用户名: 密码: 验证码:
基于分子动力学的单晶硅纳米加工机理及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米加工技术的发展使得纳机电系统制造成为可能。当被加工材料尺寸达到纳米量级时,由于小尺寸效应、量子效应及表面效应的影响,纳米加工的理论与方法和传统机械加工有着本质的不同,材料的力学特性、缺陷、载荷特性和失效机理等都将发生质的变化。依据经典连续介质力学建立起的机械加工理论将不能直接应用在纳米加工技术当中,必须应用近代物理学的最新成果,从原子尺度上去研究纳米加工机理。本文借助分子动力学仿真技术,探究单晶硅三个典型晶面在纳米压痕及刻划过程中的加工变形机理,应用纳米压痕仪进行相应的纳米压痕及刻划实验。随后探究脆性材料单晶硅的纳米切削机理,并对纳米加工过程中的金刚石刀具磨损进行考察。这对于全面认识单晶脆性材料纳米加工机理具有重要的理论意义和实用价值,同时将为纳米加工技术的进一步发展提供必要的理论基础。
     本文首先建立了单晶硅(100)、(110)和(111)晶面纳米压痕刻划的三维分子动力学仿真模型,进而研究应用纳米原位压痕仪对单晶硅不同晶面的纳米加工技术,同时考察单晶硅的微观变形机制和力学性能。应用纳米压痕仪对单晶硅不同晶面进行了相应的实验,结果表明:相对(100)、(110)晶面,(111)晶面在仿真过程中得到较小的弹性模量和硬度值,这种现象与仿真结果基本一致;实验中单晶硅各晶面刻划载荷随刻划深度增加而增加并具有不同的上升斜率,其各晶面上升斜率大小关系与仿真中各晶面刻划载荷上升斜率关系一致,间接的证明分子动力学是研究单晶硅纳米加工机理的有效方法,仿真建模中的相关内容基本正确。
     其次,对于不同晶面单晶硅分别从不同时刻的瞬间原子位置图、变形区结构变化,切削过程中能量的演化、切削力、应力的变化等方面分析了工件纳米切削过程中的变形机理和各向异性对加工过程的影响。从势能、切削力的变化角度可以看出,单晶硅在切削过程中结构发生渐进式变化,并没有位错产生;在工件的切削变形区,切屑的势能分布因不同的晶面结构而略有差别;处于刀具前刀面的被加工材料其变形区域的扩展速度和刀具切削速度处于同一数量级。对单晶硅纳米切削已加工表面质量进行考察,结果表明,已加工表面均方根偏差处于0.01nm量级,应力处于0.01GPa量级,并且其值随晶面不同而有所不同。
     最后,对单晶硅纳米切削过程中的单晶金刚石刀具磨损机理进行了研究,并考察温度场对刀具磨损的影响。仿真的原子瞬间图显示,工件的挤压导致刀具表面晶体结构发生改变,金刚石刀具表面原子在纳米切削初始阶段产生脱落现象,随后的切削过程中原子脱落现象明显减弱。从径向分布函数判断:刀具的外表层形成散乱结构,同时刀具理想晶格和外表层之间的亚表层的原子密度增加阻止了刀具的进一步磨损。温度升高使得刀具表层及亚表层平均原子势能及其应力增加,切削力略微下降;温度的升高使得单晶硅原子活性显著提高,而对刀具原子的影响并不明显,切削过程在高温条件下可以继续进行。
The development of nanometric machining technology makes it possible of manufacturing nano-electromachanical system manufacture. When dimension of the microstructure reaches nanometer scales, nano-masnufacturing theory and method are essentially different from traditional mechanical design and method because mechanical properties, load characteristics and failure mechanism will change intrinsically in such dimensional scale.Therefore, traditional mechanical design theory and method based on classical continuum mechanics can not be applied directly to nanometric machininig technology, and new research method should apply ideas from latest progresses in modern physics to study nano-manufacturing mechanism from the atomic-scale point of view. In this thesis, molecular dynamics (MD) simulation is employed to investigate the deforming mechanism of single crystal silicon planes during nano-indentation and scratching process and relative experiments are carried out. Then the nano-cutting mechanism of brittle material single crystal silicon and researches of diamond tool wear and its effect on cutting process are discussed. The fulfillment of this study has resulted in a better understanding of the nano-manufacturing mechanism of single crystal silicon, and it is of significance for theoretical instruction of practical design and nano-manufacturing processes. Therefore, it will contribute to the fundamental theory of nano-manufacturing for their further development.
     Firstly, the three dimension simulation models of nano-indentation and scratching of single crystal planes (100), (110) and (111) are set up to make researches on nano-deforming mechanism and micro mechanical properties. At the same time, experiments related to simulation models are carried out. The experimental resulats show that the elastic modulus value of (111) plane is smaller than that of (100) and (110) planes, and the relationship of elastic modulus of the three classical planes is corresponding to that of simulation. For the three planes, the relationship of increasing slopes of scratching loads along with scratching depths is corresponding to that from the experiments.The phenomena mentioned above indirectly prove that MD is effective method to research silicon nano-machining process, and that relative basic theories about building models are right.
     Secondly, nano-cutting mechanism is studied through analyzing atomic temporal map, structural variation of deforming areas, the development of work piece potential, cutting force and so on, and anisotropic influences on cutting process are studied, also. The simulation results shows that single crystal structure phase change is progressive without dislocations during nano-cutting process according to change process of potential and cutting force; there are differences of potentials in chip area of the three crystal planes; the expanding velocity of deformed area near tool’s rake face is in the same order with cutting speed; on machine surface altitude root mean square deviation is in order of 0.01 nm; stress is in order of 0.01 GPa and there are differences in stress values due to different crystal planes.
     Finally, diamond tool wear during single crystal silicon nano-cutting is studied, and the effect of temperature viriation on tool wear is researched through building cutting model. According to atomic temporal map, some outdoor atoms of tool are moved in the initial phase of cutting, and then degree of tool wear is reduced obviously in the following cutting process. There are different phase structures formed in the tool during cutting process and the phase structures are analyzed by radial distribution functions. There is an increase of atomic density in subsurface of tool which prevents tool from further wear. Average atomic potentials of tool’s top surface and sub-surface are added with increase of system temperature while the cutting force is lessened. The activity of silicon atoms is raised remarkably due to increase of temperature than that of tool atoms so that the cutting process can be continued steadily.
引文
1袁哲俊.纳米科学和技术的新发展.工具技术. 2004, 38: 3~26
    2 S. Shimada, N. Ikawa, G. Ohmori and H. Tanaka. Molecular dynamics analysis as compared with experimental results of micromachining. Annals of the CIRP. 1992. 41(1):117~120
    3 N. Ikawa, S. Shimada, and H. Tanaka. Minimum thickness of cut in micromachining. Institute of Physics. Nanotechnology. 1992, 3(1): 6~9
    4 S. N. Ikawa, H. Tanaka and G..Ohmori. An Atomic Analysis of Tool-work Interaction in Diamond Turning. Annals of CIRP. 1991, 40 (1): 551~554
    5温诗铸.纳米摩擦学进展.北京:清华大学出版社, 1996: 69~80
    6 J. Belak, I. F. Stowers. A Molecular Dynamics Model of the Orthogonal Cutting Process. Precision Eng. 1990:76~79
    7 IF Stowers, J Belak, DA Lucca, R Komanduri. Molecular dynamics simulation of the chip forming process in single crystal copper and comparison with experimental data. Proc of the ASPE Annual Conference 1991:100~103
    8林滨,韩雪松.于思远.纳米磨削过程中分子动力学计算机仿真实验.天津大学学报. 2000, 33(5): 652~656
    9罗熙淳,梁迎春,董申.分子动力学在单点金刚石超精密车削机理研究中的应用.工具技术. 2000, 34(4):3~7
    10罗熙淳,梁迎春,董申.单晶硅纳米加工机理的分子动力学研究.航空精密制造技术. 2000, 36(3): 21~24
    11罗熙淳,梁迎春,董申.单晶铝纳米切削过程分子动力学模拟技术研究.中国机械工程. 2000, 11(8): 860~862
    12唐玉兰,梁迎春,霍德鸿,程凯.基于分子动力学单晶硅纳米切削机理研究.微细加工技术. 2003, 76(2):76~80
    13唐玉兰,梁迎春,霍德鸿,程凯.单晶硅和单晶铝纳米切削过程比较. .哈尔滨工业大学学报. 2004, 36(1):39~42
    14唐玉兰,梁迎春,程凯.纳米切削分子动力学仿真的研究进展.系统仿真学报. 2004, 16(4): 745~748
    15 P. N. Blake. Ductile-Regime Machining of Germanium and Silicon. Journalof the American Ceramic Society Blackwell Synergy. 1990, 73(44):949~957
    16 S Shimada, N Ikawa, T Inamura, N Takezawa. Brittle-Ductile Transition Phenomena in Microindentation and Micromachining. Annals of CIRP. 1995,44(1): 523~526
    17 R. Komanduriyz, N. Chandrasekaranz, and L. M. Raff. Molecular dynamics simulation of the nanometric cutting of silicon. Philosophical Magazine B. 2001, 81(12): 1989~2019
    18 H. Wu, B. L, S. Y. Yu and H. T. Zhu. Molecular Dynamics Simulation on the Mechanism of Nanometric Machining of Single-crystal Silicon. Materisls Science Forum. 2004, 471-472: 144~148
    19 J. Belak. Nanotribology: Modelling Atoms when Surfaces Collide (Energy and Technology Review)(Livermore, CA: Lawrence Livermore Laboratory) 1994, 8: 13~24
    20 M Doyama, T Nozaki, Y Kogure, T Yokotsuka. Plastic deformation of pure silicon nanocrystals by molecular dynamics. Nanostructured Materials. 1999, 12: 333~338
    21 M. Doyama, T. Nozaki, and Y. Kogure. Cutting compression and shear of silicon small single crystals. Nuclear instruments & methods in physics research. Section B. 1999, 153: 147~152
    22 F. Z. Fang, H. W, Y. C. Liu. Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. International Journal of Machine Tools & Manufacture. 2005, 45: 1681~1686
    23唐玉兰.基于分子动力学单晶材料纳米切削及相关技术研究.哈尔滨工业大学博士学位论文. 2004: 27~48
    24 R. Komanduri, N. Chandrasekaran and L.M. Raff. Molecular dynamics simulation of the nanometric cutting of silicon. Philosophical Magazine B. 2001, 81(12): 1989~2019
    25 S. Shimada, T. Inamura and N. Ikawa. Possible Mechnaism of Brittle Materials. International Symposium on Advnaces in Abrasive Technology, 1997: 29~32
    26 L. Zhang and H. Tanaka. Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribology International. 1998, 31(8): 425~433
    27 Zhang, L.C. and H. Tanaka, On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME International Journal A 1999, 42(4): 546~559
    28 J. Belak, D.B.B.a.I.F.S. Simulation of Nanomerter-scale Deformation of Metallic and Ceramic Surface. MRS Bulletin. 1993, 18(5): 55~61
    29 J. Belak, J. N. G., D. B. Boercker and I. F. Stowers. Molecular Dynamics Simulation of Mechanical Deformation of Ultra-thin Metal and Ceramic Films. Spring meeting of the Materials Research Society. 1995: 181~190
    30 N. J. Brown, B. A. F, P. P. Hed and I. F. Stowers. Proceeding of 43rd Annual Symposium on Frequency Control. New York. 1989: 611~616
    31 S Shimada, N Ikawa, H Tanaka, G Ohmori. Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. Annals of CIRP.1993, 42(11): 91~94
    32 SH Shimada, N. Ikawa, H. Tanaka, J. Uchikoshi. Structure of micromachined surface simulated by molecular dynamics analysis. Annals of CIRP. 1994, 43(11): 51~54
    33 R. Komanduri, N. Chandrasekaran and L. M. Raff. Orientation Effects in Nanometric Cutting of Single Crystal Materials: An MD Simulation Approach. Annals of CIRP. 1999, 48: 67~72
    34 R. Komanduri, N. Chandrasekaran and L. M. Raff. MD Simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting. Wear, 2000, 242: 60~88
    35 R. Rentsch. Influence of crystal orientation on the nanometric cutting process. Proceeding of the 1st International Euspen conference Bremen. 1999: 250~253
    36 R. Rentsch, I. Inasaki. Investigation of Surface Integrity by Molecular Dynamics Simulation. Annals of CIRP. 1995, 44(11): 295~298
    37 R. Rentsch, I. Inasaki. Molecular dynamics simulation for abrasive processes. Annals of CIRP. 1994, 43(11): 327~330
    38 S. Shimada, N. I. Molecular. Dynamics Analysis of nanometric cutting mechanism. Mesoscopic Dynamics of Fracture. 1998, 264: 63~75
    39罗熙淳.基于分子动力学的微纳米加工表面形成机理研究.哈尔滨工业大学博士学位论文. 2002: 41~55
    40 J. Shimizu, L.B. Zhou and H. Eda. Simulation and experimental analysis of super high-speed grinding of ductile material. Journal of Materials Processing Technology. 2002, 129(11): 19~24
    41 Y Y Ye, R J R Morris, A Bastawros. A Chandra Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology. 2003, 14: 390~396
    42 Y. R. Jeng, P. C. Tsai and T. H. Fang. Molecular dynamics studies of atomic-scale friction for roller-on-slab systems with different rolling-sliding conditions. Nanotechnology. 2005, 16(9): 1941~1949
    43 I Zarudi, W C D Cheong, J Zou and L C Zhang. Atomistic structure of monocrystalline silicon in surface nano-modification. Nanotechnology 2004, 15(1): 104~107
    44 K. Maekawa, A. Itoh. Friction and tool wear in nano-scale machining-A molecular dynamics approach. Wear. 1995, 188(11): 115~122
    45 K. Cheng, et al. Modeling and simulation of the tool wear in nanometric cutting. Wear. 2003, 255(22): 1427~1432
    46 X. P. Li, T. He and Rahman. M. Tool Wear Characterics and Their Effects on Nanoscale Ductile Mode. Wear. 2005, 259(22): 1207~1214
    47 M. B. Cai, X. P. Li and M. Rahman. Study of the Mechanism of Groove Wear of the Diamond Tool in Nanoscale Ductile Mode Cutting of Monocrystalline Silicon. Journal of Manufacturing Science and Engineering. 2007, 129(2): 281~286
    48井川直哉.超精密切削加工の極限.精密工學會志. 1986, 52(12): 14~20
    49 N. P. Hung and Y. Q. Fu. Effect of Crystalline Orientation in the Ductile-Regime Machining of Silicon. The International Journal of Advanced Manufacturing Technology. 2000, 16(12): 871~876
    50 M. Zhou, et al. brittle-ductile Transition in diamond cutting of silicon single crystals. Taylor & Francis. 2001, 4: 447~460
    51 B. B. a. X. Li, Mircomechanical and Tribological Characterization of Doped Single-crystal Silicon and Poly-Silicon Film for Micro-electromechanical Systems. J. Mater. Res. 1997, 1: 54~63
    52 V. N. K. a. B. Bhushan. Scanning and Transmission Electron Microscopoies of Single-crystal Silicon Microworn/Machined Using Atomic ForceMicroscopy. J. Mater. Res. 1997, 12: 3219~3224
    53 B. Bhushan, S. Sundararajan. Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Materialia. 1998, 46(11): 3793~3804
    54 X. Z. a. B. Bhushan. Material Removal Mechanisms of Single-crystal Silicon on Nanoscale and at Uitralow Loads. Wear. 1998, 223(1-2): 66~78
    55 K. Ueda, T. H, H. Fu and K. Manabe. Atomic-level Material Removal Mechanism of Grap-hite Studied by STM and MD. JSPE. 1998, 64(11): 1653~1657
    56 Lucca A. Seo, Y. W, R. Komanduri. Effect of tool edge geometry on energy dissipation in ultraprecision machining. Annal of CIRP. 1993, 42(11): 83~86
    57 D. A. Lucca, Y. W. Seo and R. L. Rhorer. Aspects of surface generation in orthogonal ultraprecision machining. Annal of CIRP. 1994, 43: 43~46
    58 R. C. Barrett and C. F. Quate. Imaging polished sapphire with atomic force microscopy. Journal of vacuum science and technology. 1990, 8(1): 400~402
    59 E. Brinksmeier, R. H. a. O. R. Characterization of Micromachined Surfaces by Atomic Force Microscopy. Ind. Diam. Rev, 1996, 2: 59~63
    60 Y. I, K. K, Nanotopography of Ultra-precise Ground Surface of Fine Ceramics Using Atomic Force Microscope. Annals of the CIRP. 1993, 42(1): 647~650
    61赵清亮.基于原子理显微镜的纳米加工技术研究.哈尔滨工业大学博士学位论文. 2000, 34~58
    62 C. Y. Tang, L. C. Zhang. A molecular dynamics analysis of the mechanical effect of water on the deformation of silicon monocrystals subjected to nano-indentation. Nanotechnology. 2005, 16(1): 15-20
    63 K. Mylvaganam, L. C. Zhang. Effect of oxygen penetration in silicon due to nano-indentation. Nanotechnology. 2002, 13(5): 623~626
    64 W. C. D. Cheong, L. C. Zhang. Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology. 2000, 11(3): 173~180
    65 A. Gannepalli, S. K. Mallapragada. Molecular dynamics studies of plastic deformation during silicon nanoindentation. Nanotechnology. 2001, 12(3): 250~257
    66 D Mulliah, SD Kenny, R Smith, CF Sanz-Navarro. Molecular dynamic simulations of nanoscratching of silver (100). 2004, 15(3): 243~249
    67 D. M. Roger Smith, et al. Stick slip and wear on metal surfaces. Wear. 2005, 259(1-6): 459~466
    68 D. Mulliah, S. D. Kenny and R. Smith. Modeling of stick-slip phenomena using molecular dynamics. Physical review B. 2004, 69(20): 205407~205407
    69 Fermi E. Fermi, J. p. a. S. M. U. Studies of Non-Linear Problems in Enrico Fermi:collected Papers. University of Chicago Press, 1955: 978~991
    70 J. M. Haile. Molecular Dynamics Simulation: Elementary Methods. 1976: 98~103
    71 B. J. A. a. T. E. Wainwright. The Property of Hard Sphere system. Phys. Rev. 1962, 127: 359~366
    72 J. B. Gibson, A. N. G., M. Milgrm. The Potential of Liquid. Phys. Rev. 1960, 120: 1229~1340
    73 L. Verlet. A New Algrorisum of MDS. Phys.Rev. 1967, 159: 98~110
    74 R. C .a. M. Parrinello. Unified Approach for Molecular Dynamics and Density Functional Theory. Phys. Rew. lettes. 1985, 55(22): 2471~2474
    75 Nakano. Parallel Multilevel Preconditioned Conjugate-gradient Approach to Variablecharge Molecular Dynamics. Computer Physics Communication. 1997, 104(1-3): 59~69
    76 Y. Andersson, E. h, P. Apell. Densitu-functional Account of Van Der Waals Forces Between Parallel Surface. Solid State Communication. 1998, 106(5): 235~238
    77 Patrick emmer and J. Peter. Knowles Generation of Functional Derivatives in Kohn-Sham Density Functional Theory. Computer Physics Communications. 1997,100(1-2): 93~98
    78王俊,王炜.蛋白质动力学理论研究中的计算机模拟方法.物理学进展. 1998, 17(3): 289~319
    79 T. Ohkubo, Y. H, and K. Nikawa. Molecular Dynamics Simulation of Electromigration in Nano-sized Metal Lines. Materials Transaction. 1996, 37(3): 454~457
    80 J. Belak, W. G. H, C. G. Hoover, A. J. De and I. F. Stowers Molecular Dynamics Modeling Applied to Indentation and Metal Cutting Problems.Thrust Area Reps. 1990, (89):4~8
    81 J. Belak, et al. Molecular dynamics simulation of mechanical deformation of ultra-thin metal and ceramic films. Spring meeting of the Materials Research Society (MRS), San Francisco. 1995: 17~21
    82 N. J. Brown, B. A. F, P. P. Hed and I. F. Stowers. Proceeding of 43rd Annual Symposium on Frequency Control. New York, 1989: 611~616
    83 J. Glosli, J. B. a. M. P. Molecular Dynamics Modeling of Ultrathin Amorphous Carbon Films. Proceeding of the Fourth International Symposium on Diamond Materials Pennington. 1996: 25~37
    84 T. Inamura, H. Suzuki and N. Takazawa. Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool. International Journal of the Japan Society for Precision Engineering. 1991, 25(44): 259~266
    85 B. J. Alder and T. E. Wainwright. Phase Transition in Elastic Disks. Phys. Rev. 1962, 127(2): 359~361
    86冯端.金属物理学结构与缺陷第一卷.北京:科学出版社, 2000: 31~76
    87 R. M. J. Cotterill and M. Doyama. Energy and Atomic Configuration of Complete and Dissociated Dislocations. I. Edge Dislocation in an fcc Metal. Phys. Rev. 1966, 145(2): 465~ 478
    88 M. S. Daw, M. I. B. Embedded Atom Method Derivation and Application to Impurities, Surface, and Other Defects in Metals. Physical Review B. 1984, 29(12): 6443~6453
    89 M. I. Baskes. Modified Embedded-Atom Potentials for Cubic Materials and Im-purities. Physical Review B. 1992, 46(5): 2727~2742
    90 Y. K. Doyama. Embedded Atom Potentials in fcc and bcc Metals. Computational. Materials Science. 1999, 14: 80~83
    91 M. Doyama, Y. K. Computer Simulation of Creation and Motion of Dislocations during Plastic Deformation in Copper. Materials Science and Engineering A. 2001, 39(310): 451~455
    92 J. Tersoff. Modeling Solid-state Chemistry: Interatomic Potentials for Multicomponent Systems. Physical Review B. 1989, 39(8): 5566~5568
    93 D. W. Brenner. Empirical Potential for Use in Simulating the Chemical Vapor Deposition of Diamond Films. Phys. Rev. B. 1990, 42(15): 9458~9479
    94 R. W. Honeycutt. The Potential Calculation and Some Applications. Methods in Computational Physics. 1970, 9: 136-161
    95 D. Beeman. Some Multistep Methods for Use in Molecular Dynamics Calculations. Journal of Computational Physics. 1976, 20: 130~139
    96 C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equation. Englewood Cliffs, NJ: Prentice-Hall. 1971, 1: 1~54
    97 A. Rahman. Correlations in the Motion of Atoms in Liquid Argon. Physical Review A. 1964, 136(2): 405-411
    98 A. Sotoh. Stability of Various Molecular Dynamics Algorithms. ASME: Journal of Fliud Engineering.1997, 119: 476~480
    99霍德鸿.微结构力学性能的分子动力学仿真和实验研究.哈尔滨工业大学博士学位论文. 2004: 50~62
    100 G. Binnig, H. Rohrer, Helv. Scanning Tunneling Microscope. Phys. Acta. 1982, 55: (4) 726~729
    101 G. Binnig, C. F. Quate and C. Gerber. Atomic Force Microscope. Physical Review Letters. 1986, 56(9): 930~934
    102 D. T. The hardness of metals Oxford. Clarendon Press, 1952: 44~51
    103 S. I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Eng. Sci. 1965, 3(1): 47~56
    104 W. C. Oliver, P. G. M. An improved technique for determining harness and elastic modulus using bad and displacement sensing indentation experiments. Journal of Material Research. 1992, 7(6): 1564~1583
    105 G. M. Pharr, O. W. C, F. R. Brotzen. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. Journal of Material Research. 1992, 7(3): 613~617
    106 D. R. Clarke, C. M. Kroll, P. D. Kirchner, R. F. Cook. Amorphization and Conductivity of Silicon and Germanium Induced by Indentation. Phys. Rev. Lett. 1988, 60(21): 2156~2159
    107 J. S. Williams, Y. Chen, J. Wong-Lueng, et al. Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters Mater. Res. 1999, 14(2): 2338~2343
    108 A. B. Mann, D. Van Heerden, J. B. Pethica and T. P. Weihs. Size-dependentphase transformations during point loading of silicon Mater. Res. 2000, 15(8): 1754~1758
    109 A. Kailer, Y. G. Gogotsi and K. G. Nickel. Phase transformations of silicon caused by contact loading. 1997, 81(7): 3057~3062
    110徐伟平,李光宪.分子自组装研究进展.化学通报. 1999, 2: 21~25
    111 S. D. Kenny, E. M. Asta Richter, Michael Gruner. Stick slip and wear on metal surfaces. Wear. 2005, 259: 459~466
    112 C. L. Kelchner, S. J. Plimpton and J. C. Hamilton. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B. 1998, 58(17): 11085~11088
    113 Yen Hung Lin, T. C. C, Ping Feng Yang, et al. Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon. Applied Surface Science. 2007, 254(5): 1415~1422
    114 Van Vlack, L. H. Elements of Materials Science and Engineering. Addison-Wesley. 1980, 10~557
    115 M. N. a. S. Y. Calculation of mechanical properties of solids using molecular dynamics method. JSME Int. J A. 1996, 39(606): 12~15
    116 K. J. Stout. Development of Methods for the Characterisation of Roughness in Three Dimensions. Penton Press. 2000, 90: 119~123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700