.
     (2) To develop an efficient and cost-effective cathodic electrocatalyst for microbial fuelcells (MFC), carbon nanotubes (CNTs) coated with manganese dioxide using an in-situhydrothermal method (in-situ MnO2/CNTs) have been investigated for electrochemicaloxygen reduction reaction (ORR). Examination by transmission electron microscopy showsthat MnO2is sufficiently and uniformly dispersed over the surfaces of the CNTs. Using linearsweep voltammetry, we determine that the in-situ MnO2/CNTs are a better catalyst for theORR than CNTs that are simply mechanically mixed with MnO2powder, suggesting that thesurface coating of MnO2onto CNTs enhances their catalytic eactivity. Additionally, amaximum power density of210mW m2produced from the MFC with in-situ MnO2/CNTscathode is2.3times of that produced from the MFC using mechanically mixed MnO2/CNTs(93mW m2), and comparable to that of the MFC with a conventional Pt/C cathode (229mWm2). Electrochemical impedance spectroscopy analysis indicates that the uniform surfacedispersion of MnO2on the CNTs enhanced electron transfer of the ORR, resulting in higherMFC power output. The results of this study demonstrate that CNTs are an ideal catalystsupport for MnO2and that in-situ MnO2/CNTs offer a good alternative to Pt/C for practicalMFC applications.
     (3) The choice of the cathode material is crucial for every bio-cathode microbial fuel cell(MFC) setup. The commonly used biocathode materials, Graphite felt (GF), carbon paper (CP)and stainless steel mesh (SSM) were compared and evaluated in terms of current density,power density, and polarization. The maximum current density and power density of the MFCwith GF-biocathode achieved350mA m2and109.5mW m2, which were higher than that ofthe MFC with CP-biocathode (210mA m2and32.7mW m2) and the MFC withSSM-biocathode (18mA m2and3.1mW m2). The polarization indicated that thebiocathode was the limiting factor for the three MFC reactors. Moreover, cyclic voltammetry(CV) showed that the microorganisms on the biocathode played a major role in oxygenreduction reaction (ORR) for GF-and CP-biocathode but SSM-biocathode. Electrochemicalimpedance spectroscopy suggested that GF biocathode performed better catalytic activitytowards ORR than that of CP-and SSM-biocathode, also supported by CV test. Additionally,the MFC with GF-biocathode had the highest Coulombic Efficiency. The results of this studydemonstrated GF was the most suitable biocathode for MFC application among the threetypes of materials when using anaerobic sludge as inoculums.
     (4) A novel carbon nanotubes (CNTs) coated stainless steel mesh (SSM) electrode hasbeen fabricated by a simple and scalable process and is used as biocathode in microbial fuelcell (MFC) for performance improvement. Examination by scanning electron microscopeshows that CNTs are uniformly distributed over the surface of the SSM, thus forming athree-dimensional network structure. The MFC with CNT-SSM biocathode achieves highermaximum power density (147mW m2), which is49times larger than that (3mW m2)produced from the MFC with bare SSM biocathode. Moreover, cyclic voltammetry shows thatthe microorganisms on the CNTs-SSM biocathode plays a major role in oxygen reductionreaction (ORR), and the CNT-SSM biocathode performes better catalytic activity toward ORRthan that of SSM biocathode. Additionally, the MFC with CNTs-SSM biocathode has higherCoulombic Efficiency than that of MFC with bare SSM biocathode. In this study, wedemonstrate that the use of CNTs-SSM offers an effective mean to enhance the electricity ofbiocathode MFC.
引文
[1] McCarty PL, Bae J, Kim J. Domestic Wastewater Treatment as a Net EnergyProducer–Can This be Achieved? Environmental Science&Technology.2011;45:7100-6.
    [2] Logan B, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased powerproduction in air-cathode microbial fuel cells. Environmental Science&Technology.2007;41:3341-6.
    [3] Rabaey K, Rozendal RA. Microbial electrosynthesis arevisiting the electrical route formicrobial production. Nature Reviews Microbiology.2010;8:706-16.
    [4] Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose inmediatorless microbial fuel cells. Nature biotechnology.2003;21:1229-32.
    [5] Zhang F, Ge Z, Grimaud J, Hurst J, He Z. Long-Term Performance of Liter-ScaleMicrobial Fuel Cells Treating Primary Effluent Installed in a Municipal WastewaterTreatment Facility. Environmental Science&Technology.2013;47:4941-8.
    [6] Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbialfuel cell in the presence and absence of a proton exchange membrane. EnvironmentalScience&Technology.2004;38:4040-6.
    [7] Pandit S, Sengupta A, Kale S, Das D. Performance of electron acceptors in catholyte of atwo-chambered microbial fuel cell using anion exchange membrane. BioresourceTechnology.2011;102:2736-44.
    [8] Min B, Logan BE. Continuous electricity generation from domestic wastewater andorganic substrates in a flat plate microbial fuel cell. Environmental Science&Technology.2004;38:5809-14.
    [9] He Z, Wagner N, Minteer SD, Angenent LT. An upflow microbial fuel cell with aninterior cathode: Assessment of the internal resistance by impedance Spectroscopy.Environmental Science&Technology.2006;40:5212-7.
    [10] Rosenbaum M, Schr der U, Scholz F. In Situ Electrooxidation of PhotobiologicalHydrogen in a Photobioelectrochemical Fuel Cell Based on Rhodobacter sphaeroides.Environmental Science&Technology.2005;39:6328-33.
    [11] Reimers CE, Tender LM, Fertig S, Wang W. Harvesting Energy from the MarineSediment Water Interface. Environmental Science&Technology.2000;35:192-5.
    [12] Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, et al.Harnessing microbially generated power on the seafloor. Nature biotechnology.2002;20:821-5.
    [13] Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K. Life cycle assessment ofhigh-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells.Environmental Science&Technology.2010;44:3629-37.
    [14] Rozendal RA, Jeremiasse AW, Hamelers HV, Buisman CJ. Hydrogen production with amicrobial biocathode. Environmental Science&Technology.2007;42:629-34.
    [15] Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical currentinto methane by electromethanogenesis. Environmental Science&Technology.2009;43:3953-8.
    [16] Venkataraman A, Rosenbaum MA, Perkins SD, Werner JJ, Angenent LT.Metabolite-based mutualism between Pseudomonas aeruginosa PA14and Enterobacteraerogenes enhances current generation in bioelectrochemical systems. Energy&Environmental Science.2011;4:4550-9.
    [17] Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M. Characterization of anelectro-active biocathode capable of dechlorinating trichloroethene andcis-dichloroethene to ethene. Biosensors and Bioelectronics.2010;25:1796-802.
    [18] Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminatedsubsurface environments with electrodes. Environmental Science&Technology.2005;39:8943-7.
    [19] Potter MC. Electrical effects accompanying the decomposition of organic compounds.Proceedings of the Royal Society of London Series B, Containing Papers of a BiologicalCharacter.1911:260-76.
    [20] Cohen B. The Bacteria Culture as an Electrical Half-Cell. Journal of bacteriology.1931;21:18-9.
    [21] Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms thatharvest energy from marine sediments. Science.2002;295:483-5.
    [22] He Z, Minteer SD, Angenent LT. Electricity generation from artificial wastewater usingan upflow microbial fuel cell. Environmental Science&Technology.2005;39:5262-7.
    [23] Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution ofmicrobial fuel cells. Environmental Science&Technology.2008;42:8101-7.
    [24] Chang IS, Kim BH, Kim HJ, Park DH, Shin PK. Mediator-less biofuel cell. GooglePatents;1999.
    [25] Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select formicrobial consortia that self-mediate electron transfer. Applied and EnvironmentalMicrobiology.2004;70:5373-82.
    [26] Qian F, Wang G, Li Y. Solar-driven microbial photoelectrochemical cells with ananowire photocathode. Nano letters.2010;10:4686-91.
    [27] Fu L, You SJ, Yang Fl, Gao Mm, Fang Xh, Zhang Gq. Synthesis of hydrogen peroxidein microbial fuel cell. Journal of chemical technology and biotechnology.2010;85:715-9.
    [28] Sund CJ, McMasters S, Crittenden SR, Harrell LE, Sumner JJ. Effect of electronmediators on current generation and fermentation in a microbial fuel cell. Appliedmicrobiology and biotechnology.2007;76:561-8.
    [29] Gunawardena A, Fernando S, To F. Performance of a yeast-mediated biological fuel cell.International journal of molecular sciences.2008;9:1893-907.
    [30] Gralnick JA, Newman DK. Extracellular respiration. Molecular microbiology.2007;65:1-11.
    [31] Rabaey K, Boon N, H fte M, Verstraete W. Microbial Phenazine Production EnhancesElectron Transfer in Biofuel Cells. Environmental science&technology.2005;39:3401-8.
    [32] Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanellasecretes flavins that mediate extracellular electron transfer. Proceedings of the NationalAcademy of Sciences.2008;105:3968-73.
    [33] Myers CR, Myers JM. MtrB Is Required for Proper Incorporation of the CytochromesOmcA and OmcB into the Outer Membrane of Shewanella putrefaciens MR-1. Appliedand Environmental Microbiology.2002;68:5585-94.
    [34] Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, et al. Isolation of ahigh-affinity functional protein complex between OmcA and MtrC: two outer membranedecaheme c-type cytochromes of Shewanella oneidensis MR-1. Journal of bacteriology.2006;188:4705-14.
    [35] Kim BC, Lovley DR. Investigation of direct vs. indirect involvement of the c‐typecytochrome MacA in Fe (III) reduction by Geobacter sulfurreducens. FEMSmicrobiology letters.2008;286:39-44.
    [36] Rabaey K, Keller J. Microbial fuel cell cathodes: from bottleneck to prime opportunity?Water Science&Technology.2008;57.
    [37] Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobicrespiration. Environmental microbiology.2004;6:596-604.
    [38] Holmes DE, Nevin KP, O'Neil RA, Ward JE, Adams LA, Woodard TL, et al. Potentialfor quantifying expression of the Geobacteraceae citrate synthase gene to assess theactivity of Geobacteraceae in the subsurface and on current-harvesting electrodes.Applied and Environmental Microbiology.2005;71:6870-7.
    [39] Liu H, Cheng S, Logan B. Production of electricity from acetate or butyrate using asingle-chamber microbial fuel cell. Environ Sci Technol.2005;39:658-62.
    [40] Morris JM, Jin S. Feasibility of using microbial fuel cell technology for bioremediationof hydrocarbons in groundwater. J Environ Sci Heal A.2008;43:18-23.
    [41] Feng Y, Yang Q, Wang X, Liu Y, Lee H, Ren N. Treatment of biodiesel productionwastes with simultaneous electricity generation using a single-chamber microbial fuelcell. Bioresour Technol.2010;In Press, Corrected Proof.
    [42] Cao Y, Hu Y, Sun J, Hou B. Explore various co-substrates for simultaneous electricitygeneration and Congo red degradation in air-cathode single-chamber microbial fuel cell.Bioelectrochemistry.2010;79:71-6.
    [43] Li Y, Lu A, Ding H, Jin S, Yan Y, Wang C, et al. Cr(VI) reduction at rutile-catalyzedcathode in microbial fuel cells. Electrochem Commun.2009;11:1496-9.
    [44] Li Y, Lu A, Ding H, Wang X, Wang C, Zeng C, et al. Microbial fuel cells using naturalpyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation ofbiorefractory organics in landfill leachate. Electrochem Commun.2010;12:944-7.
    [45] Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, et al. Photocatalytically improved azo dyereduction in a microbial fuel cell with rutile-cathode. Bioresour Technol.2010;101:3500-5.
    [46] Sun J, Bi Z, Hou B, CAO.Y.Q, Hu YY. Further treatment of decolorization liquid of azodye coupled with increased power production using microbial fuel cell equipped with anaerobic biocathode. Water Res.2010;In Press, Accepted Manuscript.
    [47] Li ZJ, Zhang XW, Lin J, Han S, Lei LC. Azo dye treatment with simultaneous electricityproduction in an anaerobic-aerobic sequential reactor and microbial fuel cell coupledsystem. Bioresour Technol.2010;101:4440-5.
    [48] Kim B, Chang I, Cheol Gil G, Park H, Kim H. Novel BOD (biological oxygen demand)sensor using mediator-less microbial fuel cell. Biotechnology Letters.2003;25:541-5.
    [49] Chang IS, Moon H, Jang JK, Kim BH. Improvement of a microbial fuel cell performanceas a BOD sensor using respiratory inhibitors. Biosensors and Bioelectronics.2005;20:1856-9.
    [50] Holtmann D, Schrader J, Sell D. Quantitative Comparison of the Signals of anElectrochemical Bioactivity Sensor During the Cultivation of Different Microorganisms.Biotechnology Letters.2006;28:889-96.
    [51] Kim M, Sik Hyun M, Gadd GM, Joo Kim H. A novel biomonitoring system usingmicrobial fuel cells. Journal of Environmental Monitoring.2007;9:1323-8.
    [52] Tront JM, Fortner JD, Pl tze M, Hughes JB, Puzrin AM. Microbial fuel cell biosensorfor in situ assessment of microbial activity. Biosensors and Bioelectronics.2008;24:586-90.
    [53] Wee J. Which type of fuel cell is more competitive for portable application: Directmethanol fuel cells or direct borohydride fuel cells? J Power Sources.2006;161:1-10.
    [54] Rabaey K, Clauwaert P, Aelterman P, Verstraete W. Tubular microbial fuel cells forefficient electricity generation. Environ Sci Technol.2005;39:8077-82.
    [55] Liu Y, Harnisch F, Fricke K, Sietmann R, Schr der U. Improvement of the anodicbioelectrocatalytic activity of mixed culture biofilms by a simple consecutiveelectrochemical selection procedure. Biosensors Bioelectron.2008;24:1006-11.
    [56] Liu Y, Harnisch F, Fricke K, Schroder U, Climent V, Feliu JM. The study ofelectrochemically active microbial biofilms on different carbon-based anode materials inmicrobial fuel cells. Biosensors&Bioelectronics.2010;25:2167-71.
    [57] Wang X, Cheng SA, Feng YJ, Merrill MD, Saito T, Logan BE. Use of Carbon MeshAnodes and the Effect of Different Pretreatment Methods on Power Production inMicrobial Fuel Cells. Environ Sci Technol.2009;43:6870-4.
    [58] Zhu N, Chen X, Zhang T, Wu P, Li P, Wu J. Improved performance of membrane freesingle-chamber air-cathode microbial fuel cells with nitric acid and ethylenediaminesurface modified activated carbon fiber felt anodes. Bioresour Technol.2010;In Press,Corrected Proof.
    [59] Park HI, Mushtaq U, Perello D, Lee I, Cho SK, Star A, et al. Effective and low-costplatinum electrodes for microbial fuel cells deposited by electron beam evaporation.Energy&Fuels.2007;21:2984-90.
    [60] Schr der U, Nie en J, Scholz F. A Generation of Microbial Fuel Cells with CurrentOutputs Boosted by More Than One Order of Magnitude13. Angew Chem.2003;115:2986-9.
    [61] Niessen J, Schr der U, Rosenbaum M, Scholz F. Fluorinated polyanilines as superiormaterials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun.2004;6:571-5.
    [62] Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cellfor electricity production. Appl Microbiol Biotechnol.2005;68:23-30.
    [63] Park D, Zeikus J. Impact of electrode composition on electricity generation in asingle-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol.2002;59:58-61.
    [64] Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR. Harvesting energy from themarine sediment-water interface II: Kinetic activity of anode materials. BiosensorsBioelectron.2006;21:2058-63.
    [65] Rosenbaum M, Zhao F, Schroder U, Scholz F. Interfacing electrocatalysis andbiocatalysis with tungsten carbide: A high-performance, noble-metal-free microbial fuelcell. Angew Chem Int Edit.2006;45:6658-61.
    [66] Rosenbaum M, Zhao F, Quaas M, Wulff H, Schr der U, Scholz F. Evaluation ofcatalytic properties of tungsten carbide for the anode of microbial fuel cells. AppliedCatalysis B: Environmental.2007;74:261-9.
    [67] Zeng L, Zhang L, Li W, Zhao S, Lei J, Zhou Z. Molybdenum carbide as anodic catalystfor microbial fuel cell based on Klebsiella pneumoniae. Biosensors Bioelectron.2010;25:2696-700.
    [68] Yuan Y, Kim S. Polypyrrole-coated reticulated vitreous carbon as anode in microbialfuel cell for higher energy output. Bull Korean Chem Soc.2008;29:168-72.
    [69] Liu J, Lowy D, Baumann R, Tender L. Influence of anode pretreatment on its microbialcolonization. J Appl Microbiol.2007;102:177-83.
    [70] Cheng S, Logan B. Ammonia treatment of carbon cloth anodes to enhance powergeneration of microbial fuel cells. Electrochem Commun.2007;9:492-6.
    [71] Yujie Feng, Qiao Yang, Xin Wang, Bruce E. Logan. Treatment of carbon fiber brushanodes for improving power generation in air–cathode microbial fuel cells. J PowerSources.2010;195:1841–4.
    [72] Bond D, Holmes D, Tender L, Lovley D. Electrode-reducing microorganisms thatharvest energy from marine sediments. Science.2002;295:483.
    [73] Ganguli R, Dunn BS. Kinetics of Anode Reactions for a Yeast-Catalysed Microbial FuelCell. Fuel Cells.2009;9:44-52.
    [74] Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricityfrom microbial degradation. Biotechnol Bioeng.2003;81:348-55.
    [75] Adachi M, Shimomura T, Komatsu M, Yakuwa H, Miya A. A novelmediator-polymer-modified anode for microbial fuel cells. Chem Commun.2008:2055-7.
    [76] Morozan A, Stamatin I, Stamatin L, Dumitru A, Scott K. Carbon electrodes for microbialfuel cells. J Optoelectron Adv M.2007;9:221-4.
    [77] Nambiar S, Togo CA, Limson JL. Application of multi-walled carbon nanotubes toenhance anodic performance of an Enterobacter cloacae-based fuel cell. Afr J Biotechnol.2009;8:6927-32.
    [78] Sun JJ, Zhao HZ, Yang QZ, Song J, Xue A. A novel layer-by-layer self-assembledcarbon nanotube-based anode: Preparation, characterization, and application in microbialfuel cell. Electrochim Acta.2010;55:3041-7.
    [79] Peng L, You SJ, Wang JY. Carbon nanotubes as electrode modifier promoting directelectron transfer from Shewanella oneidensis. Biosensors&Bioelectronics.2010;25:1248-51.
    [80] Qiao Y, Bao SJ, Li CM, Cui XQ, Lu ZS, Guo J. Nanostructured polyanifine/titaniumdioxide composite anode for microbial fuel cells. Acs Nano.2008;2:113-9.
    [81] Zhao Y, Watanabe K, Nakamura R, Mori S, Liu H, Ishii K, et al. Three-DimensionalConductive Nanowire Networks for Maximizing Anode Performance in Microbial FuelCells. Chemistry-A European Journal.2010;16:4982-5.
    [82] Zou Y, Pisciotta J, Baskakov IV. Nanostructured polypyrrole-coated anode forsun-powered microbial fuel cells. Bioelectrochemistry.2010;79:50-6.
    [83] Zhang X, Cheng S, Liang P, Huang X, Logan BE. Scalable air cathode microbial fuelcells using glass fiber separators, plastic mesh supporters, and graphite fiber brushanodes. Bioresour Technol.2010;In Press, Corrected Proof.
    [84] Cheng S, Liu H, Logan BE. Power Densities Using Different Cathode Catalysts (Pt andCoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial FuelCells. Environ Sci Technol.2006;40:364-9.
    [85] Deng L, Zhou M, Liu C, Liu L, Liu CY, Dong SJ. Development of high performance ofCo/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells. Talanta.2010;81:444-8.
    [86] Kim JR, Kim J-Y, Han S-B, Park K-W, Saratale GD, Oh S-E. Application ofCo-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure formicrobial fuel cells. Bioresource Technol.2010;In Press, Corrected Proof.
    [87] Zhang L, Liu C, Zhuang L, Li W, Zhou S, Zhang J. Manganese dioxide as an alternativecathodic catalyst to platinum in microbial fuel cells. Biosensors Bioelectron.2009;24:2825-9.
    [88] Li X, Hu B, Suib S, Lei Y, Li B. Manganese dioxide as a new cathode catalyst inmicrobial fuel cells. J Power Sources.2010;195:2586-91.
    [89] Liu X-W, Sun X-F, Huang Y-X, Sheng G-P, Zhou K, Zeng RJ, et al. Nano-structuredmanganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbialfuel cell fed with a synthetic wastewater. Water Res.2010;In Press, AcceptedManuscript.
    [90] Freguia S, Rabaey K, Yuan Z, Keller J. Non-catalyzed cathodic oxygen reduction atgraphite granules in microbial fuel cells. Electrochim Acta.2007;53:598-603.
    [91] Erable B, Duteanu N, Kumar SMS, Feng Y, Ghangrekar MM, Scott K. Nitric acidactivation of graphite granules to increase the performance of the non-catalyzed oxygenreduction reaction (ORR) for MFC applications. Electrochem Commun.2009;11:1547-9.
    [92] Duteanu N, Erable B, Senthil Kumar SM, Ghangrekar MM, Scott K. Effect ofchemically modified Vulcan XC-72R on the performance of air-breathing cathode in asingle-chamber microbial fuel cell. Bioresour Technol.2010;101:5250-5.
    [93] Bergel A, Feron D, Mollica A. Catalysis of oxygen reduction in PEM fuel cell byseawater biofilm. Electrochem Commun.2005;7:900-4.
    [94] Gregory K, Bond D, Lovley D. Graphite electrodes as electron donors for anaerobicrespiration. Environ Microbiol.2004;6:596-604.
    [95] Yu H, Cao T, Zhou L, Gu E, Yu D, Jiang D. Layer-by-Layer assembly and humiditysensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films.Sensors Actuators B: Chem.2006;119:512-5.
    [96] Lovley D, Phillips E. Novel mode of microbial energy metabolism: organic carbonoxidation coupled to dissimilatory reduction of iron or manganese. Appl EnvironMicrobiol.1988;54:1472-80.
    [97] Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications,2nded.New York: John Wiley&Sons, Inc.;2001.
    [98] Jia N, Wang Z, Yang G, Shen H, Zhu L. Electrochemical properties of orderedmesoporous carbon and its electroanalytical application for selective determination ofdopamine. Electrochem Commun.2007;9:233-8.
    [99] Schwarz F, Sculean A, Wieland M, Horn N, Nuesry E, Bube C, et al. Effects ofhydrophilicity and microtopography of titanium implant surfaces on initial supragingivalplaque biofilm formation. A pilot study. Oral and Maxillofacial Surgery.2007;11:333-8.
    [100] Borole AP, Aaron D, Hamilton CY, Tsouris C. Understanding Long-Term Changes inMicrobial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy.Environ Sci Technol.2010;44:2740-5.
    [101] Hwang S, Park G-G, Yim S-D, Park S-H, Yang T-H, Kim H, et al. Synthesis of theelectro-catalyst supported on mesoporous carbon via imprinting method for polymerelectrolyte fuel cells. Current Applied Physics.2010;10:S69-S72.
    [102] Choi Y, Joo S, Lee S, You D, Kim H, Pak C, et al. Surface selective polymerization ofpolypyrrole on ordered mesoporous carbon: enhancing interfacial conductivity for directmethanol fuel cell application. Macromolecules.2006;39:3275-82.
    [103] Hudson S, Magner E, Cooney J, Hodnett B. Methodology for the immobilization ofenzymes onto mesoporous materials. J Phys Chem B.2005;109:19496-506.
    [104] Gong K, Yu P, Su L, Xiong S, Mao L. Polymer-Assisted Synthesis of ManganeseDioxide/Carbon Nanotube Nanocomposite with Excellent Electrocatalytic Activitytoward Reduction of Oxygen. The Journal of Physical Chemistry C.2007;111:1882-7.
    [105] Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM. Coaxial MnO2/carbon nanotubearray electrodes for high-performance lithium batteries. Nano Lett.2009;9:1002-6.
    [106] Liang S, Teng F, Bulgan G, Zong R, Zhu Y. Effect of Phase Structure of MnO2Nanorod Catalyst on the Activity for CO Oxidation. The Journal of Physical ChemistryC.2008;112:5307-15.
    [107] Cheng S, Liu H, Logan BE. Increased performance of single-chamber microbial fuelcells using an improved cathode structure. Electrochem Commun.2006;8:489-94.
    [108] Yuan C, Su L, Gao B, Zhang X. Enhanced electrochemical stability and charge storageof MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidicelectrolytes. Electrochim Acta.2008;53:7039-47.
    [109] Teng F, Santhanagopalan S, Meng DD. Microstructure control of MnO2/CNT hybridsunder in-situ hydrothermal conditions. Solid State Sciences.2010.
    [110] He Z, Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS)in microbial fuel cell studies. Energy&Environmental Science.2009;2:215-9.
    [111] Wei J, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells.Bioresource Technology.2011;102:9335-44.
    [112] Liu X-W, Sun X-F, Huang Y-X, Sheng G-P, Wang S-G, Yu H-Q. Carbonnanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance theelectricity generation of a microbial fuel cell. Energy&Environmental Science.2011;4:1422-7.
    [113] You SJ, Ren NQ, Zhao QL, Wang JY, Yang FL. Power generation and electrochemicalanalysis of biocathode microbial fuel cell using graphite fibre brush as cathode material.Fuel Cells.2009;9:588-96.
    [114] Behera M, Jana PS, Ghangrekar MM. Performance evaluation of low cost microbialfuel cell fabricated using earthen pot with biotic and abiotic cathode. BioresourceTechnology.2010;101:1183-9.
    [115] Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A. Marine microbialfuel cell: Use of stainless steel electrodes as anode and cathode materials. ElectrochimicaActa.2007;53:468-73.
    [116] Freguia S, Tsujimura S, Kano K. Electron transfer pathways in microbial oxygenbiocathodes. Electrochimica Acta.2010;55:813-8.
    [117] Zhang Y, Sun J, Hou B, Hu Y. Performance improvement of air-cathodesingle-chamber microbial fuel cell using a mesoporous carbon modified anode. Journalof Power Sources.2011;196:7458-64.
    [118] Ter Heijne A, Schaetzle O, Gimenez S, Fabregat-Santiago F, Bisquert J, Strik DPBTB,et al. Identifying charge and mass transfer resistances of an oxygen reducing biocathode.Energy&Environmental Science.2011;4:5035-43.
    [119] Freguia S, Rabaey K, Yuan Z, Keller J. Sequential anode–cathode configurationimproves cathodic oxygen reduction and effluent quality of microbial fuel cells. WaterResearch.2008;42:1387-96.
    [120] Lefebvre O, Al-Mamun A, Ng HY. A microbial fuel cell equipped with a biocathodefor organic removal and denitrification. Water Sci Technol.2008;58:881-5.
    [121] Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, et al. Cathodicoxygen reduction catalyzed by bacteria in microbial fuel cells. The ISME journal.2008;2:519-27.
    [122] Mancini S, Abicht HK, Karnachuk OV, Solioz M. Genome Sequence of Desulfovibriosp. A2, a Highly Copper Resistant, Sulfate-Reducing Bacterium Isolated from Effluentsof a Zinc Smelter at the Urals. Journal of bacteriology.2011;193:6793-4.
    [123] Wei J, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells.Bioresource Technology.2011;In Press, Accepted Manuscript.
    [124] Zhuang L, Yuan Y, Yang G, Zhou S. In situ formation of graphene/biofilm compositesfor enhanced oxygen reduction in biocathode microbial fuel cells. ElectrochemistryCommunications.2012;21:69-72.
    [125] Zhang G-d, Zhao Q-l, Jiao Y, Zhang J-n, Jiang J-q, Ren N, et al. Improved performanceof microbial fuel cell using combination biocathode of graphite fiber brush and graphitegranules. Journal of Power Sources.2011;196:6036-41.
    [126] Wei J, Liang P, Cao X, Huang X. Use of inexpensive semicoke and activated carbon asbiocathode in microbial fuel cells. Bioresource Technology.2011;102:10431-5.
    [127] Mao Y, Zhang L, Li D, Shi H, Liu Y, Cai L. Power generation from a biocathodemicrobial fuel cell biocatalyzed by ferro/manganese-oxidizing bacteria. ElectrochimicaActa.2010;In Press, Corrected Proof.
    [128] Zhang Y, Sun J, Hu Y, Li S, Xu Q. Bio-cathode materials evaluation in microbial fuelcells: A comparison of graphite felt, carbon paper and stainless steel mesh materials.International Journal of Hydrogen Energy.2012;37:16935-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700