用户名: 密码: 验证码:
AgY吸附剂的制备及其吸附脱硫性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了AgY吸附剂吸附脱硫技术,考察了不同因素对脱硫效果的影响,找出了适宜的脱硫条件,并考察了含氮化合物和芳香族化合物的竞争吸附以及吸附脱硫过程的动力学模型进行了初步的探索。
     在液相离子交换法制备的AgYIE吸附剂吸附脱硫实验中,以噻吩/石油醚体系为模型化合物,考察了各因素对脱硫效果的影响,结果表明,⑴离子交换液浓度为0.25 mol/L、交换液用量为20 mL、离子交换时间为24 h、焙烧温度为500℃、吸附温度40℃、吸附时间30 min、吸附剂质量/原料油体积(g/mL)为1:40时,脱硫效果最好,脱硫率为93.81%;⑵40℃时,静态平衡吸附硫容为0.8523 mmol/g;利用固定床进行动态吸附,在环境温度压力下,流速为0.5 mL/min时,测得饱和吸附硫容为1.2188 mmol/g;⑶噻吩在AgYIE上的吸附动力学符合准二级速率方程,平衡吸附容量q2=181.83 mg/g,初始吸附速率k2=0.015 g/(mg·min);⑷含氮化合物或芳香族化合物竞争吸附对模拟油的脱硫率有很大的影响并且氮化物的影响比芳香烃化合物的影响更大。
     在微波辅助液相离子交换法制备的AgYMW吸附剂吸附脱硫实验中,以噻吩/石油醚体系为模型化合物,考察了各因素对脱硫效果的影响,结果表明,⑴离子交换液浓度为0.2 mol/L、微波功率为240 W、微波照射时间为20 min、焙烧温度为500℃、吸附温度40℃、吸附时间30 min、吸附剂质量/原料油体积(g/mL)为1:40时,脱硫效果最好,脱硫率为90.28%;⑵40℃时,静态平衡吸附硫容为0.7970 mmol/g;利用固定床进行动态吸附,在环境温度压力下流速为0.5 mL/min时测得饱和吸附硫容为1.0938 mmol/g;⑶噻吩在AgYMW上的吸附动力学符合准二级速率方程,吸附剂的平衡吸附容量q2=170.03 mg/g和初始吸附速率k2=0.018 g/(mg·min);⑷含氮化合物或芳香族化合物竞争吸附对模拟油的脱硫率有很大的影响并且氮化物的影响比芳香烃化合物的影响更大。
The adsorptive desulfurization technology of AgY zeolite were researched in this article. The effects of different factors on the desulfurization were studied and proper desulfurization conditions were found out. At the same time the competition adsorptive of nitrogen compounds and aromatic compound were studied and the adsorptive desulfurization process kinetic model had a prelinibary exploration.
     The experiment of adsorptive desulfurization, AgYIE zeolite was prepared by ion exchange method. The effects of different factors on desulfurization with the thiophene/petroleumether model oil as feedstock were investigated. The result shows that the AgY zeolite with AgNO3 solution concentration of 0.25 mol/L and dosage of 20 mL, ion exchange time of 24 h and calcination temperature of 500℃exhibited the best desulfurization performance. Under the conditions of thiophene/petroleumether model oil 10 mL, adsorbents 0.2 g, adsorptive temperature 40℃, adsorptive time 30 min, the highest desulfurization rate is 93.81% and the static saturated equilibrium sulfur adsorption capacity was 0.8523 mmol/g. The dynamic saturated adsorption capacities of AgY zeolite was 1.2188 mmol/g at ambient temperature and pressure. Kinetics of adsorptive desulfurization over AgY zeolites meet the pesudo-second order model with the equilibrium adsorption capacity q2=181.83 mg/g and the initial adsorption rate k2=0.015 g/(mg·min). The competition absorptive of nitrogen compounds and aromatic compound have greet influence on absorptive desulfurization and nitrogen compounds has more influence than aromatic compound.
     The experiment of adsorptive desulfurization, AgYMW zeolite was prepared by microwave assist ion exchange method. The effects of different factors on desulfurization with the thiophene/petroleumether model oil as feedstock were investigated. The result shows that the AgY zeolite with AgNO3 solution concentration of 0.2 mol/L, microwave power of 240 W, microwave irradiation time of 20 min as well as calcined at 500℃was found to be optimal. Under the conditions of thiophene/petroleumether model oil 10 ml, adsorbents 0.2 g, adsorptive temperature 40℃, adsorptive time 30 min, the highest desulfurization rate is 90.28% and the static saturated equilibrium sulfur adsorption capacity was 0.7970 mmol/g. The dynamic saturated adsorption capacities of AgY zeolite was 1.0938 mmol/g at ambient temperature and pressure. Kinetics of adsorptive desulfurization over AgY zeolites meet the pesudo-second order model with the equilibrium adsorption capacity q2=170.03 mg/g and the initial adsorption rate k2=0.018 g/(mg·min). The competition absorptive of nitrogen compounds and aromatic compound have greet influence on absorptive desulfurization and nitrogen compounds has more influence than aromatic compound.
引文
[1]柴永明,安高军,柳云骐,等.过渡金属硫化物催化剂催化加氢作用机理[J].化学进展, 2007, 19(2-3): 234-242.
    [2]宋立民,李伟,张明慧,等. Ni2P/SiO2-Al2O3催化剂的制备、表征及其对4,6-二甲基二苯并噻吩加氢脱硫反应的催化性能[J].催化学报, 2007, 28(2): 143-147.
    [3]唐明兴,李学宽,吕占军,等.苯中硫在Ni/ZnO催化剂上加氢吸附脱除的研究[J].燃料化学学报, 2009, 37(6): 707-712.
    [4]霍全,窦涛,巩雁军,等.纳米晶簇多级孔道L沸石的合成及其脱硫性能[J].物理化学学报, 2010, 26(2): 378-384.
    [5]郭秀燕,李术元,刘峰,等.金属硼化物上噻吩类型硫的原位还原深度脱硫研究[J].高校化学工程学报, 2007, 21(6): 942-947.
    [6]董亮,季生福,吴平易,等. Ni2P/SiO2/堇青石整体式催化剂的制备及加氢脱硫性能[J].无机化学学报, 2009, 25(9): 1651-1656.
    [7]于建忠,张远征,李胜昌,等. CDOS催化裂化汽油选择加氢脱硫技术的首次工业应用[J].现代化工, 2009, 29(11): 65-67.
    [8]任南琪,王爱杰,李建政,等.硫化物氧化及新工艺[J].哈尔滨工业大学学报, 2003, 35(3): 265-268.
    [9]张全,佟明友,马挺,等.生物脱硫技术用于清洁燃料生产的初步研究[J].环境污染治理技术与设备, 2006, 7(9): 115-120.
    [10]沈齐英,赵锁奇,李进平.烟曲霉脱除油品中有机硫的实验研究[J].现代化工, 2009, 29(2): 42-45.
    [11]魏玉霞,肖宝清,闫海,等.二苯并噻吩脱硫微生物菌种的筛选与活性[J].中国环境科学, 2006, 26(3): 311-314.
    [12]赵会军,刘凯,李俊玲.生物法应用于脱除硫化氢的实验研究[J].西南石油大学学报(自然科学版), 2010, 32(1): 125-129.
    [13]侯影飞,孔瑛,杨金荣,等.利用传质助剂提高柴油生物脱硫效率[J].石油学报(石油加工), 2006, 22(4): 34-38.
    [14]郭晓野,戴洪义,闫海瑞,等. FCC汽油在钾改性的MCM-22/Al2O3分子筛上的烷基化脱硫反应[J].大连工业大学学报, 2010, 29(1): 46-50.
    [15]张泽凯,蒋晖,刘盛林,等.汽油烷基化脱硫反应中噻吩及其衍生物的烷基化性能[J].催化学报, 2006, 27(4): 309-313.
    [16]张繁军,韩冬云,曹祖宾,等.模拟轻质油品烷基化沉淀法脱硫[J].石油学报(石油加工), 2009, 25(4): 596-599.
    [17]罗国华,徐新,单希林,等.催化噻吩类硫化物与烯烃烷基化硫转移反应的固体酸催化剂的失活机理[J].催化学报, 2004, 25(8): 648-652.
    [18]姜蕾,张占柱,毛俊义,等.采用改性磺酸树脂催化剂的催化裂化汽油的烷基化脱硫[J].石油学报(石油加工), 2006, 22(1): 22-26.
    [19]赵延飞,晏乃强,吴旦,等.石油的非加氢脱硫技术研究进展[J].石油与天然气化工, 2004, 33(3): 174-178.
    [20]张芳,张瑞驰,谢朝钢.催化裂化汽油常规脱硫方法的研究[J].石油与天然气化工, 2008, 37(1): 27-30.
    [21]杨向平,张成华.柴油水蒸气催化脱硫精制的动力学研究[J].中国石油大学学报(自然科学版), 2005, 29(4): 102-106.
    [22]刘荣坤,孔瑛,卢福伟,等. FCC汽油的膜分离法脱硫[J].石油学报(石油加工), 2009, 25(4): 472-476.
    [23]龚彦文,程雪妮,姚安梅.中空纤维膜接触器脱除催化裂化汽油中硫醇的研究[J].现代化工, 2009, 29(2): 75-79.
    [24]李春义,袁起民,庞新梅,等.催化裂化USY/ZnO/Al2O3脱硫添加剂的高温水热失活[J].催化学报, 2003, 24(6): 457-464.
    [25]唐雪梅,辛宝平,赵博,等.生物还原-化学沉淀法自烟气中的SO2制备ZnS[J].化工环保, 2006, 26(3): 165-168.
    [26]宋鹏俊,张影,闫锋,等.焦化柴油氧化萃取脱硫工艺[J].石化技术与应用, 2009, 27(6): 529-532.
    [27]徐亚荣,沈本贤,徐新良,等.磷钨酸/H2O2对富芳汽油氧化萃取脱硫性能的研究[J].化工科技, 2009, 17(6): 12-16.
    [28]蒋博龙,常凯,李海燕,等.双氧水催化氧化-萃取法戊烷超深度脱硫技术[J].化学通报, 2010, 73(7): 640-644.
    [29]王军民,房少华,廖启玲,等.催化裂化汽油溶剂萃取脱硫工艺的研究[J].炼油设计, 2000, 30(10): 32-34.
    [30]王磊,沈本贤.催化裂化汽油中乙腈萃取脱硫的研究[J].华东理工大学学报(自然科学版), 2008, 34(1): 36-39.
    [31]张娇静,柳艳修,张文超.环戊烷萃取精馏脱硫实验动态研究[J].化工进展, 2010, 29(1): 173-177.
    [32]任杰,胡小兰.催化汽油氧化及萃取脱硫的反应条件研究[J].现代化工, 2009, 29增刊(1): 80-82.
    [33]张晓飞,徐新良,徐亚荣,等. FCC汽油轻芳烃组分氧化萃取脱硫工艺研究[J].石油炼制与化工, 2009, 40(4): 47-51.
    [34]程时富,刘月明,高金宝,等. Ti-MWW催化氧化脱除轻油中苯并噻吩和二苯并噻吩[J].催化学报, 2006, 27(7): 547-549.
    [35]陈兰菊,赵地顺,郭绍辉.改性氧化铝负载氧化物催化氧化噻吩的脱硫研究[J].化学学报, 2007, 65(16): 1718-1722.
    [36]王云芳,尹风利,史德清,等.车用燃料油吸附法深度脱硫技术进展[J].石油化工,2006, 35(1): 94-99.
    [37] Jung Geun Park, Chang Hyun Ko, Kwang Bok Yi, et al. Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica [J]. Applied Catalysis B: Environmental, 2008, 81(3-4): 244-250.
    [38] I. V. Babich, J. A. Moulijn. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review[J]. Fuel, 2003, 82(6): 607-631.
    [39] Gupta R P,GangWal S K,Jain S C. Zinc tianate sorbents [P]. US5714431, 1998-2-3.
    [40] Granesh P.Khare, Donald R.Engelbert, Bryan w.cass, et al. Transport desulfurization Process Utilizing a Sulfur Sorbent that is both Fluidizable and Circulatable and a Method of Making such Sulfur Sorbent [P]. US: 5914292,1999-6-22.
    [41]单佳慧,刘晓勤,岳军,等.吸附法深度脱除燃料油中硫化物的研究进展[J].化工进展, 2007, 26(5): 651-656.
    [42] Hongguo Wang, Lijuan Song, Heng Jiang, et al. Effects of olefin on adsorptive desulfurization on gasoline over Ce(Ⅳ)Y zeolites[J]. Fuel Processing Technology, 2009, 90(6): 835-838.
    [43]王洪国,姜恒,徐静,等.苯和1-辛烯对Ce(IV)Y分子筛选择性吸附脱硫的影响[J].物理化学学报, 2008, 24(9): 1714-1718.
    [44] S. Velu, Xiaoliang Ma, Chunshan Song. Selective Adsorption for Removing Sulfur from Jet Fule over Zeolite-Based Adsorbents[J]. Ind. Eng. Chem. Res. 2003, 42(21): 5293-5304.
    [45] Liu Bingsi, Xu Danfeng, Wu Zuoxiang. Preparation of a Cu-MCM-41 adsorbent and its desulfurization performance for diesel fuel[J]. Chinese Journal of Catalysis, 2006, 27(5): 372-374.
    [46]闫武敏,曾勇平,居沈贵.载金属离子的13X分子筛对噻吩的吸附性能研究[J].化学工程, 2006, 34(12): 1-4.
    [47]闫武敏,曾勇平,居沈贵.负载Ag+的13X分子筛对乙硫醇和噻吩的吸附性能[J].石油化工, 2006, 35(4): 310-313.
    [48] Xiaojuan Li, Xingwang Zhang, Lecheng Lei. Preparation of CuNaY zeolites with microwave irradiation and their application for removing thiophene from model fuel [J]. Separation and Purification Technology, 2009, 64(3): 326-331..
    [49] Yanjun Gong, Tao Dou, Shanjiao Kang et al. Deep desulfurization of gasoline using ion-exchange zeolites: Cu(Ⅰ)-and Ag(Ⅰ) -beta[J]. Fuel Processing Technology, 2009, 90(1): 122-129.
    [50]冯辉,曾勇平,居沈贵.载铜5A分子筛在汽油模拟体系中脱硫性能的研究燃[J].料化学学报, 2006, 34(1): 117-119.
    [51]薛宁,居沈贵.改性ZSM-5分子筛膜对二元噻吩类硫化物分离性能[J].化工进展, 2010, 29(3): 444-448.
    [52]杨永兴,张玉良,王璐,等. Ni/ZnO吸附剂上溶剂油的超深度吸附脱硫[J].石油化工, 2008, 37(3): 243-246.
    [53]董群,孙征,王德秋,等.金属氧化物吸附剂深度脱硫性能研究[J].化学工程, 2010,38(3): 10-13.
    [54] Ankur Srivastav, Vimal Chandra Srivastava. Adsorptive desulfurization by activated alumina[J]. Journal of Hazardous Materials, 2009, 170(2-3): 1133–1140.
    [55] Jong Wook Bae, Suk-Hwan Kang, G. Murali Dhar, et al. Effect of Al2O3 content on the adsorptive properties of Cu/ZnO/Al2O3 for removal of odorant sulfur compounds[J]. International Journal of Hydrogen Energy, 2009, 34(20): 8733-8740.
    [56]易成高,宫敬,马晓芳,等.磁性γ-Al2O3固载BMIMPF6离子液体吸附剂的吸附脱硫选择性[J],石油学报(石油加工), 2009, 25(1): 48-52.
    [57]崔立勇. S-Zorb技术生产低硫汽油,低硫柴油[J].山东化工, 2004, 33(4): 37-40.
    [58] V. Selvavathi, V. Chidambaram, A. Meenakshisundaram et al. Adsorptive desulfurization of diesel on activated carbon and nickel supported systems[J]. Catalysis Today, 2009, 141(1-2): 99-102.
    [59] Anning Zhou, Xiaoliang Ma, Chunshan Song. Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel[J]. Applied Catalysis B: Environmental, 2009, 87(3-4): 190-199.
    [60] Yahia A. Ahlhamed, Hisham S. Bamufleh. Sulfur removal from model diesel fuel using granular activated carbon from dates’stones activated by ZnCl2 [J]. Fuel, 2009, 88(1): 87-94.
    [61] Wang qin, Liang xiao yi, Zhang rui, et al. Preparation of polystyrene-based activated carbon spheres and their adsorption of dibenzothiophene[J]. New Carbon Materials, 2009, 24(1): 55-60.
    [62]唐晓东,李林,曾雪玲,等.汽油活性炭基脱硫吸附剂的制备与评价[J].燃料化学学报, 2009, 37(5): 629-634.
    [63]查庆芳,高南星,李兆丰,等.石油焦系活性炭的吸附脱硫[J].燃料化学学报, 2007, 35(2):192-197
    [64]陈晓萍,陈爱平,刘伟,等.交联粘土用于催化裂化汽油吸附脱硫[J].机械工程材料, 2005, 29(8): 62-64.
    [65]赵少云,陈爱平,刘伟,等.纳米SiO2颗粒组装改性蒙脱土汽油脱硫剂[J].无机材料学报, 2006, 21(4): 953-957.
    [66] Nobuhiro Iwasa, Takeshi Kubota, Kyoko K. Bando et al. Hydrodesulfurization of thiophenic compounds over synthetic smectite-type clays[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2-3): 503-507.
    [67]何艳,陈爱平,张颖,等.多孔柱撑粘土及其汽油同步脱硫脱氮性能[J].过程工程学报, 2008, 8(3): 484-488.
    [68]王琪莹,刘自力,邹汉波,等.负载型层柱黏土对模拟柴油中二苯并噻吩选择吸附性能的研究[J].现代化工, 2009, 29(5): 40-42.
    [69]王清清,吴素芳,王璐璐. Ni离子改性分子筛模拟柴油吸附脱硫的性能与机理[J].高校化学工程学报, 2008, 22(6): 1049-1055.
    [70]段林海,孟秀红,施岩,等.不同硫化物在改性Y分子筛上的选择性吸附性能及机理[J].石油学报(石油加工), 2009,增刊: 71-76.
    [71]周丹红,王玉清,贺宁,等. Cu(Ⅰ),Ag(Ⅰ) /分子筛化学吸附脱硫的π-络合机理[J].物理化学学报, 2006, 22(5): 542-547.
    [72]范闽光,方金龙,周龙昌,等. CuHY分子筛中铜离子的分布与吸附脱硫性能[J].高等学校化学学报, 2008, 29(9): 1834-1840.
    [73] Hao Chen, Yuhe Wang, Frances H. Yang, et al. Desulfurization of high-sulfur jet fuel by mesoporousπ-complexation adsorbents[J]. Chemical Engineering Science, 2009, 64(24): 5240-5246.
    [74] Arturo J. Hernandez-Maldonado, Stephen D. Stamatis, Ralph T. Yang. New Sorbents for Desulfurization of Diesel Fuels viaπComplexation: Layered Beds and Regeneration[J]. Ind. Eng. Chem. Res, 2004, 43(3): 769-776.
    [75] S. Velu, Xiaoliang Ma, Chunshan Song. Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-Based Adsorbents[J]. Ind. Eng. Chem. Res., 2003, 42(21): 5293-5304.
    [76] Kim H J, Ma X L, Zhou A N, et al. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism[J]. Catalysis Today, 2006, 11(1-2): 74-83.
    [77]杨玉辉,刘民,宋春山,等.改性Y分子筛的吸附脱硫性能[J].石油学报(石油加工), 2008, 24(4): 383-387.
    [78] D. Richardeau, G. Joly, C. Canaff, et al. Adsorption and reaction over HFAU zeolites of thiophene in liquid hydrocarbon solutions[J]. Applied Catalysis A: General, 2004, 263(1): 49-61.
    [79]王清清.液相吸附法柴油深度脱硫吸附剂的制备与评价[D].浙江大学硕士学位论文, 2006.
    [80] Mei Xue, Ramesh Chitrakar, Kohji Sakane, et al. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium[J]. Journal of Colloid and Interface Science, 2005, 285(2): 487-492.
    [81] M.L.M. Oliveira, A.A.L. Miranda, C.M.B.M. Barbosa, et al. Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag(I), Ni(II) and Zn(II)[J]. Fuel, 2009, 88(10): 1885-1892.
    [82]李晓娟.改性Y分子筛选择性吸附燃料油深度脱硫及等离子体再生技术研究[D].浙江大学博士学位论文, 2009.
    [83]李莉,陆丹,计远,等.纳米复合材料Ag/TiO2-ZrO2的制备及其微波增强光催化降解甲基橙[J].物理化学学报, 2010, 26(5): 1323-1329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700