用户名: 密码: 验证码:
压电自感应式惯性驱动器的理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以压电自感应式惯性驱动器为研究对象,结合国家自然科学基金重点项目、国家863计划,分析了应用信号发生电路较为简单的对称波电信号激励压电晶片振子使驱动器定向运动的惯性冲击运动机理。基于新型惯性冲击原理设计了实现直线和旋转运动的两种惯性冲击式压电驱动器,该驱动器只需采用一对压电晶片振子就能产生定向运动,机械结构简单。对压电晶片振子的振动进行了主动控制,提高了压电自感应式惯性驱动器的定位精度。试验表明,所设计的直线式和旋转式压电驱动器实现了微纳米级定位精度。
     主要研究内容如下:
     首先分析了国内外压电驱动器的研究现状和应用前景,提出了结合压电自感知控制技术的压电自感应式惯性驱动器。分析了压电陶瓷理论及双向换能器的机理与特性,得到压电方程及压电双向换能传输矩阵,为压电陶瓷的应用提供了理论基础。
     建立了压电晶片振子的有限元分析模型,理论分析了压电晶片振子的振动模态、正压电输出特性及逆压电输出特性,并分析了压电晶片在端部力作用下,产生感应电压特性及其分布变化规律,为压电自感知结构设计提供了依据。
     其次分析了对称波电信号激励作用下压电驱动器实现惯性冲击运动的机理:通过改变压电驱动器和接触面之间的正压力,进而改变压电驱动器和接触面之间的摩擦力,并与驱动力相配合使驱动器沿预定方向运动。通过建立惯性冲击力模型及惯性冲击力的试验系统定量分析惯性冲击力的变化规律。通过对压电晶片振子的动力学建模及仿真,分析惯性冲击力的影响因素及变化趋势。
     基于以上理论研究,设计了压电直线驱动器及压电旋转驱动器,仅采用一对压电晶片振子驱动即可实现单方向定向运动。分析了产生运动的条件及影响运动速度的因素,建立了惯性冲击式压电驱动器试验系统,试验分析了两种驱动器的输出特性。
     最后进行了压电自感应式惯性驱动器的主动控制系统研究。设计了自感知执行机构,基于LabVIEW软件平台,对压电晶片振子进行残余振动抑制试验,并将此控制系统应用于压电驱动器,形成压电自感应式惯性驱动器,提高了驱动器的定位精度。
     总之,通过对压电晶片元件的理论分析及试验研究,惯性冲击式压电驱动器试验样机的设计、制作及试验分析,验证了对称波激励压电驱动器实现惯性冲击运动的运动机理,压电驱动器实现了较高的速度和位移分辨率,为惯性冲击式压电驱动器的研究提供了新的思路和方法。
Since the 20th century, the microelectromechanical system (MEMS) develops fast with the rapid development of modern technology. The nanotechnology has become the key technology as an important part of MEMS. Meanwhile, new kinds of multi-functional materials emerge in material field such as mechanical and hydraulic, pneumatic, assolenoid style functional materials, which are used as the actuator material to reach high motion precision. But the traditional mechanical transmission has bigger mechanical clearance, friction and creeping, for which micro/nano level precision can’t be got easily. The hydraulic, pneumatic and assolenoid style actuators have big inertial force, complicated structure, slow response and low reliability. So the piezoelectric ceramic actuators are widely used in the micro positioning field with high resolution, quick response, big structure stiffness and small size advantages.
     The piezoelectric ceramic materials used as actuators are widely adopted in the piezoelectric precision driven field. Many kinds of piezoelectric actuators come out based on different working principles and structures with the development of the piezoelectric technology. According to different working principles the piezoelectric actuators can be divided into 3 types: direct-acting piezoelectric actuator, stepped piezoelectric actuator and impact drive piezoelectric actuator.
     The impact drive piezoelectric actuator is the research object in the thesis. According to the national 863 project and the natural science foundation requires, a new kind of impact drive piezoelectric actuator is proposed, which is actuated by symmetric wave signal. The pressure force of the actuator and the friction force between the actuator and interface change at the same time when the piezoelectric bimorphs are actuated by the symmetric wave. With different friction force and the same actuation force the piezoelectric actuator realizes linear displacement. Based on the above basis, decoupling air-separation multiplexing self-sensing method is analyzed, by which the piezoelectric bimorphs’vibration is controlled actively. The experimental system is built and the active control effect is inspected which provide a simple and effective method to eliminate the residual oscillation.
     The main research contents are as follows:
     1. The research status and the application prospect of domestic piezoelectric actuators are analyzed. A piezoelectric self-sensing actuator utilizing inertial impact force based on the self-sensing technology is put forward. The piezoelectric equation and two-way exchange matrix are got based on piezoceramics theory and bilateral transducer theory, which provides theretical basis for its application. The piezoelectric bimorph oscillator’s FEM (finite element analysis) model is established, on which the piezoelectric bimorph oscillator’s vibration modal, piezoelectric output characteristics and converse piezoelectric output characteristics are analyzed. And the piezoelectric bimorphs’self-sensing voltage is induced when force is actuated on its free end, which provides the basis for the self-sensing structural design.
     2. The impact movement mechanism that the piezoelectric actuator actuated by the symmetric wave signal moves is analyzed. When the piezoelectric actuator is actuated by the symmetric wave signal the positive pressure changes and the friction force between the actuator and interface changes. Combining with the constant driving force, the actuator moves along the proposed direction. The impact force model and its test system are established to analyze the impact force’s value quantitatively at the first time. The theoretical impact force model of the piezoelectric bimorphs oscillator is built to analyze its influence factors using Matlab. The inertial impact force test system is established to test the inertial force value under different symmetric wave. The square wave a kind of symmetric waves’characteristics comparing with sine wave and triangle wave is testd. And the inertial force’s change rules of the piezoelectric bimorphs oscillator under different frequencies, different test voltage amplitude and different deformation are tested, which provides basis for the wave use.
     3. The piezoelectric ceramics’sensing properties are studied. The self-sensing piezoelectric actuator with integrated structure is proposed in the paper. The piezoelectric ceramics’deformation is got using the piezoelectric output characteristics. The bimorphs’inductive voltage characteristics and variation’s distributions piecture are studied using ANSYS. Then experimental methods are used to test its changing rule, which provides the theory basis for the piezoelectric sensing ceramics’using.
     4. Firstly, an inertial linear actuator actuated by the symmetric wave signal is proposed. When the piezoelectric actuator is actuated by the symmetric wave signal the positive pressure and the friction force between the actuator and interface change. Then based on the above basis, the other inertial rotation actuator is proposed with the changing combining of the friction torque and drive torque. The piezoelectric bimorphs oscillator is put tipsily in the 2 piezoelectric actuators’structure, which change the positive pressure and the friction force at the same time. The inertial actuators realize the proposed direction movement actuated by only a pair of piezoelectric bimorphs oscillator with simple structure. The inertial actuators’movement condition and the velocity’s affect factors are analyzed in theory. And the actuator’s movment rule is analyzed theoretically with the dynamic model built using Matlab, which illustrates the feasibility of the scheme.
     5. Based on the above inertial impact principle, 2 kinds of piezoelectric inertial actuators structure are put forward: an inertial linear actuator and an inertial rotation actuator. The actuator’s experimental test system is built to anaylize the 2 actuators’displacement output characteristics such as step, speed, resolution and load capacity, etc. Theoretical analysis and experimental results correspond.
     6. The active control system of the piezoelectric self-sensing actuator utilizing inertial impact force is researched. The linear quadratic optimal control algorithm is studied and the optimal control equation is obtained. The optimal control force value is deduced to make the piezoelectric bimorphs oscillator eliminate the residual oscillation more quickly. The control system is applied to the piezoelectric actuator and the piezoelectric self-sensing actuator’s position precision is promoted, which confirms the decoupling air-separation multiplexing method of piezoelectric sensor theory in the application of inertial drive.
     The main innovation of the research work:
     1. The piezoelectric actuator adopts the inclined plane, on which the piezoelectric bimorphs oscillator is fixed. When the piezoelectric actuator is actuated by the symmetric wave signal the positive pressure changes and the friction force between the actuator and interface changes. Combining with the constant driving force, the actuator moves along the proposed direction. Different from the asymmetric wave drive, the piezoelectric actuator realized the proposed movement using only a pair of the piezoelectric bimorph oscillator. The electric circuit is simple, too. The piezoelectric actuator is easier to get bigger and higher precision displacement.
     2. The bimorph’s inertial force is analyzed quantitatively. The influence factors of the inertial force produced by the piezoelectric bimorph oscillator are researched qualitatively. The impact force’s experimental system is established and its value variation rule is studied.
     3. By the finite element method, voltage induced characteristics and its distribution are analyzed by the force acted on the end of the piezoelectric bimorph, which provides a basis on piezoelectric structure design. For the first time, the piezoelectric self-sensing structure is applied to the piezoelectric inertial actuators. By piezoelectric inertial air multiplexing method the bimorph’s residual concussion eliminates more quickly. The inertial force that makes the actuator move back is inhibited, which improves the drive accuracy.
     In brief, the impact movement mechanism that the piezoelectric actuator actuated by the symmetric wave signal is proved feasible and correct by the theoretical analysis and experimental research of the piezoelectric bimorph, the experimental prototype design and its experimental analysis. The piezoelectric actuator obtains high speed and displacement resolution, which provides new ideas and methods for the piezoelectric inertial actuator’s research.
引文
[1] Nanopositioning[Z]. http://www.newscaletech.com/.
    [2] R Caracciolo,D Richiedei,et al. Design and experimental validation of piecewise-linear state observers for flexible link mechanisms[J].Meccanica,2006, 41:623-637.
    [3] Hannes Bleuler,Reymond Clavel,Jean-marc Breguet,et al. Applications of microrobotics and microhandling riken review[C].Focused on science and technology in micro/nano scale,2001,36:26-28.
    [4] L Alting,F Kimura,H N Hansen,et al. Micro Engineering[Z].
    [5] Abdelhafid OMARI. Development of a high precision mounting robot system with fine motion mechanism[C]. JSPE,2001,67(7):1101-1107.
    [6] Hisayuki Aoyama. Flexible micro-processing by multiple microrobots in SEM[C]. International Conference on Robotics & Automation 2001.
    [7]孙立宁,孙绍云,荣伟彬等.微操作机器人的发展现状[J].机器人,2002, 24(2):184-187.
    [8] Hitoshi Maekawa, et al. Development of a Micro transfer arm for a microfactory[C]. IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001.
    [9] H. Morita, et al. Electical discharge device with direct drive method for thin eire electrode[C]. IEEE International Conference on Robotics and Automation,1995.
    [10] Ralph Hollis,et al. Miniature factories for precision assembly[C]. International Workshop on Micro-Factories, Tsukuba, Japan,1998,12:1-6.
    [11] Sylvain Martel. Tree legged wirless miniature robots for mass-scale operation at the sub-atomatic scale[C]. IEEE International Conference on Robots & Automation, 2001:3423-3428.
    [12]蔡鹤皋,孙立宁,安辉.压电/电致伸缩微位移器件与应用(下)[J].高技术通讯, 1994,6:37-40.
    [13]蔡鹤皋,孙立宁,安辉.压电/电致伸缩微位移器件与应用(上)[J].高技术通讯, 1994,5:38-40.
    [14]吴鹰飞,周兆英.压电驱动柔性铰链机构传动实现超精密定位[J].机械强度,2002, 24(2):157-160.
    [15] Wang Hua,Zhang Xianmin. Input coupling analysis and optimal design of a 3-DOF compliant micro-positioning stage[J]. Mechanism and Machine Theory,2008(43): 400-410.
    [16] S K Nah,Z W Zhong. A microgripper using piezoelectric actuation for micro-object manipulation[J]. Sensors and Actuators,2007(133):218-224.
    [17]杨宜民.直线驱动器[P].国家专利,ZL1066348A,1992.
    [18]杨宜民,李传芳,程良伦.仿生型步进式直线驱动器的研究[J].机器人,1994,16(1): 37-39.
    [19] Jaehwan Kim,Byungwoo Kang. Micro-macro linear piezoelectric motor based on self-moving cell[J]. Mechatronics,2009(19):1134-1142.
    [20] Jian Li,Ramin Sedaghati,Javad Dargahi,et al. Design and development of a new piezoelectric linear inchworm actuator[J]. Mechatronics,2005(15):651-681.
    [21]赵宏伟,吴博达,程光明等.高精度压电步进直线驱动器[J].吉林大学学报(工学版),2006,3.
    [22]刘建芳,杨志刚,赵宏伟等.新型压电精密步进旋转驱动器[J].吉林大学学报(工学版),2006,36(5):673-677.
    [23]刘建芳,杨志刚,范尊强等.压电直线精密驱动器研究[J].光学精密工程,2005(1): 65-72.
    [24]林德教,吴健,殷纯永.具有纳米级分辨率的超精密定位工作台[J].光学技术,2001, 27(6):556-559.
    [25]刘国嵩,赵宏伟,曾平等.新型压电步进型精密直线驱动器[J].光学精密工程,2005,13(3):291-297.
    [26]孙立宁,容伟彬,曲东升.基于微操作的大行程高分辨率旋转微驱动器的研究[J].光学精密工程,2001,9(6):514-518.
    [27] Zhang Bi,Zhu Zhenqi,Zhang Bolin,et al. Analysis of the CIRP[J].1997,46(1): 305-308.
    [28]吴鹰飞,李勇,周兆英.蠕动式X-Y-θ微动工作台的设计实现[J].中国机械工程, 2001,12(3):263-265.
    [29]程光明,杨志刚,曾平等.压电式移动机构的研究[J].压电与声光,2003, 25(2):106-108.
    [30] LIU Yung Tien, HIGUCHI Toshiro. Precision positioning device utilizing impact force of combined piezo-pneumatic actuator[J]. Asmetransactions on Mechatronics, 2001,6(4):467-473.
    [31]迟冬祥,颜国正,丁国清.基于惯性-摩擦原理的PZT驱动四自由度微驱动器的研究[J].光学精密工程,2001,9(2):135-138.
    [32]华顺明,曾平,王忠伟等.新型二维压电移动机构[J].吉林大学学报(工学版),2004, 34(4):587-591.
    [33]鄂世举,吴博达,杨志刚.压电式微小驱动器的发展及应用[J].压电与声光,2002, 24(6):447-451.
    [34]章海军,黄峰.压电陶瓷冲击驱动机构在微细进给与操作中的应用[J].浙江大学学报,2000,34(5):519-522.
    [35]杨志欣,孙宝元,董维杰.一种新型惯性式压电执行器研究[J].大连理工大学学报,2005,1(45):45-49.
    [36]马尚行,章海军,施洋.新型冲击驱动器及其在扫描隧道显微镜中的应用[J].中国机械工程,2005,3(16):205-208.
    [37]刘方湖,马培荪,罗俊章.带弹性足的压电管道微机器人致动机理和运动特性的研究[J].机械工程学报,2000,36(11):84-89.
    [38]华顺明,程光明,阚君武等.压电精密位移驱动器的研究进展[J].压电与声光,2004, 26(3):192-195.
    [39]曾平,温建明,程光明等.新型惯性式压电驱动机构的研究[J].光学精密工程, 2006,14(4):623-627.
    [40]卢秋红,高志军,颜国正等.压电型惯性微驱动器研究[J].压电与声光,2004,26(2): 112-115.
    [41] Yin Deqin,Yan Guozheng,Yan Detian,et al. Research on miniature in-pipe robot driven by piezoelectric force[J].仪器仪表学报,2000,21(3):221-224.
    [42]刘品宽,孙立宁,刘涛等.惯性冲击式运动原理的理论分析与仿真[J].中国机械工程,2004,15(24):2217-2221.
    [43]罗怡,孙麟治,汪勤意等.惯性冲击型微机器人的支撑腿受力及其对运动速度影响的分析[J].上海大学学报,2000,6(2):100-102.
    [44]孙立宁,刘品宽,吴善强等.管内移动微型机器人研究与发展现状[J].光学精密工程,2003,11(4):326-331.
    [45]刘品宽,温志杰,孙立宁.压电双层膜驱动管内移动微小型机器人的研究[J].中国科学,2009,54(15):2257-2263.
    [46]卢秋红,高志军,颜国正等.压电型惯性微驱动器研究[J].压电与声光,2004, 26(2):112-115.
    [47]姜楠,刘俊标,方光荣等.惯性冲击式压电微电机的研究[J].压电与声光,2007, 29(2):187-189.
    [48]姜楠,刘俊标.旋转型压电惯性冲击马达的工作特性[J].光学精密工程,2009, 17(2):350-355.
    [49]陈翔宇,张松,李枢等.一种锯齿波驱动的压电电机[J].压电与声光,2008,30(2): 177-179.
    [50] Yung Tien Liu, Guo You Le. A 3-DOF Rotational Precision Positioning Stage using Spring-mounted PZT Actuators[J]. Towards Synthesis of Micro-/Nano-systems, 2007,20:121-126.
    [51] Yung Tien Liu, Rong Fong Fung, et al. Precision position control using combined piezo-VCM actuators[J]. Precision Engineering, 2005,29:411-422.
    [52] Yung Tien Liu, Chia Chi Jiang. Pneumatic actuating device with nanopositioning ability utilizing PZT impact force coupled with differential pressure[J]. Precision Engineering, 2007,31:293-303.
    [53] Mandar Deshpande, Laxman Saggere. An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator [J].Sensors and Actuators,A:Physical,2007,136(2):673-689.
    [54] Yusuke Fujii, Ohmi Fuchiwaki, Hisayuki Aoyama. An ultra precision production system organized by multiple micro robots[C].日本精密工学会春季大会,2006.
    [55] Shinji Sato,Wei Gao,Satoshi Kiyono. Development of a rotary-linear actuator[C].日本精密工学会春季大会,2005.
    [56] Kee Joe Lim,Jong Sub Lee,Seong Hee Park,et al. Fabrication and characteristics of impact type ultrasonic motor[J].Journal of the European Ceramic Society,2007(27): 4159-4162.
    [57] A Bergander,W. Driesen,T Varidel,et al. Monolitihic piezoelectric push-pull actuators for inertial drives[C].IEEE Micromechatronics and Human Science, 2003:309-316.
    [58] Yung Tien Liu,Toshiro Higuchi.Precision Positioning Device Utilizing Impact Force of Combined Piezo-Pneumatic Actuator[C]. IEEE/ASME Transactions on Mechatronics,2001(6).
    [59] Naoto Chiba,Taketo Umeki,Ohmi Fuchiwaki,et al. An ultra precision production system organized by multiple micro robots[C].日本精密工学会春季大会,2004.
    [60]章海军,黄峰.压电陶瓷冲击驱动机构在微细进给与操作中的应用[J].浙江大学学报.2000,34(5):519-522.
    [61] Naoto CHIBA,Taketo UMEKI,Ohmi FUCHIWAKI,et al. An Ultra Precision Production System Organized by Multiple Micro Robots[C].日本精密工学会春季大会,2004.
    [62] Ryuichi Yoshida,Takayuki Hoshino,Syuichi Fujii,et al. Development of smooth impact drive mechanism-Application of positioning stage using SIDM[C].日本精密工学会春季大会,2006.
    [63] Okamoto Yasuhiro,Yoshida Ryuichi,Sueyoshi Hirohisa. The development of a smooth impact drive mechanism using a piezoelectric element[C]. Konica Minolta Technology Report,2004,1:23-26.
    [64] K W Chan,W H Liao,I Y Shen. Precision Positioning of Hard Disk Drives Using Piezoelectric Actuators With Passive Damping[J]. IEEE/ASME Transactions on Mechatronics,2008(13):147-151.
    [65] Kwong Wah Chan,Wei Hsin Liao. Precision Positioning of Hard Disk Drives Using Piezoelectric Actuators with Passive Damping[C]. IEEE International Conference on Mechatronics and Automation,2006(6).
    [66]马淑梅,李益民.压电陶瓷微位移机构系统精密驱动电源的研究[J].机构工程师,1995,3:3-4.
    [67]马希理.非对称结构惯性压电旋转驱动器的研究[D].吉林:吉林大学硕士学位论文,2008.
    [68] Sincarsin G B,D Electerio G M T,P C Hughes.Dynamics of an elastic multibidy chain,Part D-Modeling of joints[M].Dynamics and Systems,1993,8(2):237-241.
    [69]庞俊恒.基于压电元件的振动被动控制技术研究[D].南京:南京理工大学硕士学位论文,2003.
    [70]娄敏.基于空分复用的自感知压电夹钳的研究[D].大连:大连理工大学硕士学位论文,2006.
    [71] Fumihito Arai,Kouhei Motoo,Paul G R Kwon,et al. Novel Touch Sensor with Piezoelectric Thin Film for Microbial Separation[C]. Internation Conference on Robotics & Automation,Taipei,2003:306-311.
    [72] Wakatsuki N,Yokoyama H,Kudo H. Piezoelectric actuator of LiNbO3 with an integrated displacement sensor[J]. Japanese Journal of Applied physics,1998,37(5): 2970-2973.
    [73] Pourboghrat F,Pongpairoj H,Youn Jin,et al. Vibration control of flexible structures using self-sensing actuators[J]. SPIE3668:950-959.
    [74] Cavallo A,De Maria G,Natale C.Second order sliding manifold approach for vibration reduction via output feedback:Experiment results[C].IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Como,2001(2): 725-730.
    [75]董维杰,孙宝元.基于压电自感知执行器悬臂梁振动控制[J].大连理工大学学报,2001,41(1):77-80.
    [76]周洁敏,陶云刚,姚志峰等.利用压电自敏感致动器实现挠性结构振动的主动控制[J].吉林工业大学自然科学学报,1999,29(1):64-69.
    [77]方有亮,武哲.配置压电自感作动器智能板振动的主动控制[J].北京航空航天大学学报.2000,26(10):88-90.
    [78] Tonoli A,Oliva S,Carabelli S,et al. Charge driven piezoelectric transducers in self-sensing configuration[J]. Smart Structures and Materials 2001-Smart Structures and Integrated Systems,2001:743-752.
    [79]金浩,董树荣,王德苗.压电变压器的研究现状[J].电子元件与材料,2002(9): 28-31.
    [80]郭瑞松,蔡舒,季惠明等.工程结构陶瓷[M].天津:天津大学出版社,2002.
    [81]金志浩,高积强,乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社,2000.
    [82]张福学.现代压电学(上)[M].北京:科学出版社,2002.
    [83] T L Jordan,Z Ounaies.Piezoelectric Ceramics Characterization,NASA/CR-2001- 211225[Z]. http://www.nasa.gov/.
    [84] J范兰德拉特,R E赛德林顿.压电陶瓷[M].北京:科学出版社,1981.
    [85]曲远方.功能陶瓷及应用[M].北京:化学工业出版社,2003.
    [86] MicroPositioning,NanoPositioning, NanoAutomation Tutorial: Piezoelectrics in Positioning[Z]. http://www.pi.ws.
    [87] Vincent Piefort. Finite element modelling of piezoelectric active structures[D]. Doctoral thesis of UniversitéLibre de Bruxelles.
    [88]宋道仁.压电效应与应用[M].北京:科学普及出版社,1987.
    [89]李尚平,徐永利,苏建华等.驱动器用陶瓷材料与展望[J].压电与声光,1999, 21(6):483-487.
    [90]张福学,王丽坤.现代压电学(上册)[M].北京:科学出版社,2001:84-99.
    [91]张福学,王丽坤.现代压电学(中册)[M].北京:科学出版社,2001:128-149.
    [92]林声和,叶至碧,王裕斌.压电陶瓷[M].北京:国防工业出版社,1979.
    [93]刘一声.压电双晶片致动元件的应用[J].压电与声光,1985(1):35-46.
    [94]栾桂冬.压电换能器和换能器阵(上册)[M].北京:北京大学出版社,1990: 185-200.
    [95]栾桂冬.压电换能器和换能器阵(下册)[M].北京:北京大学出版社,1990: 277-317.
    [96] T Higuchi. Precise Positioning Mechanism Utilizing Rapid Deformations of Plezoelectric Elements[C].IEEE Micro Electro Mechanical System Workshop, 1990, 203.
    [97] Yoshida Ryuichi,Okamoto Yasuhiro,Higuchi Toshiro,et al. Development of smoothimpact drive mechanism (SIDM)-proposal of driving mechanism and basic performance[J]. Journal of the Japan Society for Precision Engineering,1999,65(1): 111-115.
    [98] Binnig G,Rohrer H. Scanning tunneling microscope[J]. Helv Phys Acta, 1982,55: 726-730.
    [99] Binnig G,Quate C F. Atomic force microscope[J]. Phys Rev Lett, 1986,56: 930-936.
    [100] Wang Q M,Cross L E. Performance analysis of piezoelectric cantilever bending actuators[J]. Ferroelectrics, 1998(215):187-213.
    [101] Jan G Smits,Susan I Dalke,Thomas IL Cooney. The constituent equations of piezoelectric bimorphs[J].Sensors and Acntators A,1991,28:41-61.
    [102]翟玉生,李安,张金中.应用摩擦学[M].北京:石油大学出版社,1996:33-53.
    [103]正林庆.摩擦学原理[M].北京:高等教出版社,1994:162-197.
    [104]戴雄杰.摩擦学基础[M].上海:上海科学技术出版社,1984:33-57.
    [105]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998:81-112.
    [106]温诗铸,黄平.摩擦学原理[M].清华大学出版社,2002:271-289.
    [107] C H汉森,S D斯奈德.噪声和振动的主动控制[M].北京:科学出版社, 2002,720-754.
    [108] Anderson E H,Hagood N W. Simultaneous piezoelectric sensing/actuation: analysis and application to controlled structures[J]. Journal of sound and vibration,1994, 174(5):617-639.
    [109]荆海英.最优控制理论与方法[M].沈阳:东北大学出版社,2005.
    [110] Denoyer K K, Kwaak M K. Dynamic modeling and vibration suppression of a slewing structure utilizing piezoelectric sensors and actuators[J]. J Sound Vib 1996, 189(1): 13-31.
    [111]冯国楠.最优控制理论基础[M].北京:北京工业大学出版社,1991.
    [112] K S Matviichuk. Technical Stability of Dynamic States of Controlled Elastic Aircraft [J]. International Applied Mechanics, 2001,37(4): 550-563.
    [113]叶庆凯,王肇明.现代控制理论[M].北京:科学出版社,1986.
    [114]蔡宣三.最优化与最优控制[M].北京:清华大学出版社,1983.
    [115]符曦.系统最优化及控制[M].北京:机械工业出版社,2004.
    [116]李山虎,杨靖波.简谐及随机激励下柔性悬臂梁主动控制的实验研究[J].振动与冲击,2001,20(3):1-4.
    [117]胡寿松.自动控制原理[M].北京:国防工业出版社,2000.
    [118]邓炎,王磊.LABVIEW7.1测试技术与仪器应用[M].北京:机械工业出版社,2004.
    [119]刘仁普,左毅.仪器开发系统的新纪元LABVIEW软件系统[J].电子科技导报, 1995:32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700