用户名: 密码: 验证码:
双掺杂CeO_2和LaGaO_3电解质的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFCs,Solid Oxide Fuel Cells)是一种高效率、低污染的新型能源装置,被认为是二十一世纪的绿色能源。传统的以氧化钇稳定的氧化锆(8YSZ)做电解质的SOFC需要高温工作,由于高温而带来的电极-电解质界面反应、阳极烧结,金属连接材料的腐蚀等问题的存在限制了SOFC的实际应用。目前,SOFC的研制正向中温化发展,降低SOFC的工作温度主要有两种途径,一是开发在中温具有高离子电导率的固体电解质材料;另外的办法是YSZ电解质的薄膜化。本文主要集中于中温固体电解质材料的研发,对稀土氧化物双掺杂的CeO_2基电解质进行了系统的研究;并对Sr、Mg双掺杂的LaGaO_3基电解质与新型阴极材料的化学相容性问题进行研究,以进一步提高中温固体氧化物燃料电池的各项性能指标。
     目前,对掺杂CeO_2基电解质的研究主要集中于掺杂剂的研究上,并且已经从单掺杂体系转移到了双掺杂体系的研究。本文采用硝酸盐-柠檬酸法成功制备了Ce_(0.8)La_(0.2-x)Y_xO_(1.9)和Ce_(0.8)Sm_(0.2-x)Y_xO_(1.9)两个系列的电解质材料,对其进行多种测试和性能研究,考察了稀土元素及掺杂量对CeO_2基电解质性能的影响,并进一步对优选出的高电导率的电解质材料进行烧结温度对电解质性能影响的研究。
     结果发现,掺杂后的CeO_2电解质电导率明显提高,单掺杂已经大幅度提高了电解质的电导率;对于稀土双掺杂的Ce_(0.8)La_(0.2-x)Y_xO_(1.9)系列电解质,在700~850℃之间,当Y掺杂浓度x=0.06和x=0.10时,电解质的电导率达到最高,La、Y双掺杂在单掺杂的基础上进一步改善了CeO_2基电解质的离子导电性。
     对于Ce_(0.8)Sm_(0.2-x)Y_xO_(1.9)系列电解质,在中温区间(550~700℃),当Y的掺杂浓度x=0.05和x=0.1时的双掺杂电解质相对于单掺杂电解质有更高的电导率;并且这两种电解质在中低温区间(250~700℃)均具有较单掺杂电解质更低的活化能。在相同工作温度下,这两种电解质的单电池最大功率密度和最大短路电流密度都比其他电池高,在相同空位浓度的情况下,这两种双掺杂电解质都比单掺杂的电解质有更好的导电性能,表明CeO_2基电解质的离子导电性可以通过Sm、Y双掺杂在单掺杂基础上可以进一步提高。该双掺杂系列CeO_2基电解质单电池的性能指标为同条件下的YSZ电解质电池的几倍。
     烧结温度对电解质导电性能有很大的影响,经过800℃预烧,1300、1400℃烧结的Ce_(0.8)Sm_(0.1)Y_(0.1)O_(1.9)电解质电性能对比其他条件处理后的电解质,有更高的总电导率和晶粒、晶界电导率以及更低的活化能,表现出更好的电性能。这是因为1300℃和1400℃烧结的电解质片比较致密的,各组成元素在电解质中分布更为均匀,而1500℃和1600℃烧结后的电解质片,因高温处理造成了电解质的过烧结,同时造成了Y元素在电解质中的偏析,导致1500、1600℃烧结后电解质的电性能比1300、1400℃烧结后的电解质的电性能要弱很多。
     本文还成功制备了纯相的La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(2.85)(LSGM1020)电解质材料,并对该电解质为支撑体的多种阴极材料的单电池性能和化学相容性等问题进行研究。研究发现,LSGM1020电解质为支撑体的单电池的输出功率密度和短路电流密度都较大;尤其以La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_(3-δ)材料为阴极的单电池表现出较好的性能:以La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_(3-δ)为阴极、以500μm厚LSGM1020为电解质的单电池的最大输出功率超过500 mW/cm~2,最大短路电流密度超过1.5 A/cm2,单电池的性能指标有望通过改进厚膜工艺进一步提高。Ba_(0.5)Sr_(0.5)Co_(0.6)Fe_(0.4)O_(3-δ)和Sm0.5Sr0.5CoO3两种阴极材料均与LSGM1020发生反应生成了杂相物质,而La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_(3-δ)未与其生成杂相,因此La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_(3-δ)阴极与LSGM1020电解质间导电过程不受影响,阴极和电解质间的界面电阻小,从而以该材料为阴极的单电池性能最佳。
     从以上研究可以看出,稀土双掺杂的CeO_2电解质和Sr、Mg双掺杂的LaGaO_3基电解质是二种良好的中温电解质材料,有望成为中温SOFC适宜的电解质材料。
Solid oxide fuel cells (SOFCs) are novel energy conversion devices with high efficiency and low emission, which have been recognized as a green energy at 21century. However, the high operating temperature of conventional electrolyte-supported cells can lead to not only a high fabrication cost for SOFCs systems, but also complex materials problems including electrode sintering, interfacial diffusion between electrolytes and electrodes. These problems have limited the commercial development of SOFCs. Recently, the development of SOFCs has changed to intermediate temperatures. There are two approaches to lower SOFCs operating temperatures: one is the development of high ionically conducting solid electrolyte materials at the intermediate temperatures; the other is reducing the YSZ electrolyte thickness. This investigation is concentrated on the research and development of intermediate temperatures solid electrolyte materials. The systematic investigation was done about the rare-earth double-doped CeO_2-based electrolyte; the chemical compatibility of the different cathodes materials and Sr and Mg double-doped LaGaO_3 based electrolyte was investigated. The aims are to improve the performance of intermediate temperatures solid oxide fuel cells (ITSOFCs).
     Now most investigations about doped ceria electrolytes are focused on dopants and more attentions have been paid on double doping systems rather than single ones. Two series of samples with the general compositions of Ce_(0.8)La_(0.2-x)Y_xO_(1.9) and Ce_(0.8)Sm_(0.2-x)Y_xO_(1.9) were successfully synthesized by the sol-gel method and characterized. Influence of rare-earth elements and their different doped quantity on the ceria-based electrolyte performance was studied, from which the electrolyte materials with the highest conductivity were selected, and the effect of sintering temperatures on electrical property was investigated, too.
     Results indicated that the conductivity of the ceria-based electrolyte was pronounced improved after doped with other oxides. The performances of ceria-based electrolytes have been improved greatly by single doped. To the serial rare earth double-doped Ce_(0.8)La_(0.2-x)Y_xO_(1.9) electrolytes, the highest conductivity was obtained with the x values of 0.06 and 0.10. Therefore, the doping of La and Y could further improve the ion conductivity of the single-doped ceria-based electrolytes.
     To the electrolyte Ce_(0.8)Sm_(0.2-x)Y_xO_(1.9), when the x value is 0.05 and 0.1, the double-doped samples showed higher conductivity than their corresponding single doped samples from 550 to 700℃. The two kinds of electrolytes indicated lower activation energy than their corresponding single doped samples from 250 to 700℃. The maximum power density and the maximum current density of the SOFCs based on the two electrolytes at 700℃were higher than single doped sample with the same vacancy concentration. Results reveal that co-doping of samarium and yttrium can further improve the electrical performance of the single-doped ceria-based electrolytes. The performance of single cell with the series double-doped ceria electrolytes was far higher than that with the YSZ electrolytes on the same conditions.
     The electrical performance of the electrolyte was subject greatly of the sintering temperatures. The samples Ce_(0.8)Sm_(0.1)Y_(0.1)O_(1.9) sintered at 1300 and 1400℃appear to be higher total, bulk and grain-boundary electrical conductivities and lower activation energies than at 1500 and 1600℃in all operating temperatures. This is because the pellets were dense and the compositions were homogeneous when sintered at 1300 and 1400℃. After the samples were sintered at 1500 and 1600℃, the over-sintering occurred and Y element became badly unhomogeneous simultaneously leading to a poorer electrical property of the samples sintered at 1500 and 1600℃than 1300 and 1400℃.
     Moreover, pure phase of La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(2.85) (LSGM1020) electrolyte material was successfully prepared. Electrolyte-supported SOFCs were fabricated. The influence of the different cathodes materials on the single cell performance and chemical compatibility was investigated. Results showed that the high maximum power density and the maximum current density were obtained of the LSGM1020 electrolyte-supported single cell. Especially, La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_(3-δ) as a cathode material indicated the best performance. With 500μm electrolyte thickness and with La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_(3-δ) as a cathode, the LSGM1020 electrolyte-supported single cell showed good performance of the maximum power density of 500 mW/cm~2 and the maximum current density of 1.5 A/cm~2. The performances of single cells expect to further enhance by progressing the technics of the thick film. The cathodes materials of Ba_(0.5)Sr_(0.5)Co_(0.6)Fe_(0.4)O_(3-δ) and Sm_(0.5)Sr_(0.5)CoO_3 could react with LSGM1020 electrolyte and the impurity phases were observed. However, no impurity was observed on the interface between La_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_(3-δ) cathode and LSGM1020 electrolyte, and small interface resistance was obtained, leading to the resulting good cell performance.
     Results from above demonstrate that Sr, Mg double-doped LaGaO_3 electrolyte and rare eath double-doped CeO_2 based electrolyte materials are excellent intermediate temperature electrolyte materials, which are promising for ITSOFCs application.
引文
1 Q. Yamamoto, Y. Arachi, H. Sakai, et al. Zirconia Based Oxide Ion Conductors for Solid Oxide Fuel Cells. The Proceeding of 97th Xiangshan Science Conference on New Solid State Fuel Cells, Xiangshan, Beijing, China, June, 1998:74~82
    2 A. Atkinson, A. Selcuk. Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ionics. 2000, 134:59~66
    3 彭茂公. 加快我国燃料电池的研究进展. 云南冶金. 2000, 29(4): 46~51
    4 A. S. Arico, S. Srinivasan, V. Antonucci. DMFCs: From Fundamental Aspects to Technology Development. Fuel Cell. 2002, (1):133~161
    5 毛宗强. 燃料电池. 化学工业出版社, 2005:275~277
    6 D. Masayuki. SOFC system and technology. Solid State Ionics. 2002 (152~153):383~392
    7 N. Q. Minh. Ceramic Fuel Cell. J. Am. Ceram. Soc. 1993, 76:563~588
    8 S. P. S. Badwal, K. Foger. Solid Oxide Electrolyte Fuel Cell Review. Ceram. Int. 1996, 22:257~265
    9 隋智升, 隋升, 罗冬梅. 燃料电池及其应用. 冶金工业出版社, 2004:92~95
    10 黄镇江. 燃料电池及具应用. 电子工业出版社,2005:2~5
    11 A. J. Appely. Fuel Cell Technology: Status and Future Prospects. Energy. 1996, 21:521~653
    12 衣宝廉. 燃料电池-原理技术应用. 化学工业出版社, 2003:1~9
    13 L. Blum, W. A. Meulenberg, H. Nabielek, R. S-Wilckens. Worldwide SOFC Technology Overview and Benchmark. Int. J. Appl. Ceram. Technol. 2005, 2 (6):482~492
    14 R. Mark Ormerod. Solid Oxide Fuel Cells. Chem. Soc. Rev. 2003, 32:17~28
    15 M. B. Gunes, M. W. Ellis. Evaluationof Energy, Environmental, and Economic Characteristica of Fuel Cell Combined Heat and Power Systems For Residential Applications. J. Energy Resources Technology. 2003, 125:208~219
    16 J. Bockris, A. Ready. Modern Electrochemistry. New York: Plenum Press. 1970:1350~1400
    17 A. S. Boudghene, E. Traversa. Solid Oxide Fuel Cells (Sofcs): A Review of AnEnvironmentally Clean and Efficient Source of Energy. Renewable and Sustainable Energy Reviews. 2002, 6:433~455
    18 陈军, 袁华堂. 日本燃料电池的发展状态. 电源技术. 2002, (261): 39~42
    19 Fuel Cell Handbook. EG&G Technical Services, Inc., 2004, (11):7~31
    20 S. P. S. Badwal. Stability of solid oxide fuel cell components. Solid States Ionics. 2001, 143:39~46
    21 Y. Ji, J. Liu, Z Lv, et al. Study on the properties of Al2O3 doped (ZrO2)0.92(Y2O3)0.08 electrolyte . Solid States Ionics. 1999, 126:277~283
    22 A. J. Feighery, J. T. S. Irvine. Effect of alumina additions upon electrical properties of 8mol% yttria2stabilised zirconia . Solid States Ionics. 1999, 121:209~216
    23 I. R. Gibson, G. P. Dransfield, J. T. S. Irvine. Influence of Yttria concenration upon Electrical Properties and Susceptibility to Ageing of Yttria2stabilised Zirconias. J. Eur. Ceram. Soc. 1998, (18):661~667
    24 D. Kek, P. Panjan , E. Wangzenberg, et al. Electrical and microstructural investigations of cermet anodePYSZ thin film systems. J. Eur. Ceram. Soc. 2001, (21):1861~1865
    25 魏丽, 陈诵英, 王琴. 中温固体氧化物燃料电池电解质材料的研究进展. 稀有金属. 2003(3):286~292
    26 蒋凯, 张秀英, 郭崇峰. 固体氧化物燃料电池中的电解质. 稀有金属. 2001, 25(2):121~125
    27 F. Y. Wang, S. Y. Chen, Q. Wang. Research of Ce0.85Gd0.1Mg0.05O1.9 and Ce0.9Gd0.1O1.95 electrolyte. Chatalysis Today 2004, (97):189~194
    28 H. Yamamura, E. Katoh, M. Ichikawa, K. Kakinuma, T. Mori, H. Haneda. Multiple Doping Effect on the Electrical Conductivity in the (Ce1-x-yLaxMy)O2-δ (M=Ca, Sr) System. Electrochemistry, 2000, (68):455~459
    29 T. Mori, J. Drennan, J.H. Lee, J.G. Li, T. Ikegami. Oxide ionic conductivity and microstructures of Sm-or La-doped CeO_2-based systems. Solid State Ionics. 2002, (154-155):461~466
    30 F. Y. Wang, B. Z. Wan, S. Chen, J. Solid State Electrochem. Commun. 2005, (9):168~173
    31 S. Lubke, H. D. Wiemhofer. Electronic conductivity of Gd-doped ceria with additional Pr-doping. Solid State Ionics. 1999, (117): 229~243
    32 N. Kim, B. H. Kim, D. Lee. Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. Journal of Power Sources. 2000, (90):139~143
    33 Z. Lü, X. Q. Huang, W. Liu, T. M. He, Z. G Liu, J. Liu, W. H. Su. Properties and application of double alkali earth doped Ce0.9Ca0.1-xSrxO1.90. J. Rare Earths. 2002, 20(1):47~50
    34 H. Z. Song, H. B. Wang, S. W. Zha, D. K. Peng, G.Y. Meng. Aerosol-assisted MOCVD growth of Gd2O3doped CeO_2 thin SOFC electrolyte film on anode substrate. Solid State Ionics. 2003, (156):249~254
    35 C. Y. Tian, S. W, Chan. Electrical conductivities of (CeO_2)1-x(Y2O3)x thin films. J. Am. Ceram. Soc., 2002, 85 (9):2222~2229
    36 R. R. Peng, C. G. Xia, X. Q. Liu, S. K. Peng, G. Y. Meng. Intermeiate-temperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen-printing. Solid State Ionics 2002, (152-153):561~565
    37 N. Ai, Z. Lv, K. F. Chen, X. Q. Huang, et al. Low temperature solid oxide fuel cells based on Sm0.2Ce0.8O1.9 films fabricated by slurry spin coating. Journal of Power Sources. 2006 (159):637~640
    38 T. Takahashi, T. Esaka, H. J. Iwahara. High oxide ion conduction in the sintered oxides of the system Bi2O3-Gd2O3. J. Appl. Electrochem. 1975 (5):197~203
    39 刘旭俐, 马俊峰, 刘文化, 等. 固体氧化物燃料电池材料的研究进展. 硅 酸盐通报. 2001, (1):24~27
    40 R. N. Vannier, S. J. Skinner, R. J. Chater, et al. Oxygen transfer in BIMEVOX materials. Solid State Ionics. 2003 (160):85~92.
    41 M. Guillod, J. M. Bassat, J. Fouletier, et al. Oxygen diffusion coefficientand oxygen exchange coefficient of BIMEVOX.10 (ME=Cu, Co) ceramic membranes. Solid State Ionics. 2003, (164):87~96
    42 H. Keqin, J. B. Goodenough. A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte the role of a rare-earth oxide buffer. Journal of Alloys and Compounds. 2000, (303–304):454~464
    43 T. Ishihara, H. Matsuda, Y. Takita. Doped LaGaO3 perovskitetype oxide as a new oxide ionic conductor. J. Am. Soc. 1994, (116):3801~3803
    44 K. Huang, J. B. Goodenough. A solid oxide fuel cell based on Sr - and Mg-doped LaGaO3 electrolyte: the role of a rare earthbased oxide buffer. Journal of Alloy and Compounds. 2000, (303-304):454~464
    45 M. Feng, J. B. Goodenough. A superior oxide-ion electrolyte. Eur. J. Solid State Inorg. Chem. 1994, (31):663~668
    46 吕喆, 刘江, 黄喜强, 等. SrCe0.90Gd0.10O3 固体电解质燃料电池性能研究. 高等学校化学学报. 2001, 22(4):630~633
    47 马桂林, 贾定先, 仇立干. BaCe0.9Y0.1O3-a 固体电解质燃料电池性能. 化学学报. 2000, 58(11):1340~1344
    48 刘治国, 黄喜强, 刘巍, 等. PrGa1-xMgxO3 作为燃料电池固体电解质的研究. 高等学校化学学报. 2001, (8):1283~1285
    49 王世忠. 高性能镓酸镧基电解质燃料电池. 物理化学学报. 2004, 20 (1):43~46
    50 X. Zhang, S. Ohara, R. Maric, etal. Interface reaction in the NiO2SDC2LSGM system. Solid State Ionics. 2000, (133):153~156
    51 X. Zhang, S. Ohara, H. Okawa, etal. Interactions of a La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte with Fe2O3, Co2O3 and NiO anodematerials. Solid State Ionics. 2001, (139):145~149
    52 T . M at he w s, N . R a bu, J. R. S e lla r , et a l. Fa br ic a t io n o f La1-xSrxGa1-yMgyO3-(x+y)/2 thin films by electrophoretic deposition and its conductivity measurement. Solid State Ionics. 2000, (128):111~115
    53 T. Mathews, P. Manoravi, M. P. Antony, et al. Fabrication of La1-xSrxGa1-yMgyO3-(x+y)/2 thin films by pulsed laser ablation. Solid State Ionics, 2000, (135):397~401
    54 阎景旺, 董永来, 于春英, 江义. 中温固体氧化物燃料电池阳极基底及负载型电解质薄膜的研制. 无机材料学报. 2001, 16(5):804~814
    55 T. Fukui, S. Ohara. Performance of intermediate temperature solid state fuel cells with La(Sr)Ga(Mg)O3 electrolyte film. J. Power Sources, 2002, 106(1-2):42~50
    56 徐如人, 庞文琴. 无机合成与制备化学. 高等教育出版社, 2005:532~534
    57 J. B. Wang, J.C. Jang, T.J. Huang. Study of Ni-samaria-doped Ceria Anode for Direct Oxidation of Methane in Solid Oxid Fuel Cells. J. Power sources. 2003, (122):122~131
    58 M. Z. C. Hu, R. D. Hunt, E.A. Payzant, C.R. Hubbard. Nanocrystallization and Phase Transformation in Monodispersed Ultrafine Zirconia Particles from Various Homogeneous Precipitation Methods. J. Am. Ceram. Soc. 1999, (82):2313~2320
    59 M. Hirano, T. Oda. K. Ukai, Y. Mizutani Effect of Bi2O3 additives in Sc Stabilized Zirconia Electrolyte on a Stability of Crystal Phase and Electrolyte Properties. Solid State Ionics. 2003, (158):215~223
    60 T. M. He, Q. He, N. Wang. Synthesis of Nano-Sized Ysz Powders from Glycine-Nitrate Process and Optimization of Their Propertier. J. Alloys Comp. 2005, (396):309~315
    61 B. C. H Steele. Survey of Materials Selection for Ceramic Fuel Cells II. Cathodes and Anodes. J.Solid State Ionics. 1996, (86-88):1223~1234
    62 N. Minho, R. Takahashi. Science and Technology of Ceramic Fuel Cell. J. Eleasvier. 1995:147~156
    63 T. Kawada, N. Sakai, H. Yakolawa,et al. Characteristics of Slurry-coated Nickel Zirconia Cermet Anodes for Solid Oxide Fuel Cell. J.Electrochem.Soc. 1990, 137:3042~3049
    64 黄喜强, 吕喆, 苏文辉等. 一种增加 SOFC 阳极三相反应区的方法. 高等化学学报. 2000, 21(6):947~948
    65 J. B. Wang, J. C. Jang. Study of Ni-samaria-doped Ceria Anode for direct Oxidation of Methane in Solid Oxide Fuel Cells. J. Power Source. 2003, (122):122~131
    66 S. Yoon, J. Han, S. Nam, T. Lim, I. Oh, S. Hong, Y. Yoo, H. Lim. Performance of Anode Supported Solid Oxide Fuel Cell with La0.85Sr0.15MnO3 Cathode Modified by Sol-Gel Coating Technique. J. Power Sources. 2002, (106):160~166
    67 Y. Liu, C. Compson, M. L. Liu. Namostructured and Functionally Graded Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. J. Power Sources. 2004, (138):194~198
    68 O. Yamamoto. Solid Oxide Fuel Cells: Fundamental Aspects and Prospects Electrochim. Acta. 2000, (45):2423~2435
    69 S. Wang, T. Kato, S. Nagata, T. Honda, T. Kaneko, N. Iwashita, M. Dokiya. Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag Cathode for Ceria Electrolyte SOFCs. Solid State Ionics. 2002, (146):203~210
    70 J. Mizusaki, J. Tavuchi, T. Matsuura, S. Yamauchi, K. Fueki. Electrical Conductivity and Seebeck Coefficient of Nonstoichiometric La1-xSrxCoO3-δ. J. Electrochem. Soc. 1989, (136)2082~2088
    71 I. F. Kononyuk, S. P. Tolochko, V. A. Lutsko, V. M, Anishchik. Preparation andProperties of La1-xSrxCoO3 (0.2≤x≤0.6). J. Solid State Chem. 1983, (48):209~214
    72 O. Yamamoto, Y. Takeda, R.kanno, M. Noda. Perovsskite-Type Oxide ad Oxuten Electrodes for High-Temperature Oxide Fuel Cells. Solid State Ionics. 1987, (22):241~246
    73 R. Chiba, F. Yoshimura, Y. Sakurai. Properties of La1-ySryNi1-xFexO3 as a Cathode Material for a Low-Temperature Operating SOFC. Solid State Ionics. 2002, (152~153):575~582
    74 Z. P. Shao, S. M. Haile. A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells. Nature. 2004, (431):170~173
    75 Z. S. Duan, A. Y. Yan, Y. L. Dong, Y. Cong. M. J. Cheng, W. S. Yang. Intermediate-Temperature Solid Oxide Fuel Cell with Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode. Chinese J. Catal. 2005, (26):829~831
    76 吕喆. 固体氧化物燃料电池的若干材料与技术问题研究. 博士论文. 吉林大学.1999, (5):68
    77 K. Igor, S. V. Toshio, et al. Electra Languctivity of Nanocrystalline Ceria and Zirconian thin Film. J.Sold Stste Ionics. 2002, (136-137):1225~1233
    78 张燕红. 超细颗粒的制备. 稀有金属. 1997, 21(6):451~457
    79 A. Guinier. Theorie Et Technique De La Radiocristallographie. Paris, 1964: 482~488
    80 W. H. Weber, K. C. Hass, J. R. McBride. Raman study of CeO2 Second-order scattering, lattice dynamicsand particlesize effects. Phys. Rev. B. 1993, (48):178~185
    81 J. R. McBride, K. C. Hass, B. D. Poindexter, W. H. Weber. Raman and X-ray studies of Ce1-xRexO2-y where RE=La, Pr, Nd, Eu, Gd, and Tb. J. Appl. Phys. 1994, (76):2435~2441
    82 V. G. Keramidas, W. B. White. Molecular reorientational motion in liquid acetonitrile: Raman band shapes, diffusion cnstants and activation energy of reorientation. J. Chem. Phys. 1973, (59):751~758
    83 董相廷, 洪广言. 溶胶-凝胶合成二氧化铈纳米晶. 长春理工大学学报. 2002, 25(2):43~46
    84 史美伦. 交流阻抗谱原理及应用. 国防工业出版社, 2001:27~35
    85 杨文治. 固体电解质的电化学. 化学通报. 1981, (613):37~43
    86 赵宗源, 陈立泉. 快离子导体的阻抗谱研究. 物理. 1981, (6):348~351
    87 A.S. Nowick. in: G.E. Murch, A.S. Nowick (Eds.), Diffusion in Crystalline Solids, Academic Press. New York, 1984:143~148
    88 H. Yamamura, E. Katoh, M. Ichikawa, K. Kakinuma, T. Mori, H. Haneda. Electrochemistry, 2000 (68):455~459
    89 D. J. Kim. Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide (M=Hf4+, Zr4+, Ce4+, Th4+, U4+) Solid Solutions. J Am Ceram Soc.1989 (72):1415~1421
    90 H. Inaba, H. Tagawa. Ceria-based solid electrolytes. Solid State Ionics, 1996 (83):1~16
    91 H. Yoshida, H. Deguchi, K. Miura, M. Horiuchi. Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement. Solid State Ionics, 2001 (140):191~199
    92 G. C. kostogloudis, C. Ftikos. Crystal structure, thermal expansion and electrical conductivity of Pr1?xSrxCo0.2Fe0.8O3?δ (0≤x≤0.5). Solid State Ionics. 135 (2000):537~541
    93 S. P. S. Badwal. Comment on “low-Temperature Ionic Conductivity of 9.4 mol%-Yttria Stabilized Zirconia Single Crystals”. J. Am. Ceram. Soc. 1990, (73):3718~3719
    94 李艳, 吕喆, 黄喜强, 贾莉, 苗继鹏, 苏文辉. 掺银的 Sm0.5Sr0.5CoO3 中温固体氧化物燃料电池复合阴极材料的制备与性能研究. 中国稀土学报. 2004, (5):660~664
    95 吕喆, 贺天民, 黄喜强, 苗继鹏, 隋郁, 纪媛, 苏文辉. 多晶固体电解质晶粒几何形状对材料电性能的影响. 第 11 届中国固态离子学学术会议暨固体电化学能源装置国际研讨会论文, 合肥, 2002年10月.中国科学技术大学学报(增刊). 2002, (l32):285-290
    96 T. Ishihara, H. Matsuda, Y. Takita. Doped LaGaO3 perovskitetype oxide as a new oxide ionic conductor. J Am Soc. 1994, (116):3801~3803
    97 K. Huang, R. S. Tichy, J. B. Goodenough. Superior perovskite oxide ion condu-ctor strontium and magnesium doped La2GaO3. I. Phase relationships and electrical properties. J. Am. Ceram Soc. 1998, 81(10):2581~2585
    98 王德, 丛立功, 贺强, 裴力, 贺天民. 湿化学法合成钙钛矿结构中温电解质 La0.9Sr0.1Ga0.8Mg0.2O3-δ及其性能研究. 中国稀土学报. 2004, 22(2):238 ~242
    99 贺 天 民 , 丛 立 功 , 纪 媛 , 苏 文 辉 . 用 柠 檬 酸 - 硝 酸 盐 合 成 La0 9Sr0.1Ga0.8Mg0.2O3-δ 及其性能 硅酸盐学报. 2003, 31(9):907~912
    100 L. G. Cong, T. M. He, Y. Ji, et al. Synthesis and characterization of IT- electrolyte with perovskite structure La0 9Sr0.1Ga0.8Mg0.2O3-δ by glycine- nitrate combustion method. J. Alloys Comp. 2003, (348):325~331
    101 H. Hayashi, M. Suzuki. Inaba H.Thermal expansion of Sr- and Mg doped LaGaO3. Solid State Ionics, 2000, 128:131
    102 K. Jiang, H. X. Wang, L. G. Zheng. Development of doped Lanthanum gallate solid electrolytes. J. Rare Earths, 2003, 21(3):301~306
    103 L. G. Cong, T. M. He, Y. Ji, et al. Synthesis and characterization of IT- electrolyte with perovskite structure La0 9Sr0.1Ga0.8Mg0.2O3-δ by glycine-nitrate combustion method. J. Alloys Comp. 2003, 348:325
    104 B. Wei, Z. L¨u, X. Q. Huang, J. P. Miao, X. Q. Sha, X. S. Xin, W. H. Su. Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3≤x≤0.7). Journal of European Ceramic Society. 2006, (26):2827~2832
    105 邹 玉 满 , 王 世 忠 . 湿 化 学 法 制 备 Sm0.5Sr0.5CoO3-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 复合阴极及其性能表征. 物理化学学报. 2006, 22(8):958~961
    106 李艳. 固体氧化物燃料电池复合阴极的制备及性能研究. 硕士论文. 哈 尔滨工业大学. 2004, (4):60~64
    107 李艳. 固体氧化物燃料电池复合阴极的制备及性能研究. 硕士论文. 哈 尔滨工业大学. 2004, (4):49~59
    108 徐迪,郑峰,陈宇. La0.6Sr0.4Fe0.8Co0.2O3 粉末的合成和性能表征. 中国 粉体技术. 2006, (4):4~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700