用户名: 密码: 验证码:
Fe基非晶—纳米晶激光熔覆涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展,对机械产品零件的表面性能要求越来越高,不少工件要求在高速、高压、重载及腐蚀介质工况下可靠持续的工作。在普通金属材料表面制备复合材料涂层,可以改善材料的表面性能,延长机电产品的使用寿命、减少环境污染。非晶-纳米晶复合材料由于具有较高的硬度、强度及良好的耐腐蚀性,在材料表面改性领域具有潜在的应用价值。本文用激光作为热源,熔覆预涂覆在45钢表面的合金粉末,利用激光快速加热及冷却的特性,制备出Fe-Ni-Si-B-V系列非晶一纳米晶复合涂层。并对熔覆层的微观组织、非晶相、纳米晶相的形成机制、微合金化对合金系的影响及熔覆层的磨损性能等进行了系统分析,研究了影响熔覆层组织及其性能的因素及规律。
     预涂覆合金粉末的组分及合金中的元素存在状态是影响激光熔覆制备Fe基非晶-纳米晶复合涂层中非晶相与晶化相形成的重要因素。在Fe-Ni-Si-B-V合金系中,B以硼铁的状态加入合金系比以B粉状态加入更有利于抑制熔覆层中晶化相的产生、降低熔池的液态温度,而且工艺性好、价格低廉,能够与母材获得结合良好的熔覆层,这归咎于硼铁的低共晶熔点以及硼铁中的硼相对单质硼更稳定的特性。Si作为合金系的组元之一,适量增加Si的含量,可增加熔覆层中非晶的形成倾向,同时还能防止合金系中其他组成元素氧化烧损,因此有利于提高熔覆层中非晶相、纳米晶相的含量;但过量的加入容易使合金系偏离其深共晶成分,不利于熔覆层中非晶相、纳米晶相的形成。在本试验条件下,根据各种加入元素量的比较结果,其中Fe-Ni-Si-B-V合金有利于非晶相、纳米晶相形成的最佳成分为Fe_(36)Ni_(32)Si_(16)B_(14)V_2。
     利用激光熔覆制备的Fe_(36)Ni_(32)Si_(16)B_(14)V_2非晶-纳米晶复合涂层没有裂纹、孔洞等宏观缺陷。利用X射线衍射、扫描电镜、透射电镜等分析结果表明,由于微区成分和冷却条件的差异,熔覆层的构成由表及里依次为细小的树枝晶区、粒状晶及非晶-纳米晶区和外延生长的树枝晶区。其中晶化相主要为Fe_2B和γ-Fe,Ni。熔覆层物相组成呈现明显的分层结构,而且熔覆层中的非晶-纳米晶相含量沿熔覆层的厚度方向变化。熔覆层的微观结构呈现为高度弥散的细小晶化相、纳米晶相、非晶相等复合组织,非晶相-纳米晶相主要存在于距熔覆层表面0.4~0.5mm区域。熔覆层中非晶相与晶化相相间分布,局部呈现纳米晶相镶嵌于非晶态基体上或存在于晶化相内部。熔合区晶粒以外延生长方式向熔覆层内部生长,基体与熔覆层呈现良好的冶金结合。Fe_(36)Ni_(32)Si_(16)B_(14)V_2非晶-纳米晶复合涂层的显微硬度从熔覆层表层至熔覆层中部存在着一个显微硬度缓慢上升的区域,熔覆层中部的显微硬度最高,从熔覆层中部至母材间显微硬度持续下降,呈现梯度分布。在同样载荷、同样磨损时间的情况下,Fe_(36)Ni_(32)Si_(16)B_(14)V_2非晶-纳米晶复合涂层的磨损体积只有母材磨损体积的1/6-1/10。熔覆层的摩擦系数与母材相比平均低0.1~0.2,摩擦过程也变得比较平缓。
     在激光熔覆的条件下,C、Nb、Ce等不同合金元素对Fe-Ni-Si-B-V合金微合金化作用不同,对晶化相、非晶-纳米晶相形成条件影响不同;其相对含量不同,对熔覆层的性能也有不同的影响。
     研究表明,C的加入有利于抑制熔覆层中晶化相的生长,促进非晶-纳米晶相的生成。与Fe_(36)Ni_(32)Si_(16)B_(14)V_2熔覆层相比,Fe_(36)Ni_(31)Si_(16)B_(14)V_2C_1熔覆层中部由复杂的纳米晶、非晶组成,其中纳米晶相为组成的主体,非晶相分布于纳米晶相之间,非晶相构成非常复杂,微观成分不均匀。Fe_2B等晶粒也变得细小、分布更加均匀。这是由于C的加入改变了液态熔池的Fe-C短程有序团簇的数量与分布,进而影响到其他元素与Fe的结合能力。磨损试验研究指出非晶-纳米晶含量的增加可有效提高材料的耐磨性,其机理为改变了磨损机制,在相同条件下Fe_(36)Ni_(31)Si_(16)B_(14)V_2C_1熔覆层的磨损体积仅有母材的1/15~1/22,主要磨损机制为磨粒磨损和粘着磨损。
     强碳化物元素Nb不利于Fe-Ni-Si-B-V合金中非晶相的形成,Nb的加入促进了NbC及(Nb,V)C形成的倾向,易于生成NbC-VC复合晶粒,为高温熔体提供了异质形核核心,因而降低了Fe_(36)Ni_(32)Si_(16)B_(14)V_2合金的玻璃形成能力,使得熔覆层中的非晶-纳米晶相含量下降。熔覆层的显微硬度下降,同时由于硬质点碳化物的增加,熔覆层整体显微硬度变化幅度加大。
     Ce作为微合金化元素,可以改变Fe-Ni-Si-B-V合金熔体的结晶体系,Ce的加入量小于1.0at.%时,抑制Fe_2B的结晶、促进γ-Fe,Ni相的产生;Ce含量为2.0at.%时,两种晶化相的结晶均受到抑制。Ce的添加形成了更多的非晶相,降低了起到强化作用的纳米晶相、Fe_2B等硬质相的含量,与Fe_(36)Ni_(31)Si_(16)B_(14)V_2C_1熔覆层相比,Fe_(36)Ni_(30)Si_(16)B_(14)V_2Ce_2熔覆层组织均匀、非晶相相含量更高,熔覆层的显微硬度下降、熔覆层变得更加均匀。由于Fe基非晶合金是高硬度、低断裂韧度的脆性材料,使Fe_(36)Ni_(30)Si_(16)B_(14)V_2Ce_2熔覆层的抗磨损性能变差。其磨损机制以以剥层磨损为主,磨损面光滑。
     研究表明,微量元素C、Nb、Ce中,C对Fe_(36)Ni_(32)Si_(16)B_(14)V_2熔覆层耐磨性的提高影响最大。
Surface properties of machine parts need to be promoted increasingly because of the rapid development of modern industry. Most of them must work reliably and continuously under a high speed, high pressure, over loading or corrosion circumstance. Composite coatings developed on common metal benefit for improving surface properties of materials, prolonging the working life of machine parts and decreasing environment pollution. Amorphous-nanocrystalline composite materials are promising in the area of surface modification because of its high microhardness, strength and excellent corrosion resistant property. In this paper, alloy powders are pre-coated on 45 steel and Fe-Ni-Si-B-V amorphous-nanocrystalline composite coatings are developed by laser cladding. Microstructures of the coatings, growth mechanism of the amorphous phase and nanocrystalline phase, influence of microalloying on the alloy system and wear properties of the coatings are investigated in detail. At the same time, factors and rules influencing the coatings are studied.
     Composition and the element existing status of the pre-coated alloy powders are the key role of preparing Fe-based amorphous-nanocrystalline coatings by laser cladding. As far as Fe-Ni-Si-B-V alloy is concerned, it benefit for forming the amorphous phase and depressing the crystalline phase when B is added into the alloy in the status of boron iron instead of B powder. Further more, forming temperature of the molten pool can be decreased and the coatings have good metallic bonding with the substrate. At the same time, it is cheaper and has excellent processing properties. Si severs as not only one component of the alloy, but also the element preventing other component from oxidation. The content of the amorphous phase and nanocrystalline phase in the coatings can be improved by increasing the content of Si properly. However, the alloy deviates from eutectic composition and the amorphous phase and nanocrystalline phase is depressed if Si is over-added. The suitable component of Fe-Ni-Si-B-V alloy in favor of forming amorphous phase and nanocrystalline phase is Fe_(36)Ni_(32)Si_(16)B_(14)V_2 by laser cladding.
     Fe_(36)Ni_(32)Si_(16)B_(14)V_2 amorphous-nanocrystalline composite coating fabricated by laser cladding has no cracks and holes. The coatings are studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Because of the composition difference in micro-zone and crystalline conditions, the coating is build up by fine dendrites zone, cellular grains and amorphous-nanocrystalline zone and epitaxial growth dendrites zone from the surface to the bottom. The main crystalline phases are identified as Fe_2B and y- Fe, Ni. The coatings show a layer-structure obviously. At the same time, content of the amorphous-nanocrystalline phase in it vary along the depth of the coatings. The amorphous-nanocrystalline phase concentrates in the zone beneath 0.4~0.5mm away from the surface. The amorphous phase and crystalline phase exist side by side in the coating. Moreover, nanocrystalline phase embedded in the amorphous substrate or in the crystalline phase locally. In the bond zone, the grains develop into the coatings in the form of epitaxial growth and the coatings have a good metallic bonding with the substrate. Microhardness of the Fe_(36)Ni_(32)Si_(16)B_(14)V_2 amorphous-nanocrystalline composite coatings increases slightly from the surface to the middle of the coatings. The hardest area is in the middle of the coatings. The microhardness of the coatings decreases from the middle zone to the base metal and shows a graded distribution. The wear volume losses of the coatings are one sixth to one tenth of the substrate under the same load and wearing time. Compared to the substrate, the friction coefficients of the coatings are lowered 0.1-0.2 than the substrate and the course of the wear are more gentle.
     When amorphous-nanocrystalline composite coatings are fabricated by laser cladding, different microalloying elements, such as C, Nb and Ce, have different influence on the forming conditions of amorphous-nanocrystalline phase and crystalline phase. Furthermore, the properties of the coatings vary with their different content.
     It is shown that the addition of C favorites of the forming of amorphous-nanocrystalline phase and depressing the generation of crystalline phase. Compared to the Fe_(36)Ni_(32)Si_(16)B_(14)V_2 coatings, the middle zone of the Fe_(36)Ni_(31)Si_(16)B_(14)V_2C_1 coatings is composed of complex nanocrystalline phase and amorphous phase. The majority one is nanocrystalline phase. Structurally, amorphous phase distributes among the nanocrystalline phase and is complexity and non-homogeneous. The grains of Fe_2B turn to more small and distribute more homogeneously. It is shown that the wear property of the materials is promoted by developing more amorphous-nanocrystalline phase, which alters the wear mechanism of the materials. The wear volume loose of the Fe_(36)Ni_(31)Si_(16)B_(14)V_2C_1 coatings are only one fifteenth to one twenty second of the substrate under the same load and wearing time. The main wear mechanisms are abrasive wear and cohesive wear.
     Nb element is unfavour of the developing of amorphous phase. Because of the generation of NbC-VC composite grains, when Nb is added to the Fe_(36)Ni_(32)Si_(16)B_(14)V_2 alloy, the high-temperature molten pool has cores for heterogeneity nucleation and the GFA (Glass Forming Ability) of the Fe_(36)Ni_(32)Si_(16)B_(14)V_2 alloy is depressed. This causes the decrease of amorphous-nanocrystalline phase and increase of the variation amplitude of microhardness.
     When Ce is added to the alloy, the crystalline system of Fe_(36)Ni_(32)Si_(16)B_(14)V_2 alloy is changed. The crystallization of Fe_2B phase is depressed and the crystallization ofγ-Fe, Ni phase is promoted when the addition of Ce is less than 1.0at. %. When the addition of Ce reaches 2.0at. %, both of the crystalline phases are depressed and the amorphous phase is promoted. Compared to the Fe_(36)Ni_(31)Si_(16)B_(14)V_2C_1 coatings, microstructure of Fe_(36)Ni_(30)Si_(16)B_(14)V_2Ce_2 coatings are more homogeneous and have much more amorphous phase. However, the microhardness of the coatings is lower. The wear properties of Fe_(36)Ni_(30)Si_(16)B_(14)V_2Ce_2 coatings lower because of the Fe-based amorphous alloys are hard and brittle materials. The main wear mechanism is peeling and the worn scars are smooth.
     It is shown that C has the most important influence on the wear property of Fe_(36)Ni_(32)Si_(16)B_(14)V_2 coatings among the microalloying elements.
引文
1. Kramer J. Nonconducting modification of metals [J]. Journal of Annln Physik, 1934,19(1): 37-64.
    
    2. Brenner A, Couch D. E., Williams E. K. Electrodeposition of alloys of phoshorus with nickel or cobalt [J]. Journal of Research of the National Bureau of Standards, 1950,44(1): 109-119.
    
    3. 长崎诚三,平林真编著,刘安生译.二元合金状态图集[M].北京:冶金工 业出版社,2004.
    
    4. Klement W., Willens R. H., Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960,187(4740): 869-870.
    
    5. Inoue A., Zhang T., Takeuchi A. Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM=IV-VIII group transition metal) system [J], Applied Physics Letters, 1997, 71(4): 464-466.
    
    6. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Materialia, 2000,48(1): 279-306.
    
    7. Lu Z. P., Liu C. T., Thompson J. R., et al. Structural amorphous steels [J]. Physical review letters, 2004,92(24): 245503.
    
    8. John I. B. Glasses and amorphous materials [J]. Science, 1995, 267(5206): 1887-1888.
    
    9. 陈光,傅恒志等.非平衡凝固新型金属材料[M].北京:科学出版社, 2004.
    
    10. 孙桂琴,喻晓军.非晶及纳米晶合金研究进展[J].金属功能材料,1999, 6(4):156-160.
    
    11. 肖帆,韩明,王小祥.块状非晶合金的研究进展[J].材料科学与工程, 1999,17(2):76-80.
    
    12. 王立军.非晶态合金的特性及其应用[J].材料导报,1993,7(2):27-30.
    
    13. 郭贻诚.非晶态物理学[M].北京:科学出版社,1984.
    
    14. 王一禾,杨膺善.非晶态合金[M].北京:冶金工业出版社,1989.
    
    15. 刘应开,周效峰.非晶、纳米晶材料的历史与现状[J].现代物理知识, 1999,28(1):17-26.
    
    16. 卢柯,周飞.纳米晶体材料的研究现状[J].金属学报,1997,33(1):99-106.
    
    17. 张文礼,王玉,孙东柏等.非晶纳米晶复合材料的研究进展[J].材料工程, 2006,(z1):445-448.
    
    18. 李刚.Zr基非晶合金激光熔覆与诱导自蔓延合成[D].大连理工大学博士 学位论文,2003.
    
    19. 王家金.激光加工技术[M].北京:中国计量出版社,1992.
    
    20. Turnbull D., Cohen M. H. Concerning reconstructive transformation and formation of glass. Journal of Chemical Physics, 1958,29(5): 1049-1054.
    
    21. Inoue. A., Kohinata M., Ohtera K., et al. Mg-Ni-La amorphous alloys with a wide supercooled liquid region [J]. Materials Transactions, 1989, 30(5): 378-381.
    
    22. Kim S.G., Inoue A., Mosumotc T. High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region [J]. Materials Transactions, 1990,31(11): 929-934.
    
    23. Inoue A, Zhang T., Mosumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Materials Transactions, 1989, 30(12): 965-972.
    
    24. Inoue A., Kita K., Zhang T., et al. An amorphous La_(55)Al_(25)Ni_(20) alloy prepared by water quenching [J]. Materials Transactions, 1989, 30(9): 722-725.
    
    25. Inoue A., Yamaguche H., Zhang T., et al. AI-La-Cu amorphous alloys with a wide supercooled liquid region [J]. Materials Transactions, 1990, 31(2): 104-109.
    
    26. Turnbull D., Fisher J. C. Rate of nucleation in condensed systems [J]. Journal of Chemistry Physics, 1949,17(1): 71-73.
    
    27. Miracle D. B., Senkov O. N., Sanders W. S., et al. Structure-forming principles for amorphous metals [J]. Material Science and Engineering A, 2004, 375-377: 150-156.
    
    28. Senkov O. N., Scott J. M. Specific criteria for selection of alloy compositions??for bulk metallic glasses [J]. Scripta Materialia., 2004, 50(4): 449-452.
    
    29. Wang Y. M., Xu W. P., Qiang J. B., et al. The e/a criterion of Zr-based bulk metallic glasses [J]. Material Science and Engineering A, 2004, 375-377: 411-416.
    
    30. 郑采星,刘让苏,彭平.液态金属Ag_6Cu_4凝固过程中非晶转变的分子动 力学模拟[J].中国有色金属学报,2003,13(6):1333-1337.
    
    31. 卢志超,李德仁,周少雄.非晶纳米晶合金的国内外发展概况及应用展 望[J].新材料产业,2002,3,20-23.
    
    32. Yao K. F., Ruan R, Yang Y. Q., et al. Superductile bulk metallic glass [J]. Applied Physics Letters, 2006, 88(12): 122106.
    
    33. Liu Y. H., Wang G, Wang R. J., et al. Super plastic bulk metallic glasses at room temperature [J]. Science, 2007, 315(3): 1385-1388.
    
    34. Liebermann H. H. The dependence of the geometry of glassy alloy ribbons on the chill block melt-spinning process parameters [J]. Material Science and Engineering, 1980,43(3): 203-210.
    
    35. Kim Y. W, Lin H. M., Kelly T. R Amorphous solidification of pure metals in submicron spheres [J]. Acta Metallurgics 1989, 37(1): 247-255.
    
    36. Miller S. A., Murphy R. J. A gas-water atomization process for producing amorphous powders [J]. Scripta Metallurgica, 1979,13(8): 673-676.
    
    37. Haglwara M., Inoue A. In rapidly solidified alloys: progress, structure, properties, applications [M]. New York: 1993.
    
    38. Perepezko J. H., Smith J. S. Glass formation and crystallization in highly undercooled Te-Cu alloys [J]. Journal of Non-Crystalline Solids, 1981, 44(1): 65-83.
    
    39. Kui H. W., Greer A. L., Turnbull D. Formation of bulk metallic glass by fluxing [J]. Applied Physics Letters, 1984,45(6): 615-616.
    
    40. Drehman A. J., Turnbull D. Solidification behavior of undercooled Pd_(83)Si_(17) and Pd_(82)Si_(18) liquid droplets [J]. Scripta Metallurgica, 1981,15(5): 543-548.
    
    41. Leamy H. J., Dirks A. G. The microstructure of amorphous rare-earth/transition-metal thin films [J]. Journal of Physics D, 1977, 10(8): L95-L98.
    42. Watanabe T., Tanabe Y. Formation and morphology of Ni-B amorphous alloy deposited by electroless plating [J]. Material Science and Engineering, 1977, 23(2-3): 97-100.
    43. Brenner A, Couch D.E., Williams E K. Electrodeposition of alloys of phoshorus with nickel or cobalt [J]. Journal of Research of the National Bureau of Standards, 1950,44(1): 109-119.
    44. Tauc J., Abraham A., Zallen R., et al. Infrared absorption in amorphous germanium [J]. Journal of Non-Crystalline Solids, 1970, 4: 279-288.
    45. Yeh X. L., Samwer K., Johnson W. L. Formation of an amorphous metallic hydride by reaction of hydrogen with crystalline intermetallic compounds—A new method of synthesizing metallic glasses [J]. Applied Physics Letters, 1983,42(3): 242-243.
    46. Nastasi M., Lilienfeld D., Johnson H. H. Stability of metallic CsCl-structured alloys under ion irradiation [J]. Journal of Applied Physics, 1986, 59(12): 4011-4016.
    47. Lee K., Euh K., Nam D. H., et al. Wear resistance and thermal conductivity of Zr-base amorphous alloy/metal surface composites fabricated by high-energy electron beam irradiation [J]. Material Science and Engineering A, 2007,449-451: 937-940.
    48. Wagner R., Gerling R., Schimansky F. P. Ductility and swelling of neutron-irradiated amorphous Fe_(40)Ni_(40)B_(20) [J]. Journal of non-Crystalline Solids, 1984,61-62(2): 1015-1020.
    49. Hubler G. K., Singer I. L., Clayton C. R. Mechanical and chemical properties of tantalum-implanted steels [J]. Material Science and Engineering, 1985, 69(1): 203-210.
    50. Liu B. X., Johnson W. L., Nicolet M. A. Structural difference rule for amorphous alloy formation by ion mixing [J]. Applied Physics Letters, 1983, 42(1): 45-47.
    51. Schwarz R. B., Petrich R. R., Saw C. K. The synthesis of amorphous Ni-Ti alloy powders by mechanical alloying [J]. Journal of Non-Crystalline Solids, 1985, 76(2-3): 281-302.
    52. Koch C. C, Cavin O. B., McKamey C. G. Preparation of "amorphous" Ni_(60)Nb_(40) by mechanical alloying [J]. Applied Physics Letters, 1983, 43(11): 1017-1019.
    53. Schwarz R. B., Johnson W. L. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals [J]. Physics Review Letters, 1983, 51(5): 415-418.
    54. Bormann R. Thermodynamic and kinetic requirements for inverse melting [J]. Material Science and Engineering A, 1994,179-180(1): 31-35.
    
    55. Acquaviva S., Caricato A. P., D'Anna E., et al. Pulsed laser deposition of Co-and Fe-based amorphous magnetic films and multilayers [J]. Thin Solid Films, 2003,433(1-2): 252-258.
    56. Yue T. M, Su Y. P., Yang H. O. Laser cladding of Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5) amorphous alloy on magnesium [J]. Materials Letters, 2007, 61(1): 209-212.
    57. Lee K., Euh K., Lee S., et al. Wear and thermal properties of Zr-based amorphous surface alloyed materials fabricated by high-energy electron beam irradiation [J]. Journal of Alloys and Compounds, 2005, 400(1-2): 171-177.
    58. Chiriac H., Lupu N. Bulk amorphous (Fe,Co,Ni)_(70)(Zr,Nb,M)_(10)B_(20) (M=Ti,Ta or Mo) soft magnetic alloys [J]. Journal of Magnetic Materials, 2000, 215-216: 394-396.
    59. Poon S. J., Shiflet G. J., Guo F. Q., et al. Glass formability of ferrous- and aluminum-based structural metallic alloys [J]. Journal of Non-Crystalline Solids, 2003, 317(1-2): 1-9.
    60. Ponnambalam V., Poon S. J., Shiflet G. J., et al. Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys [J]. Applied Physics Letters, 2003, 83(6): 1131-1133.
    61. Sypie'n A., Kusi'nski J., Kusi'nski G. J., et al. TEM studies of the FeSiB amorphous alloy nanocrystallized by means of Nd:YAG-pulsed laser heating
    ??[J]. Materials Chemistry and Physics, 2003,81(2-3): 390-392.62. Inoue A., Shen B. L., Chang C.T. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe_(1-x)Co_x)_(0.75)B_(0.2)Si_(0.05)]_(96)Nb_4 system [J]. Acta Materialia 2004, 52(15): 4093-4099.
    
    63. Inoue A., Shen B. L. Soft Magnetic Bulk Glassy Fe-B-Si-Nb Alloys with High Saturation Magnetization above 1.5T [J]. Materials Transactions, 2002, 43(4): 766-769.
    
    64. Wang H R., Gao Y. L., Min G. H., et al. Highstability of Zr_2Ni nanocrystals in metallicZr-Cu-Ni glass [J]. Journal of Alloys and Compound, 2003, 349(1-2): 140-144.
    
    65. He D.W., Zhao Q., Wang W. H. wt al. Pressure-induced crystallization in a bulk amorphous Zr-based alloy [J]. Journal of Non-Crystalline Solids, 2002, 297(1): 84-90.
    
    66. 何国,边赞,陈国良.Zr_(52.5)Al_(10)Ni_(14.6)Cu_(17.9)Ti_5块体玻璃合金等温晶化与结 构转变[J].金属学报,1999,35(5):458-462.
    
    67. Busch R., Schneider S., Peker A., et al. Decomposition and primary crystallization in undercooled Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5) melts [J]. Applied Physics Letters, 1995,67(11): 1544-1546.
    
    68. Johnson W. L., Lu J., Demetriou M. D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids-a self consistent dynamic free volume model [J]. Intermetallics, 2002, 10(11-12): 1039-1046.
    
    69. Janlewing R., Koster U. Nucleation in crystallization of Zr-Cu-Ni-Al metallic glasses [J]. Material Science and Engineering A., 2001,304-306: 833-838.
    
    70. 魏恒斗,陈学定,王翠霞等.Ni_2Fe_2(Nb)_2Si_2B非晶合金的等温晶化与结构 转变[J].材料科学与工程学报,2006,24(2):263-266.
    
    71. Li Q., Zhang D. W, Lei T. Q., et al. Comparison of laser-clad and furnace-melted Ni-based alloy microstructures [J]. Surface and Coatings Technology, 2001,137(2-3): 122-135.
    
    72. Habazaki H., Ukai H., Izumiya K., et al. Corrosion behavior of amorphous??Ni-Cr-Nb-P-B bulk alloys in 6M HC1 solution [J]. Material Science and Engineering A, 2001, 318(1): 77-86.
    
    73. Kim Y. B., Park H. M., Jeung W. Y., et al. Vacuum hot pressing of gas-atomized Ni-Zr-Ti-Si-Sn amorphous powder [J]. Material Science and Engineering A., 2004, 368(1-2): 318-322.
    
    74. Zhang T., Inoue A. Ti-based amorphous alloys with a large supercooled liquid region [J]. Material Science and Engineering A., 2001, 304-306: 771-774.
    
    75. Xu D. H., Lohwongwatana B., Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series - Cu_(100-x)Zr_x (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu_(64)Zr_(36) glass [J]. Acta Materialia, 2004, 52(9): 2621-2624.
    
    76. Xing L.Q., Mukhopadhyay A., Buhroz W. E., et al. Improved Al-Y-Fe glass formation by microalloying with Ti [J]. Philosophical Magazine Letters, 2004, 84(5): 293-302.
    
    77. Inoue A., Nishiyama N. Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys [J]. Materials Science and Engineering A, 1997, 226-228: 401-405.
    
    78. Drehman A. J., Greer A. L., Turnbull D. Bulk formation of a metallic glass: Pd_(40)Ni_(40)P_(20) [J]. Applied Physics Letters, 1982,41(8): 716-717.
    
    79. Chiriac H., Lupu N. Magnetic properties of (Nd,Ce,Pr)-Fe-(Si,Al) bulk amorphous materials [J]. Journal of Magnetic Materials, 1999, 196-197: 235-237.
    
    80. Lu Z. P., Hu X., Li Y, et al. Glass forming ability of La-Al-Ni-Cu and Pd-Si-Cu bulk metallic glasses [J]. Material Science Engineering A, 2001, 304-306: 679-682.
    
    81. Fan G. J., Loser W., Roth S., et al. Glass-forming ability of RE-A1-TM alloys (RE=Sm, Y; TM=Fe, Co, Cu) [J]. Acta Materialia, 2000,48(15): 3823-3831.
    
    82. Guo F. Q., Poon S. J., Shiflet G. J. Metallic glass ingots based on yttrium [J]. Applied Physics Letters, 2003, 83(13): 2575-2577.
    
    83. Zhang B., Pan M.X., Zhao D. Q., et al. "Soft" bulk metallic glasses based on cerium [J]. Applied Physics Letters, 2004, 85(1): 61-63.
    
    84. Senkov O. N., Scott J. M. Formation and thermal stability of Ca-Mg-Zn and Ca-Mg-Zn-Cu bulk metallic glasses [J]. Material Letters, 2004, 58(7-8): 1375-1378.
    
    85. Nishiyama N., Amiya K., Inoue A. Bulk Metallic Glasses for Industrial Products [J]. Material Transactions, 2004,45(4): 1245-1250.
    
    86. Pang S. J., Zhang T., Asami K., et al. Bulk glassy Fe-Cr-Mo-C-B alloys with high corrosion resistance [J]. Corrosion Science, 2002,44(8): 1847-1856.
    
    87. Inoue A., Takeuchi A. Recent Progress in Bulk Glassy Alloys [J]. Material Transactions, 2002,43(8): 1892-1906.
    
    88. 向兴华,穆晓冬,李建三.Fe基非晶合金涂层的磨损与电化学腐蚀特征 [J].材料热处理学报,2003,24(4):59-62.
    
    89. Lu Z. P., Liu C. T., Porter W. D. Role of yttrium in glass formation of Fe-based bulk metallic glasses [J]. Applied Physics Letters, 2003, 83(13): 2581-2583.
    
    90. 甘章华,王敬丰,肖建中.块体非晶合金FeNiPBGa的制备与性能[J].金 属学报,2003,39(10):1085-1088.
    
    91. 刘伟德,支起铮,陈文智.新型铁基(FeCo)_(73.5)Cu_1 Nb_3(SiB)_(22.5)非晶合金晶 化过程的X射线研究[J].金属功能材料,2004,11(2):20.23.
    
    92. Shen J., Chen Q. J., Sun J. F., et al. Exceptionally high glass-forming ability of a FeCoCrMoCBY alloy [J]. Applied Physics Letters, 2005, 86(15): 151907.
    
    93. Chen W., Wang Y, Qiang J., et al. Bulk metallic glasses in the Zr-Al-Ni-Cu system [J]. Acta Materialia, 2003, 51(7): 1899-1907.
    
    94. Inoue A. High strength bulk amorphous alloys with low critical cooling rates [J]. Materials Transactions, 1995, 36(7): 866-875.
    
    95. Inoue A., Negishi T., Kimura H. M., et al. High Packing Density of Zr- and Pd-Based Bulk Amorphous Alloys [J]. Materials Transactions, 1998, 39(2): 318-321.
    
    96. Wang W. H., Wang R. J., Zhao D. Q., et al. Microstructural transformation in a Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) bulk metallic glass under high pressure [J]. Physical Review B, 2000, 62(11): 11292-11295.
    
    97. Geer A. L. Materials science-confusion by design [J]. Nature, 1993, 366(25): 303-304.
    
    98. Geyer U., Schneider S., Johnson W. L. Atomic diffusion in the supercooled liquid and glassy states of the Zr41.2Til3.8Cul2.5Nil0Be22.5 alloy [J]. Physical Review Letters, 1995,75(12): 2364-2367.
    
    99. Tang X. P., Busch R., Johnson W. L., et al. Slow atomic motion in Zr-Ti-Cu-Ni-Be metallic glasses studied by NMR [J]. Physical Review Letters, 1998, 81(24): 5358-5361.
    
    100. Tang, X. P., Ulrich G, Busch R., et al. Diffusion mechanisms in metallic supercooled liquids and glasses [J]. Nature, 1999,402(11): 160-162.
    
    101. 汪卫华,王文魁.新型多组元大块非晶合金材料的发现与研究进展[J]. 物理,1998,27(7):398-403.
    
    102. Masumoto T., Kimura H., Inoue A., et al. Structural stability of amorphous metals [J]. Materials Science and Engineering, 1976,23(2-3): 141-144.
    
    103. Gleiter H. Nanocrystalline materials [J]. Progress in Materials Science, 1989, 33(4): 223-315.
    
    104. Yoshizawa Y., Oguma S., Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. Journal of Applied Physics, 1988, 64(10): 6044-6046.
    
    105. Miller M., Grahl E., Mattern N., et al. Crystallization behaviour, structure and magnetic properties of nanocrystalline FeZrNbBCu-alloys [J]. Materials Science and Engineering A., 1997, 226-228: 565-568.
    
    106. 倪晓俊,卢志超,张亮等.Fe_(74)Cr_2Mo_2Sn_2P_(10)Si_4B_4C_2非晶合金的晶化过程 和硬度变化[J].金属功能材料,2005,12(4):1-3.
    
    107. 陈岁元,刘常升,付贵勤等.CO_2激光辐照Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9非晶合 金的微量晶化[J].中国激光,2003,30(11):1049-1052.
    
    108. 肖利,张可,华中等.硼含量对Fe-Zr-B-Nb非晶合金的晶化、形成能力和 磁性能的影响[J].金属学报,2005,41(2):203-208.
    
    109. Zhang S., Sun D., Fu Y. Q. Superhard Nanocomposite Coatings [J]. Journal of Materials Science & Technology, 2002,18(6): 485-491.
    
    110. 卢柯.非晶态合金向纳米晶体的相转变[J].金属学报,1994,30(1):1-21.
    
    111. 苏勇,陈翌庆,丁厚福等.Al_(87)Ni_(10)Zr_3纳米晶材料的形成及其晶化行为[J]. 矿冶工程,2002,22(1):98-100.
    
    112. 张红.Al-Ni-Y纳米非晶复合材料的制备及其显微组织[J].合肥工业大学 学报,2002,25(2):265-268.
    
    113. Graef G, Anderson K., Groza J., et al. Phase evolution in electrodeposited Ni-W-B alloy [J]. Materials Science and Engineering B, 1996, 41(2): 253-257.
    
    114. Brenier R., Mugnier J., Mirica E. XPS study of amorphous zirconium oxide films prepared by sol-gel [J]. Applied Surface Science, 1999, 143(1-4): 85-91.
    
    115. Lewis D. B., Marshall G W. Investigation into the structure of electrodeposited nickel-phosphorus alloy deposits [J]. Surface and Coatings Technology, 1996, 78(1-3): 150-156.
    
    116. Zhang S., Sun D., Fu Y.Q., et al. Recent advances of superhard nanocomposite coatings: a review [J]. Surface and Coatings Technology, 2003,167(2-3): 113-119.
    
    117. 李刚,王彦芳,王存山等.Zr-Al-Ni-Cu激光熔覆非晶复合涂层组织结构 [J].应用激光,2002,22(3):287-289.
    
    118. Tondu S., Schnick T., Pawlowski L., et al. Laser glazing of FeCr-TiC composite coatings [J]. Surface and Coatings Technology, 2000, 123(2-3): 247-251.
    
    119. Churchill R. J., Groger H. P., Glass J. M., et al. Current nondestructive evaluation of laser glazed metallic surfaces [J]. Review of Progress in Quantitative Nondestructive Evaluation, 1986, 5B: 1525-1531.
    
    120. 黄须强,吕朝阳.Fe-Ni-Si-B-V激光表面快速熔凝非晶化[J].焊接学报, 2000,21(1):64-67.
    
    121. Liang G. Y., Su J. Y. The microstructure and tribological characteristics of laser-clad Ni-Cr-Al coatings on aluminum alloy [J]. Materials Science and Engineering A, 2000,290(1-2): 207-212.
    
    122. 钟敏霖,刘文今,任家烈.合金表面连续激光非晶化的研究和进展[J].机 械工程材料,1996,5(20):19-23.
    
    123. Manna I., Majumdar J. D., Chandra B. R., et al. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel [J]. Surface and Coatings Technology, 2006,201(1-2): 434-440.
    
    124. Yoshioka H., Asami K., Kawashima A., et al. Laser-processed corrosion-resistant amorphous Ni-Cr-P-B surface alloys on a mild steel [J]. Corrosion Science, 1987, 27(9): 981-995.
    
    125. 王茂才,吴维,冯晓臣等.激光熔覆PdCuSi合金非晶涂层的研究[J].中 国激光,1995,22(3):228-232.
    
    126. 钟敏霖,刘文今,任家烈等.Fe-C-Si-B合金连续激光非晶化层的组织构 成研究[J].中国激光,1997,24(9):847-852.
    
    127. Li. X. Q., Cheng Z. G, Liang G Y, et al. Semi-quantitative study of amorphous structures in laser cladding of ZL111 aluminum alloy [C]. Proceedings of SPIE, 2000, 3888: 734-741.
    
    128. 李强,雷廷权.激光熔覆Ni-Cr-B-Cr-C合金涂层显微组织的透射电镜研 究[J].中国激光,1999,26(4):372-373.
    
    129. Wang Y. F., Li G, Wang C. S., et al. Microstructure and properties of laser clad Zr-based alloy coatings on Ti substrates [J]. Surface and Coatings Technology, 2004, 176(3): 284-289.
    
    130.梁工英,李成劳,苏俊义.AI-Si合金等离子涂层Ni-Cr-B-Si的激光重熔[J]. 金属学报,1997,33(3):315-319.
    
    131. Wang T. T., Liang G Y. Formation and crystallization of amorphous structure in the laser-cladding plasma-sprayed coating of Al-Si alloy [J]. Materials Characterization, 1997, 38(1): 85-89.
    
    132. 武晓雷,洪友士.激光熔覆铁基大厚度非晶合金表层的研究[J].材料热 处理学报,2001,22(1):51-54.
    
    133. Inoue A., Nishiyama N., Kimura H. Preparation and thermal stability of bulk amorphous Pd_(40)Cu_(30)Ni_(10)P_(20) alloy cylinder of 72 mm in diameter [J]. Material Transactions, 1997,38(2): 179-183.
    
    134. Wang W. H., Wei Q., Bai H. Y. Enhanced thermal stability and microhardness in Zr-T-Cu-Ni-Be bulk amorphous alloy by carbon addition [J]. Applied Physics Letters, 1997, 71(1): 58-60.
    
    135. Ozaki K., Kobayashi K., Nishio T. Effect of boron or carbon on amorphous formation of La_(55)Al_(25)Ni_(20) alloy [J]. Material Transactions, 1998, 39(4): 499-503.
    
    136. Hu Y., Pan M.X., Liu L., et al. Synthesis of Fe-based bulk metallic glasses with low purity materials by multi-metalloids addition [J]. Materials Letters, 2003, 57(18): 2698-2701.
    
    137. Yao B., Si L., Tan H., et al. Effects of high boron content on crystallization, forming ability and magnetic properties of amorphous Fe_(91-x)Zr_5B_xNb_4 alloy [J]. Material Letters, 2003, 332(1-3): 43-52.
    
    138. Haein C. Y, Xu D., Johnson W. L. Ni-based bulk metallic glass formation in the Ni-Nb-Sn and Ni-Nb-Sn-X (X=B,Fe,Cu) alloy systems [J]. Applied Physics Letters, 2003, 82(7): 1030-1032.
    
    139. Wang W. H., Wen P., Bian Z., et al. Role of addition in formation and properties of Zr-based bulk metallic glasses [J]. Intermetallics, 2002, 10(11-12): 1249-1257.
    
    140. Ma C, Soejima H., Ishihara S., et al. New Ti-based bulk glassy alloys with high glass-forming ability and superior mechanical properties [J]. Material Transactions, 2004,45(11): 3223-3227.
    
    141. Shen B. L., Akiba M., Inoue A. Effects of Si and Mo additions on glass-forming in FeGaPCB bulk glassy alloys with high saturation magnetization [J]. Physics Review B, 2006, 73(10): 104204.
    
    142. Haein C. Y, Busch R., Johnson W. L. The effect of silicon on the glass forming ability of the Cu_(47)Ti_(34)Zr_(11)Ni_8 bulk metallic glass forming alloy during processing of composites [J]. Journal of Applied Physics, 1998, 83(12): 7993-7997.
    143. Yi S., Park T. G, Kim D. H. Ni-based bulk amorphous alloys in the Ni-Ti-Zr-(Si,Sn) system [J]. Journal of Materials Research, 2000, 15(11): 2425-2430.
    144. Bae D. H., Lee M. H., Kim D. H. Plasticity in Ni_(59)Zr_(20)Ti_(16)Si_2Sn_3 metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders [J]. Applied Physics Letters, 2003, 83(12): 2312-2314.
    145. Zhang Z., Zhao D. Q., Wang W. H. Microstructure- and property-controllable NdAlNiCuFe alloys by varying Fe content [J]. Journal of Materials Research, 2005, 20(2): 314-319.
    146. Wang Y. T., Pang Z.Y., Wang R. J., et al. Doping-induced formation of bulk nanocrystalline alloy from metallic glass with controllable microstructure and properties [J]. Journal of Non-Crystalline Solids, 2006, 352(5): 444-449.
    147. Zhao D. Q., Zhang Y, Pan M. X., et al. The effects of iron addition on the glass-forming ability and properties of Zr-Ti-Cu-Ni-Be-Fe bulk metallic glass [J]. Material Transactions, 2000,41(11): 1427-1431.
    148. Zhang B., Zhao D.Q., Pan M. X. Amorphous metallic plastic [J]. Physics Review Letters, 2005, 94(20): 205502.
    149. Zhang T, Yamamoto T, Inoue A. Formation, thermal stability and mechanical properties of (Cu_(0.6)Zr_(0.3)Ti_(0.1))_(100-x)M_x (M=Fe, Co, Ni) bulk glassy alloys [J]. Material Transactions, 2002,43(12): 3222-3226.
    150. Guo F. Q., Wang H. J., Poon S. J., et al. Ductile titanium-based glassy alloy ingots [J]. Applied Physics Letters, 2005, 86(9): 091907.
    151. Wei B. C., Zhang Y, Zhuang Y. X., et al. Nd_(65)Al_(10)Fe_(25-x)CO_x (x=0, 5,10) bulk metallic glasses with wide supercooled liquid regions [J]. Journal of Applied Physics, 2001, 89(6): 3529-3531.
    152. Qin C. L., Asami K., Zhang T, et al. Effects of additional elements on the glass formation and corrosion behavior of bulk glassy Cu-Hf-Ti alloys [J].
    ??Material Transactions, 2003,44(5): 1042-1045.
    
    153. Xia J. H., Qiang J., Wang Y. M, et al. Ternary bulk metallic glasses formed by minor alloying of Cu_8Zr_5 icosahedron [J]. Applied Physics Letters, 2006, 88(10): 101907.
    
    154. Inoue A., Shibata T, Zhang T. Effect of additional elements on glass transition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys [J]. Material Transactions, 1995,36(12): 1420-1426.
    
    155. Inoue A., Shen B. Formation and soft magnetic properties of Co-Fe-Si-B-Nb bulk glassy alloys [J]. Material Transactions, 2002,43(5): 1230-1234.
    
    156. Mitrovic N., Roth S., Eckert J. Kinetics of the glass-transition and crystallization process of Fe_(72-x)Nb_xAl_5Ga_2P_(11)C_6B_4(x=0, 2) metallic glasses [J]. Applied Physics Letters, 2001, 78: 2145-2147.
    
    157. Park E.S., Kim D.H., Ohkubo T. Enhancement of glass forming ability and plasticity by addition of Nb in Cu-Ti-Zr-Ni-Si bulk metallic glasses [J]. Journal of Non-Crystalline Solids, 2005, 351(14-15): 1232-1238.
    
    158. 邢大伟,孙剑飞,沈军等.Ti含量对(Zr_(0.59)Cu_(0.18)Ni_(0.13)Al_(0.10))_(100-x)Ti_x合金 非晶形成能力的影响[J].金属学报,2004,40(4):416-420.
    
    159. Zhang Y., Pan M. X., Zhao D. Q., et al. Formation of Zr-Based bulk metallic glasses from low purity of materials by yttrium addition [J]. Material Transactions, 2000,41(11): 1410-1414.
    
    160. Xu D. H., Duan G, Johnson W. L. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper [J]. Physics Review Letters, 2004, 92(24): 245504.
    
    161. Kttndig A. A., Lepori D., Perry A. J., et al. Influence of low oxygen contents and alloy refinement on the glass forming ability of Zr_(52.5)Cu_(17.9)Ni_(14.6)Al_(10)Ti_5 [J]. Material Transactions, 2002,43(12): 3206-3210.
    
    162. Xi X. K., Wang R.J., Zhao D. Q., et al. Glass-forming Mg-Cu-RE (RE = Gd, Pr, Nd, Tb, Y, and Dy) alloys with strong oxygen resistance inmanufacturability [J]. Journal of Non-Crystalline Solids, 2004, 344(3): 105-109.
    
    163. Yu P., Bai H. Y., Wang W. H., et al. Superior glass-forming ability of CuZr alloys from minor additions [J]. Journal of Materials Research, 2006, 21(12): 1674-1676.
    
    164. Itoi T., Inoue A. Thermal stability and soft magnetic properties of Co-Fe-M-B (M=Nb, Zr) amorphous alloys with large supercooled liquid region [J]. M Material Transactions, 2000,41(9): 1256-1262.
    
    165. Zhang Y, Zhao D.Q., Pan M. X., et al. Glass forming properties of Zr-based bulk metallic alloys [J]. Journal of Non-Crystalline Solids, 2003, 315(1-2): 206-210.
    
    166. Liu C. T., Chisholm M. R, Miller M. K. Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy [J]. Intermetallics, 2002, 10(11-12): 1105-1112.
    
    167. Inoue A., Fan C, Takenchi A. High-strength nanocrystalline alloys in a Zr-based system containing compound and glass phases [J]. Journal of Non-Crystalline Solids, 1999,250-252: 724-728.
    
    168. 胡木林,谢长生,王爱华.激光熔覆材料相容性的研究进展[J].金属热处 理,2001,26(1):1-7.
    
    169. 陈学定.表面涂层技术[M].北京:机械工业出版社,1994.
    
    170. 李恒德,肖纪美.材料表面和界面[M].北京:清华大学出版社,1990.
    
    171. 宋武林,朱蓓蒂,曾晓雁等.Ni含量对Fe-Cr-Ni合金激光熔覆层性能及开 裂敏感性的影响[J].金属热处理学报,1996,17(1):62-64.
    
    172. Lu Z. P., Liu C. T. Role of minor alloying additions in formation of bulk metallic glasses: A Review [J]. Journal of Materials Science, 2004, 39(12): 3965-3974.
    
    173. 赵文珍.自熔合金覆层工艺研究[J].机械工程材料,1996,20(4):13-15.
    
    174. Takeuchi A., Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Material Transactions, 2005,46(12): 2817-2829.
    
    175. 漆璨,戎泳华.X射线衍射与电子显微分析[M].上海:上海交通大学出 版社,1992.
    
    176. 李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990.
    
    177. 范雄.X射线金属学[M].北京:机械工业出版社,1988.
    
    178. 李力钧.现代激光加工及其装备[M].北京:北京理工大学出版社,1993.
    
    179. 钟敏霖,刘文今,姚可夫等.Fe-C-Si-B合金连续激光非晶化及非晶形成 条件的研究[J].金属学报,1997,33(4):413-419.
    
    180. 郑启光,辜建辉,王涛等.激光上釉非晶层的组织结构研究[J].中国激 光,1993,20(10):773-777.
    
    181. 闫敏禾,钟敏霖.高功率激光加工及其应用[M].天津:天津科学技术出 版社,1992.
    
    182.Luborsky著,何成等译.非晶态金属合金[M].北京:冶金工业出版社, 1989.
    
    183. Anthony T. R., Cline H. E. Surface rippling induced by surface-tension gradients during laser surface melting and alloying [J]. Journal of Applied Physics, 1977,48(9): 3888-3894.
    
    184. Morris D. G Glass-forming conditions during laser surface melting [J]. aterials Science and Engineering, 1988,97: 177-180.
    
    185. Hornbogen E., Staniek S. The origin of the three-zone structure at the surface of laser melted eutectic Fe-B-Ca alloys [J]. Zeitschrift Fuer Metallkunde, 1988, 79(6): 375-380.
    
    186. Wang W. H., Wang R. J., Fan G J., et al. Formation and properties of Zr-(Ti, Nb)-Cu-Ni-Al bulk metallic glasses [J]. Material Transactions, 2001, 42(4): 587-591.
    
    187. Luo C. Y., Zhao Y. H., Xi X. K., et al. Making amorphous steel in air by rare earth microalloying [J]. Journal of Non-Crystalline Solids, 2006, 352(2): 185-188.
    
    188. Zhao Y. H., Luo C. Y, Xi X. K., et al. Synthesis and elastic properties of amorphous steels with high Fe content [J]. Intermetallics, 2006, 14(8-9): 1107-1111.
    
    189. 戴道生,韩汝琪等.非晶态物理[M].北京:电子工业出版社,1989.
    
    190. Spaepen F., Turmbull D. Rapid quenched metals Ⅱ [M]. Cambridge: MIT Press, 1976.
    
    191. 郑子樵,李红英.稀土功能材料[M].北京:化学工业出版社,2003.
    
    192. 刘光华.稀土固体材料学[M].北京:机械工业出版社,1997.
    
    193. Wei B. C, Wang W. H., Pan M. X., et al. Domain structure of a Nd_(60)Al_(10)Fe_(20)Co_(10) bulk metallic glass [J]. Physics Review B, 2001. 64(1): 012406.
    
    194. Zhang B., Wang R. J., Zhao D. Q., et al. Properties of Ce-based bulk metallic glass-forming alloys [J]. Physics Review B, 2004, 70(22): 224208.
    
    195. Zhao Z. R, Zhang Z., Wen P., et al. A highly glass-forming alloy with low glass transition temperature [J]. Applied Physics Letters, 2003, 82(26): 4699-4701.
    
    196. Xi X. K., Zhao D. Q., Pan M. X., et al. On the criteria of bulk metallic glass formation in MgCu-based alloys [J]. Intermetallics, 2005,13(6): 638-641.
    
    197. Gleiter H. Nanocrystalline materials [J]. Progress in Materials Science, 1989, 33(4): 223-315.
    
    198. 周仲荣.复合微动磨损[M].上海:上海交通大学出版社,2004.
    
    199. 温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    
    200. 高彩桥.摩擦学原理[M].哈尔滨:哈尔滨工业大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700