用户名: 密码: 验证码:
原子力显微镜微悬臂梁刚度测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着原子力显微镜(Atomic Force Microscopy,AFM)的相关研究工作逐渐深入,人们已经不仅仅满足于AFM的形貌测量功能,如何利用AFM开展微小力测量逐渐成为AFM应用研究的热点之一,并使得AFM成为了纳米摩擦学、生物力学等领域研究的重要工具。AFM微悬臂梁的刚度参数是连接AFM输出信号和针尖上作用力大小的重要桥梁,因此对微悬臂梁刚度参数的测量是实现基于AFM的微小力测量的重要前提。本文根据微悬臂梁的特点,结合AFM力学测量中面临的实际问题,进行了AFM微悬臂梁刚度动态测量技术的研究。
     建立了矩形和V形微悬臂梁的频率响应近似理论模型和有限元分析模型,并针对一组典型的矩形微悬臂梁和V形微悬臂梁进行了仿真计算。在此基础上,建立了微悬臂梁杨氏模量与其离面弯曲固有频率之间的关系模型,并通过有限元仿真工具进行了验证。
     大部分AFM力学测量实验在空气或水等流体环境中完成。实验表明,微悬臂梁在流体中发生振动时,其共振频率会受到流体阻尼的影响而发生漂移,为了定量的研究微悬臂梁频率响应特性,进而为微悬臂梁杨氏模量和刚度动态测量提供必要的理论基础,本文详细的研究了流体环境对微悬臂梁频率响应的影响。首先提出了用于分析微悬臂梁在流体中频率响应问题的简化一维法,该方法可以将微悬臂梁在流体中振动问题简化为弹簧质量系统的阻尼振动问题,在此基础上推导了微悬臂梁在流体和真空中的固有频率关系公式。鉴于简化一维法的计算结果与实验结果存在较大误差,本文讨论了微悬臂梁的尺寸效应和流固耦合振动现象。为了进一步研究流体环境对微悬臂梁频率响应的影响,提出了用于分析微悬臂梁流固耦合振动问题的等效气弹模型法和计算流体力学法,并针对矩形和V形微悬臂梁进行了仿真分析。仿真结果表明,基于计算流体力学法的微悬臂梁频率响应分析模型可以较真实的反映微悬臂梁在空气环境中的振动问题。
     基于本文建立的微悬臂梁流固耦合振动模型,提出了微悬臂梁刚度动态测试方法。此方法在操作时分三步:第一步测量微悬臂梁在空气中的离面弯曲共振频率;第二步利用数值方法计算相应于不同杨氏模量的微悬臂梁离面弯曲共振频率序列,与实验结果最吻合的计算值所对应的杨氏模量为待测杨氏模量。第三步根据第二步中测量的微悬臂梁杨氏模量计算微悬臂梁的刚度。基于此方法,测量了NSC14/No Al矩形微悬臂梁、NSC11/No Al-large和NSC11/NoAl-small V形微悬臂梁的杨氏模量和刚度。
     微悬臂梁的理论刚度与其工作刚度之间存在一定的偏差,如果忽略了这个偏差,会给基于AFM的微小力定量测量带来较大误差。为了提高AFM力学测量的精度,分别研究了微悬臂梁安装倾斜角度、针尖安装位置、接触刚度和面内形变对微悬臂梁等效刚度的影响,建立了微悬臂梁等效刚度计算公式,并针对本文使用的三种微悬臂梁进行了计算。计算结果表面微悬臂梁安装倾斜角度、针尖安装位置、接触刚度和面内形变对微悬臂梁等效刚度具有较大影响。
     提出了微悬臂梁等效刚度校正方法。特别研究了微悬臂梁安装倾斜角度、接触刚度对于AFM纳米摩擦学实验的影响,在此基础上,研究了接触刚度对AFM径向力校准的影响,并提出了校正方法,实验证明使用该校正方法可有效避免AFM径向力校准系数受到法向力影响。
Atomic force microscopy (AFM) is widely used as a tool for detection of small forces, and becomes an important measuring instrument in the research field of nanotribology and bio-mechanics. The spring constant is an important bridge in converting AFM signals to forces loaded on the tips, and it is of great importance to develop a reliable and easy method for cantilevers' spring constant measurement. This dissertation is focusing on dynamic method for determination of spring constants of AFM cantilevers.
     A simplified theoretical modeling as well as a FEA method is developed for researching the frequency response of rectangular and v-shaped cantilevers in vacuum. Simulation on some common used rectangular and v-shaped cantilevers has been down for validation. Modeling for interpreting the relationship between young's modulus and the base frequency of out-of-plane bending vibration is well developed, and validated through a FEA method.
     It is well known that the frequency response of an elastic beam is strongly dependent on the fluid in which it is immersed. The frequency response of cantilevers immersed in fluid is detailed discussed in the dissertation for the convenience of research on quantitative analysis for dynamic properties of microcantilevers and the preparation for theoretical fundaments of spring constant determination through dynamic tests methods. A simplified one-dimension modeling for frequency response of microcantilevers immersed in fluid is developed to ease the problem as the damping vibration of a spring-mass system at first. Consequently, the formula indicating the ration between the natural frequency of cantilevers in vacuum and fluid is presented. Because the simulation based on the simplified method show a evident difference against experimental experiences, the fluid-structure interaction (FSI) problem of microcantilevers immersed in fluid is discussed lately. Two methods are presented for solving the FSI problem of microcantilevers, which are air-spring modeling method and computational fluid dynamic (CFD) method, comparative simulation have been down on a rectangular cantilever and a v-shaped cantilever, which indicates a good agreement with the experience.
     A dynamic method for determination of cantilever spring constants is presented based on the CFD modeling presented in this dissertation, which involves three steps. The first step is measuring the resonance frequency of a micro cantilever immersed in air. The second step is calculation of resonance frequencies of the microcantilever with different young’s modulus, and the young’s modulus can be determined after comparison with the measured values. The third step is taking the determined young’s modulus to the FEA model of the microcantilever to determine its spring constant. The spring constants of a NSC14/No Al, a NSC11/No Al-large cantilever and a NSC11/No Al-small cantilever have been measured based in the dynamic method.
     The effective spring constant of microcantilevers are differing from theoretical ones, and terrible errors could happen with out consideration of it. The effect of cantilever tilt angle, in-plane deformation, contact stiffness and tip position on effective spring constants of cantilevers are detailed discussed. Theoretical formulae have been presented to correct the spring constants. Related experiments on the cantilevers used in this dissertation have been done for validation. The effect of those factors on AFM based nanotribology measurements are discussed, and a correction method in lateral force calibration is presented, which is of great value to the users and designers of AFM.
引文
1. P. Holister, C. Roman and T. Harper, The nanotechnology opportunity report, 2nd edition, Madrid Científica Ltd., 2003
    2.朱纪军,王静,赵冰,等.基于AFM的微纳米结构力学特性测量.微细加工技术. 2000, 2:55~61
    3. J. P. Salvetat, J. M. Bonard, N. H. Thomson, et al. Mechanical properties of carbon nanotubes. Applied Physics A: Materials Science & Processing. 2000, 69(3):255~260
    4. T. Motoki, W. Gao, S. Kiyono, et al. A nanoindentation instrument for mechanical property measurement of 3D micro/nano~structured surfaces. Measurement Science and Technology. 2006, 17:485~499
    5.张泰华,杨业敏,赵亚溥,等. MEMS材料力学性能的测试技术.力学进展. 2002, 32(4):545~562
    6. H. D. Espinosa, B. C. Prorok, M. Fischer. A methodology for determining mechanical properties of freestanding thin flms and MEMS materials. Journal of the Mechanics and Physics of Solids. 2003, 51:47~67
    7. T. Yi, C. J. Kim, et al. Measurement of mechanical properties for MEMS materials. Measurement Science and Technology. 2006. 10:706~716
    8. A. Ikai, R. Afrin, H. Sekiguchi, et al. Nano~Mechanical Methods in Biochemistry using Atomic Force Microscopy. Current Protein and Peptide Science. 2003, 4(3):181~193
    9. V. V. Tiainen, B. C. Prorok, M. Fischer. Amorphous carbon as a bio~mechanical coating—mechanical properties and biological applications. Diamond and Related Materials. 2001, 10(2):153~160
    10. Y. F. Dufrêne. Atomic Force Microscopy a Powerful Tool in Microbiology. Journal of Bacteriology. 2002, 184(19):5205~5213
    11. V. R. Virginia, J. J. Busscher, W. Norde, et al. Amorphous carbon as a bio-mechanical coating-mechanical properties and biological applications. Applied and Environmental Microbiology. 2004, 70(9):5441~5446
    12. W. R. Bowen, A. S. Fenton, R. W. Lovitt, et al. The measurement of Bacillus mycoides spore adhesion using atomic force microscopy simple countingmethods and a spinning disk technique. Biotechnology and Bioengineering. 2002, 79(2):170~179
    13. B. Bhushan, N. Vilas, N. Koinkar. Nanoindentation hardness measurements using atomic force microscopy. Applied Physics Letters. 1994, 64(3):1653~1655
    14. J. Ruan, B. Bhushan. Atomic-scale Friction Measurements Using Friction Force Microscopy:Part I~General Principles and New Measurement Techniques. Journal of Tribology. 1995, 116:378~388
    15. A. Weisenhornt, K. Mitra, S. Kasas, et al. Deformation and height anomalyof soft surface studied with an AFM. Nanotechnology. 1993, 4:106~113
    16. S. Allen, X. Chen, J. Davis, et al. The applicationof force microscopy to immunodiagnostic systems: imaging and biomolecular adhension measurements. Applied Physics A. 1998, 66:255~261
    17. S. Sriram, B. Bhushan. Development of AFM~based techniqure to measure mechanical properties of nanoscale structures. Sensors and Actuators A. 2002, 11:338~351
    18. S. Sriram, B. Bhushan. Mechanical property measurements of nanoscale structures using an atomic force microscope. Ultramicroscopy. 2002, 91:111~118
    19. A. Weisenhornt, Mitra K, Sander Kasas, et al. Deformation and height anomaly of soft surface studied with an AFM. Nanotechnology. 1993, 4:106~113
    20. G. W. Marshall, Jr. M. Balooch, R.R. Gallagher, et al. Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. Journal of Biomedical Materials Research. 2000, 54(1):87~95
    21. Atsushi Ikai, The world of nano~biomechanics: mechanical imaging and measurement by atomic force microscopy, Elsvier, 2007
    22.袁俊,纳米技术及其对科技产业革命的影响,中国工程科学,2001年10期
    23. G. Binnig, C. F. Quate. Atomic Force Microscope. Physical review letters, 1986, 56(9):930~933
    24. Lin, Qi And Meyer, Emily E. And Tadmor, Maria and Israelachvili, Jacob N. And Kuhl, Tonya L. Measurement Of The Long- And Short-Range Hydrophobic Attraction Between Surfactant-Coated Surfaces. Langmuir. 2005,21(1):251~ 255
    25. B. Bhushan, J.N. Israelachvili,U. Landman. Nanotribology: Friction, Wear And Lubrication At The Atomic Scale. Nature. 1995, 374(6523):607~ 616
    26. L. Zitzler, S. Herminghaus,F. Mugel. Capillary Forces in Tapping Mode Atomic Force Microscopy. Physical Review B. 2002, 66(155436):155436-1~155436-8
    27. S. Novikov, S. Timoshcnkov. Long-Range Electrostatic Forces on The Surfaces Of Aluminum Oxide And Silica Oxide. Advances in Colloid And Interface Science. 2003, 105:341~353
    28. D. Peterka, A. Enders,G. Haas et al. Combined Kerr Microscope And Magnetic Force Microscope For Variable Temperature Ultrahigh Vacuum Investigations. Review Of Scientific Instruments. 2003, 74(5):2744~2748
    29. R.W. Carpick, N. Agra T,D.F. Ogletree Et Al. Variation Of The Interfacial Shear Strength And Adhesion Of A Nanometer-Sized Contact. Langmuir. 1996, 12:3334~3340
    30. R. Pérez, ?tich, Ivan ,M.C. Payne et al. Surface-Tip Interactions In Noncontact Atomic-Force Microscopy On Reactive Surfaces: Si(111). Phys. Rev. B. 1998, 58(16):10835~10849
    31. S. Ciraci, E. Tekman,A. Baratoff et al. Theoretical Study Of Short- And Long-Range Forces And Atom Transfer In Scanning Force Microscopy. Phys. Rev. B. 1992, 46(16):10411~10422
    32. R. Garc A, A.S. Paulo. Attractive and Repulsive Tip-Sample Interaction Regimes In Tapping-Mode Atomic Force Microscopy. Physical Review B. 1999, 60(7):4961~4967
    33. R.W. Stark, W.M. Heckl. Higher Harmonics Imaging In Tapping-Mode Atomic-Force Microscopy. Review Of Scientific Instruments. 2003, 7(12):5111~5114
    34.程敏熙,熊钰庆. STM的同胞兄弟——原子力显微镜(AFM).大学物理. 2000, 19(9):38~42
    35.白春礼,中国科学院院刊,原子力显微镜的研制及应用,1990年04期
    36. M. Radmacher, M. Fritz, J. P. Cleveland, DA Walters. Imaging adhesion forces and elasticity of lysozyme adsorbed on mica with the atomic force microscope. Langmuir. 1994, 10(10):3809~3814
    37. D. F. Ogletree. Calibration of frictional forces in atomic force microscopy.Review of Scientific Instruments. 1996, 67(99):3298-3306
    38.李德胜,关佳亮,石照耀等,微纳米技术及其应用,科学出版社,2005
    39. J. E. Sader. Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments. 1995, 66(7):3789~3798
    40. J. M. Neumeister, W. A. Ducker. Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers. Review of Scientific Instruments. 1994, 65:2527–2531
    41. J. E. Sader, C. P. Green. In-plane deformation of cantilever plates with applications to lateral force microscopy. Review of Scientific Instruments. 2004, 75:878–883
    42. T. J. Senden, W. A. Ducker. Experimental Determination of Spring Constants in Atomic Force Microscopy. Langmuir. 1994, 10:1003–1004
    43. C. T. Gibson, G. S. Watson, S. Myhra. Determination of the spring constants of probes for force microscopy/spectroscopy. Nanotechnology. 1996,7:259–262
    44. A. Torii, M. Sasaki, K. Hane, S. Okuma. A method for determining the spring constant of cantilevers for atomic force microscopy. Measurement Science and Technology. 1996, 7:179~184
    45. P. J. Cumpson, J. Hedley, P. Zhdan. Accurate force measurement in the atomic force microscope: a microfabricated array of reference springs for easy cantilever calibration. Nanotechnology. 2003, 14:918~924
    46. P. J. Cumpson, J. Hedley. Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI . Nanotechnology. 2003, 14:1279~1288
    47. P. J. Cumpson, C.A. Clifford, J. Hedley. Quantitative analytical atomic force microscopy: a cantilever reference device for easy and accurate AFM spring~constant calibration. Measurement Science and Technology. 2004, 15: 1337~1346
    48. P. J. Cumpson, J. Hedley, C.A. Clifford, X.Y. Chen. Microelectromechanical system device for calibration of atomic force microscope cantilever spring constants between 0.01 and 4 N/m. Journal of Vaccum Science and Technology. 2003, 22(4):1444~1449
    49. J. P. Cleveland, S. Manne, D. Bocek, et al. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy.Review of Scientific Instruments. 1993, 64(2):403~405
    50. J. E. Sader, J. W. M. Chon, P. Mulvaney. Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments. 1999, 70(10): 3967~3969
    51. J. E. Sader, I.. Larson, P. Mulvaney. Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments. 1995, 66:3789~3798.
    52. J. L. Hutter and J. Bechhoefer. Calibration of atomic~force microscope tips. Review of Scientific Instruments. 1993, 64: 1868~73
    53. C. T. Gibson, B. L. Weeks, J.R.I. Lee, et al. A nondestructive technique for determining the spring constant of atomic force microscope cantilevers. Review of Scientific Instruments. 2001,72(5):2340~2343
    54. N. A. Burnham, X. Chen, C. S. Hodges,et al. Comparison of calibration methods for atomic~force microscopy cantilevers. Nanotechnology. 2003, 14:1~6
    55. C. T. Gibson, B.L. Weeks, C. Abell, T. Rayment, et al. Calibration of AFM cantilever spring constants. Ultramicroscopy. 2003, 97(1~4):113~118
    56. P. G. Christopher, L. Hadi, P.C. Jason, et al. Normal and torsional spring constants of atomic force microscope cantilevers. Review of Scientific Instruments. 2004, 75(6):1988~1996
    57.丁建宁,孟永钢,温诗铸.纳米硬度计研究多晶硅微悬臂梁的弹性模量.仪器仪表学报. 2001,22(2): 186-189
    58. J. A. Turner, S. Hirsekorn and W. Arnold, et al, High~frequency response of atomic~force microscope cantilevers. J. Appl. Phys. 1997, 82(3):966~979
    59. S. Hirsekorn, U. Rabe and W. Arnold, Theoretical description of the transfer of vibrations from a sample to the cantilever of an atomic force microscope, Nanotechnology. 1997,8:57~66
    60. S. Hirsekorn. Transfer of mechanical vibrations from a sample to an AFM-cantilever: a theoretical description. Appl.Phys.A. 1998,66: 249~254
    61.刘延柱,陈文良,陈立群.振动力学.高等教育出版社. 1998
    62. G. Y. Chen, R. J. Warmack and T.Thundat, et al, Resonance response of scanning force microscopy cantilevers, Rev. Sci. Instrum., 1994,65(8):2532~2537
    63. J. E. Sader and L. White, Theoretical analysis of the static deflection of platesfor atomic force microscope applications, J. Appl. Phys. 1993,74(l):1~9
    64. J. E. Sader, Parallel beam approximation for V~shaped atomic force microscope cantilevers, Rev. Sci. Instrum. 1995, 66(9):4583~4587
    65. E. Dupas, G. Gremaud and A. Kulik, et al, High~frequency mechanical spectroscopy with an atomic force microscope, Rev.Sci.Instrum. 2001,72(10):3891~3897
    66. J. E. Sader. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscopy. Journal of Applied Physics. 1998, 84(11): 64~76
    67.邢景堂,周盛,崔尔杰.流固耦合力学概述.力学进展.1997, 27(1):19~38.
    68. G. Y. Chen, R. J. Warmack, T. Thundat, D. P . Allison, Resonance response of scanning force microscopy cantilevers, Rev. Sci. Instrum. 1996, 65(8):2532~2537
    69.杜颖,贾启芬,刘习军.流固耦合中的若干力学问题.工程力学增刊.2003:177~180.
    70.鲁丽.非线性板状结构流固耦合复杂响应的研究.西南交通大学博士学位论文.2006
    71. S. Kirstein, M. Mertesdorf, M. Sch?nhoff. The influence of a viscous fluid on the vibration dynamics of scanning near~field optical microscopy fiber probes and atomic force microscopy cantilevers. Journal of Applied Physics. 1998, 84(4):1782~1790
    72. M. C. Manna. Free vibration analysis of isotropic rectangular plates using a high-order triangular finite element with shear. Journal of Sound and Vibration. 2005, 281:235~259
    73. T. NOMURA. ALE finite element computations of fluid~structure interaction problems. Computer methods in applied mechanics and engineering. 1994, 112(1~4):291~308
    74. S. R. Idelsohn, E. O?ate, F. Del Pin. A Lagrangian meshless finite element method applied to fluid~structure interaction problems. Computers & Structures. 2003, 81(8~11):655~671
    75. H. Morand, R. Ohayon. Substructure variational analysis of the vibrations of coupled fluid~structure systems. Finite element results. International Journal for Numerical Methods in Engineering. 2005, 14(5):741~755
    76.沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展.建筑科学与工程学报. 2006, 23(1):1~9
    77. M. Souli, A. Ouahsine and L. Lewin. ALE formulation for fluid structure interaction problems. Computaton Methods in Applied Mechanics and Engineering. 2000, 190:559~675
    78.邬海军,郭鹏程,廖伟丽等. ANSYS在水轮机部件流固耦合振动分析中的应用水电能源科学,2004,22(4):64~66
    79.张天林,郭哲颖,张青川等.微梁传感器弹性模量的测试[J].中国科学技术大学学报, 2006,36(5):567~572
    80. R. B. King. Elastic analysis of some punch problems for a layered medium. International Journal of Solids Structures. 1987, 23:1657~1664
    81. Y. T. Cheng, C. M. Cheng. What is indentation hardness? Surface and Coatings Technology. 2000, 417:133~134
    82. J. L. Hay, W. C. Oliver, A. Bolshakov, G.M. Pharr. Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation. In: Proceedings of Materials Research Society Symposium, Pittsburgh. 1998
    83. J. S. Field, M. V. Swain. A simple predictive model for spherical indentation. Journal of Materials Research. 1993, 8:297~306
    84. W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992, 7:1564~1583
    85. H. Lee, S. Mall and PE. Kladitis. Nanoindentation technique for characterizing cantilever beam style RF microelectromechanical systems. Journal of Micromechanics and Micro-engineering. 2005, 15:1230~1235
    86. J.A. Ruan, B. Bhushan. Atomic~scale Friction Measurements using Friction Force Microscopy : Part I. ASME J. Tribol. 1994,116:378
    87. E. Liu, B. Blanpain and J. P. Celis. Calibration procedures for frictional measurements with a lateral force microscope. Wear. 1996, 192:141~150
    88. R. W. Carpick, N. Agrait, D. F. Ogletree and M. Salmeron. Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope.J. Vac. Sci. Technol. B. 1996,14(2):1289~1295
    89. S. Sundararajan, B. Bhushan. Development of AFM~based techniques tomeasure mechanical properties of nanoscale structures. Sensors & Actuators: A, Physical. 2002, 101(3):338~351
    90. M. Evstigneev, A. Schirmeisen, L Jansen, H. Fuchs. Force Dependence of Transition Rates in Atomic Friction. Physical Review Letters. 2006, 97(24):240601.1~240601.4
    91. N. Morel, Ph. Tordjeman, M. Ramonda. Cantilever calibration for nanofriction experiments with atomic force microscope. Journal of Physics D: Applied Physics. 2005, 86(16): 163103~163103.3
    92. P. J. Cumpson, P. Zhdan, J. Hedley. Accurate force measurement in the atomic force microscope: a microfabricated array of reference springs for easy cantilever calibration. Nanotechnology. 2003, 14:918~924
    93. P. J. Cumpson, J. Hedley. Accurate force measurement in the atomic force microscope: a microfabricated array of reference springs for easy cantilever calibration. Nanotechnology. 2003, 14:1279~1288
    94. P. J. Cumpson, P. Zhdan, J. Hedley. Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs. Ultramicroscopy. 2004, 100(3~4):241~251
    95. P. J. Cumpson, C. A. Clifford, J. Hedley. Quantitative analytical atomic force microscopy: a cantilever reference device for easy and accurate AFM spring~constant calibration. Meas. Sci. Technol.. 2003, 15:1337~1346
    96. P. J. Cumpson, J. Hedley. C. A. Clifford. Microelectromechanical device for lateral force calibration in the atomic force microscope: Lateral electrical nanobalance. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 2005, 23(5):1992~1997
    97. P. J. Cumpson, J. Hedley. C. A. Clifford, Xinyong Chen, S. Allen. Microelectromechanical system device for calibration of atomic force microscope cantilever spring constants between 0.01 and 4 N/m. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2004, 22(4):1444~1449
    98. Laurent Nony, Rodolphe Boisgard, Jean-Pierre Aimé. Nonlinear dynamical properties of an oscillating tip~cantilever system in the tapping mode. Journal of Chemical Physics. 1999, 111(4): 1615~1627
    99. H. X. You, J. M. Lau, S. Zhang, L. Yu L. Atomic force microscopy imaging ofliving cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology. Ultramicroscopy. 2000, 82(1~4):297~305
    100. Naruo Sasaki and Masaru Tsukada. Theory for the effect of the tip~surface interaction potential on atomic resolution in forced vibration system of noncontact AFM. Applied Surface Science. 1999, 140(34):339~343
    101. O. B. Wright, N. Nishiguchi. Vibrational dynamics of force microscopy: Effect of tip dimensions. Applied Physics Letters. 1997, 71:626~628
    102. C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang. .Atomic~scale friction of a tungsten tip on a graphite surface. Phys. Rev.Lett. 1987, 59:1942~1945
    103. Fundamentals of Friction: Macroscopic and Microscopic Processes, edited by I. L. Singer and H. M. PollockKluwer, Dordrecht, 1992, Vol.220
    104. J. Hu, X.-D. Xiao, D. F. Ogletree, and M. Salmeron. Imaging the Condensation and Evaporation of Molecularly Thin Films of Water with Nanometer resolution. Science 1995, 268(5208):267~269
    105. U. D. Schwarz, W. Allers, G. Gensterblum, and R. Wiesendanger. Low~load friction behavior of epitaxial C{60} monolayers under Hertzian contact . Phys.Rev. B. 1995, 52: 14976~14984
    106. E. Meyer, R. Luthi, L. Howald, M. Bammerlin, M. Guggisberg, and H.~J.Guntherodt. Atomic resolution in dynamic force microscopy across steps on Si (1 1 1) 7×7. Z. Phys., B Condens. Matter. 1995, 100(2):165~167
    107. M Enachescu, RJA van den Oetelaar, RW Carpick,, Atomic Force Microscopy Study of an Ideally Hard Contact: The Diamond 111/Tungsten Carbide Interface. Physical Review Letters. 1998, 9(81):1877~1880
    108. D. F. Ogletree, R. W. Carpick, and M. Salmeron, Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 1996, 67:3298~3306
    109. M. Varenberg, I. Etsion, and G. Halperin. An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 2003, 74:3362
    110. J. E. Sader, C. P. Green. In-plane deformation of cantilever plates with applications to lateral force microscopy. Rev. Sci. Instrum. 2004, 75(4):878~883

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700