用户名: 密码: 验证码:
成分和多层结构对非晶合金薄膜力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们在关注非晶态合金强度的同时也致力于提高其室温塑性。研究发现,非晶态合金的强度和塑性变形行为与合金成分、第二相的加入及变形速率密切相关。非晶薄膜中插入晶体层或非晶层形成多层结构,能影响多层膜的强度和塑性变形行为,值得进行深入的研究。本文使用磁控溅射制备了CuW非晶薄膜和CoZrNb/S(S=Ag, Cu, CuTa)多层膜,使用多种技术表征了其结构,采用纳米压入技术测量了其力学性能(硬度、弹性模量、塑性变形等),研究了多层膜周期结构对硬度的影响,讨论了非晶基多层膜塑性变形的表征、特征及机制。
     结果表明,非晶和非晶多层膜发生局域剪切变形,变形特征与应变率、成分、多层结构有关。对于CuW非晶合金,当应变速率和铜含量较低时,载荷-位移曲线表现为锯齿流变特征;随应变率和铜含量的增大,锯齿流变特征减弱,纳米压痕周围的剪切带数量增多,塑性变形能力提高。对于CoZrNb非晶合金,晶体层的加入形成非晶/晶体多层结构能抑制剪切带的扩展,促进剪切带的萌生,提高塑性变形能力;随调制周期的减小,塑性增强效果更加明显。纳米划痕实验表明,非晶薄膜从剪切带萌生、扩展阶段发展到剪切断裂阶段存在一临界载荷,我们可用这个临界载荷定量表征非晶和非晶/晶体多层膜的塑性。CoZrNb薄膜对应的临界载荷是46mN,而周期为8nm的CoZrNb/Cu多层膜的临界载荷大于100mN。非晶CuTa层加入到CoZrNb非晶合金中对塑性变形行为影响不明显。
     非晶/晶体多层膜随周期减小表现出不同程度的硬度增强。硬度增强效应与多层膜层间强度错配相关:强度错配变小,硬度增强效应增大,说明针对晶体/晶体多层膜提出的强度错配理论也适用于非晶/晶体多层膜。在强度错配最大的CoZrNb/Ag体系中,在周期较大时(Λ≥16nm)出现软化现象,这是由于大的强度错配导致塑性变形主要局域于硬度较低的Ag层中。
     非晶-CoZrNb/非晶-CuTa多层膜由于缺乏阻碍位错运动的增强机制,硬度不随周期变化。实验证实多层膜退火后致密度的提高是由原子平均距离变小(Co-Co平均键长从0.2496nm变为0.2397nm)和缺陷率降低共同引起的。致密度的提高导致CoZrNb/CuTa多层膜的弹性模量和硬度随退火温度的升高而增大。
People concern about the strength of amorphous alloys, but also commit to improving their plasticity at room temperature. It has been found that the strength and plastic deformation behaviors of amorphous alloys are related with deformation rates, compositions and the addition of a second phase. The multilayer structure formed by inserting amorphous or crystalline layer into amorphous films may affect the strength and plastic deformation, which is worthy of an in-depth study. In this dissertation, amorphous CuW films and CoZrNb/S(S=Ag, Cu, CuTa) multilayers were prepared by magnetron sputtering. Their structure was characterized with various methods, and their mechanical properties including hardness, elastic modulus and plastic deformation behavior were tested by nanoindentation technique. After studying the mechanical behaviors of amorphous alloy films, we analyzed the relationship between hardness and periodical structure, and explored the characterizations, characteristics and mechanisms of plastic deformation of amorphous-based multilayers.
     The results show that both amorphous alloy films and amorphous-based multilayers deform by localized shear bands. The deformation characteristics vary with strain rate, composition and multilayer structure. For amorphous CuW films, lower strain rate and lower Cu content promote more obvious serrated flow on load-displacement curves. With the increase of strain rate and Cu content, the serrated flow characteristics weaken. The increasing strain rate and Cu content also result in increasing number of shear bands around nanoindents, and then increasing the plasticity. For amorphous CoZrNb films, the inserting crystalline layers, forming amorphous/crystalline multilayer structure, could both inhibit the propagation of shear bands and promote the nucleation of shear bands, which increases the plasticity. What’s more, the effect is more pronounced when the periodicity is smaller. Nanoscratch results show that there exists a critical load, above which the samples fracture along the scratch tracks. The critical load can be used to characterize quantitatively the plasticity of CoZrNb and CoZrNb/Cu films. For amorphous CoZrNb film, the critical load is only 46mN. For the multilayer withΛ=8nm, the critical load is larger than 100mN. The addition of CuTa amorphous layers into the CoZrNb amorphous alloy has little effect on the plastic deformation.
     For amorphous/crystalline multilayers, there exists hardness enhancement with the decrease of the periodicity. The extent of hardness enhancement is closely related to the strength mismatch of component elements. With the decrease of the strength mismatch, the hardness enhancement increases. The strength mismatch theory, which is originally put forward to the crystalline/crystalline multilayers, is also suited to amorphous/crystalline multilayers. CoZrNb/Ag system with the largest strength mismatch shows a softening effect, whenΛ≥16nm, which can be ascribed to the localization of plastic deformation in softer Ag layers.
     For CoZrNb/CuTa multilayers, there is no hardness enhancement with decreasing periodicity, which can be attributed to the absence of the dislocation movement. After thermal annealing, the density increases due to the decrease of the bond distance (the Co-Co average bond distance decreases from 0.2496nm to 0.2397nm) and the annihilation of defects with increasing annealing temperature. The densification results in the enhancement of both elastic modulus and hardness.
引文
[1] Spaepen F. Microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall., 1977, 25: 407-415.
    [2] Cytron S J. A metallic glass-metal matrix composite. J. Mater. Sci. Lett., 1982, 1(5): 211-213.
    [3] Kato H, Inoue A. Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloys containing ZrC particles. Mater. Trans. JIM, 1997, 38(9): 793-800.
    [4] Conner R D, Dandlier R B, Johnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater., 1998, 46(17): 6089-6012.
    [5] Kramer J. Amorphous state of metals. Z. Phys., 1937, 106: 675-691.
    [6] Brenner A, Couch D E, Williams E K. Electro deposition of alloys of Phosphorus with nickel or cobalt. J. Res. Natn. Bur. Stand., 1950, 44: 109-119.
    [7] Klement K, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloy. Nature, 1960, 187: 869-871.
    [8] Taaur B Y, Lau S S, Hung L S, et al. Microalloying by ion-beam mixing. Nucl. Instrum. Meth., 1980, 182-183: 67-77.
    [9] Inoue A, Zhang T, Masumoto, et al. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater. T. JIM, 1989, 30: 965-972.
    [10] Xu Y K, Ma H, Xu J, et al. Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater., 2005, 53(6): 1857-1866.
    [11] Schroeder V, Gilbert C J, Ritchie R O. Effect of aqueous environment on fatigue-crack propagation behavior in a Zr-based bulk amorphous alloy. Scripta Mater., 1999, 40(9): 1057-1061.
    [12] Inoue A, Gook J S. Fe-based ferromagnetic glassy alloys with wide supercooled liquid. Mater. Trans. JIM, 1996, 37: 32-35.
    [13] Inoue A, Nishiyama N, Matsuda T. Preparation of bulk glassy Pd40Ni10Cu30P20 Alloy of 40 mm in diameter by water quenching. Mater. Trans. JIM, 1996, 37: 181-184.
    [14] Bains A S, Gordon C A, Granato A V, et al. The shear modulus of bulk amorphous Pd40Ni40P20 and its relation to viscosity and specific heat. J. Alloy. Compd., 2000, 310(1-2): 20-23.
    [15]高城辉.非晶态合金镀及其镀层性能.北京:科学出版社, 2004.
    [16] Chen H S. Thermodynamic considerations on formation and stability of metallic glasses. Acta Metall., 1974, 22(12): 1505-1511.
    [17]潘峰,柳百新.互不固溶系统的固态反应非晶化.材料研究学报, 1998, 12(3): 311-313.
    [18] Inoue A, Nishiyama N. Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys. Mater. Sci. Eng. A, 1997, 226-228(15): 401-405.
    [19] Ma E. Alloys created between immiscible elements. Prog. Mater. Sci., 2005, 50: 413-509.
    [20] Otomo S. Induced magnetic anisotropy in Co-TM-Zr (TM=Nb, Ta, Mo, W, and Ni) amorphous sputtered films. J. JPN. I. Met., 1996, 60(5): 529-536.
    [21] Jimenez O, Audronis M, Baker M A. Structure and mechanical properties of nitrogen-containing Zr-Cu based thin films deposited by pulsed magnetron sputtering. J. Phys. D-Appl. Phys., 2008, 41(15): 155301.
    [22]惠希东,陈国良.块状非晶合金.北京:化学工业出版社, 2007.
    [23] Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater., 2007, 55: 4067-4109.
    [24] Ott R T, Fan C, Li J, et al. Structure and properties of Zr–Ta–Cu–Ni–Al bulk metallic glasses and metallic glass matrix composites. J. Non-cryst. Solids, 2003, 317(1-2): 158-163.
    [25] Ma H, Shi L L, Xu J, et al. Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett., 2005, 87: 181915.
    [26] Avedesian M M, Baker H. Magnesium and magnesium alloys. ASM International. Materials Park, USA, 1999.
    [27] Inoue A, Shen B L, Koshiba H, et al. Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys. Acta Mater., 2004, 52(6): 1631-1637.
    [28]孙军,张国军,刘刚,等.大块非晶合金力学性能研究进展.西安交通大学学报, 2001, 35(6): 640-645.
    [29] Narayan R, Mungole, M N. Electrodeposition of Ni-P alloy coatings. Surf. Technol., 1985, 24(3): 233-239.
    [30] Yokoyama Y, Akeno Y, Yamasaki T, et al. Evolution of mechanical properties of cast Zr50Cu40Al10 glassy alloys by structural relaxation. Mater. Trans., 2005, 46 (12): 2755-2761.
    [31] Li J X, Shan G B, Gao K W, et al. In situ SEM study of formation and of shear bands and microcracks in bulk metallic glasses. Mater. Sci. Eng. A, 2003, 354(1-2): 337-343.
    [32] Gilbert C J, Ritchie R O, Johnson W L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett., 1997, 71: 476-478.
    [33] Luborsky F E主编,柯成等译.非晶态金属合金.北京:冶金工业出版社, 1989.
    [34] Inoue A. Stabilization and high strain-rate superplasticity of metallic supercooled liquid. Mater. Sci. Eng. A, 1999, 267(2): 171-183.
    [35] Inoue A, Kawamura Y, Saotome Y. High strain rate superplasticity of supercooled liquid for amorphous alloys. Mater. Sci. Forum, 1997, 233-234: 147-153.
    [36] Tmnbull D, Cohen M H. Free-volume model of the amorphous phase: glass transition. J. Chem. Phys., 1961, 34: 120-125.
    [37] Wright W J, Schwarz, R B, Nix, W D. Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng. A, 2001, 319: 229-232.
    [38] Bruck H A, Rosakis A J, Johnson W L. The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res., 1996, 11: 503-511.
    [39] Flores K M, Dauskardt R H. Enhanced toughness due to stable crack tip damage zones in bulk metallic glass. Scripta Mater., 1999, 41(9): 937-943.
    [40] Liu Y H, G Wang, Wang R J, et al. Super plastic bulk metallic glasses at room temperature. Science, 2007, 315: 1385-1388.
    [41] Calin M, Zhang L C, Eckert J. Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy. Scripta Mater., 2007, 57(12): 1101-1104.
    [42] Lee M L, Li Y, Schuh C A. Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater., 2004, 52(14): 4121-4131.
    [43] Donohue A, Spaepen F, Hoagland R G, et al. Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett., 2007, 91: 241905.
    [44] Wu F F, Zhang Z F, Jiang F, et al. Multiplication of shear bands and ductility of metallic glass. Appl. Phys . Lett., 2007, 90: 191909.
    [45]张泰华.微/纳米力学测试技术及其应用.北京:机械工业出版社, 2004.
    [46]李春燕,寇生中,胡勇,等. Cu基块状非晶晶化过程的微区变形及力学性能.中国有色金属学报, 2007, 17(10): 1586-1591.
    [47]李维火.块体非晶合金及其复合材料微观力学性能研究: [博士学位论文].上海:上海大学, 2005.
    [48] Wright W J, Saha R, Nix W D. Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. JIM, 2001, 42(4): 642-649.
    [49] Schuh C A, Nieh T G. A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater., 2003, 51: 87-99.
    [50] Wang J G, Choi B W, Nieh T G, et al. Crystallization and nanoindentation behavior of a bulk Zr-AI-Ti-Cu-Ni amorphous alloy. J. Mater. Res., 2000, 15: 798-807.
    [51] Wei B C, Zhang T H, Li W H, et al. Serrated plastic flow during nanoindentation in Nd-based bulk metallic glasses. Intermetallics, 2004, 12: 1239-1243.
    [52] Golovin Y I, Ivolgin V I, Khonik V A, et al. Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Mater., 2001, 45(8): 947-952.
    [53] Schuh C A, Argon A S, Nieh T G, et al. The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. A, 2003, 83: 2585-2597.
    [54] Nieh T G, Schuh C A, Wadsworth J, et al. Strain rate-dependent deformation in bulk metallic glasses. Intermetallics, 2002, 10: 1177-1182.
    [55] Schuh C A, Lund A C, Nieh T G. New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater., 2004, 52(20): 5879-5891.
    [56] Zhang H W, Subhash G, Kecskes L J, et al. Mechanical behavior of bulk (ZrHf)TiCuNiAl amorphous alloys. Scripta Mater., 2003, 49: 447-452.
    [57] Li W H, Wei E H, Zhang T H, et al. Mechanical behavior of Zr65Al10Ni10Cu15 and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses. Mater. Trans., 2005, 46(12): 2954-2958.
    [58] Hays C C, Kim C P, Johnson W L. Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater. Sci. Eng. A, 2001, 304-306(31): 650-655.
    [59] Choi-Yim H, Conner R D, Szuecs F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites. Scripta Mater., 2001, 45(9): 1039-1045.
    [60] Bian Z, Pan M X, Zhang Y, et al. Carbon-nanotube-reinforced Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass composites. Appl. Phys. Lett., 2002, 81: 4739.
    [61] Saida J, Setyawan A D H, Kato H, et al. Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Appl. Phys. Lett., 2005, 87: 151907.
    [62] Lee J C, Kim Y C, Ahn J P, et al. Enhanced plasticity in a bulk amorphous matrix composite: macroscopic and microscopic viewpoint studies. Acta Mater., 2005, 53 (1): 129-139.
    [63] Stephen J L, Molina-Aldareguia J M. Multilayered materials: a palette for the materials artist.Phil. Trans. R. Soc. Lond. A, 2003, 361: 2931-2949.
    [64] Urazhdin S, Loloee R, Pratt J W P. Spin transport at interfaces in magnetic multilayers. J . Appl. Phys., 2006, 99: 08G504.
    [65] Paldey S, Deevi S C. Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review. Mater. Sci. Eng. A, 2003, 342: 58-79.
    [66] Was G S, Foecke T. Deformation and fracture in microlaminates. Thin Solid Films, 1996, 286: 1-31.
    [67] Philip C Y, William D S. Nanometer scale multilayered hard coating. Vacuum, 1999, 55: 179-190.
    [68] Zhang S, Sun D, Fu Y Q. Recent advances of superhard nanocomposite coatings: a review. Surf. Coat. Technol., 2003, 167: 113-119.
    [69]耿魁伟.铁-密排六方金属多层膜的微观结构与磁学性能研究: [博士学位论文].北京:清华大学, 2006.
    [70] Dumond J, Youta J P. Selective X-ray diffraction from artificially stratified metal films deposited by evaporation. Phys. Rev., 1940, 11: 357-361.
    [71]杨涛. RE-TM/Pd多层膜的垂直磁各向异性和磁光克尔效应: [博士学位论文].北京:清华大学, 1998.
    [72] Aquila A L, Salmassi F, Dollar F, et al. Developments in realistic design for aperiodic Mo/Si multilayer mirrors. Optics Express, 2006, 14: 10073-10078.
    [73] Broto J M, Ousset J C, Rakoto H, et al. Transport properties of sputtered W/C multilayers in high fields. Journal of Applied Physics, 1997, 81: 1820-1824.
    [74]程东. Cu/Ni纳米多层膜微观强化机理及微摩擦学特性的分子动力学模拟: [博士学位论文].大连:大连海事大学, 2006.
    [75] Misra A, Kung H, Embury. Preface to the viewpoint set on: deformation and stability of nanoscale metallic multilayers. Scripta Mater., 2004, 50: 707-710.
    [76] Yang W M C, Tsakalakos T, Hilliard J E. Enhanced elastic modulus in composition-modulated gold-nickel and copper-palladium foils. J. Appl. Phys., 1977, 48(2): 876-879.
    [77] Kim S H, Baik Y J, Kwon D. Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings. Surf. Coat. Technol., 2004, 187: 47-53.
    [78] Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater., 2005, 53: 4817-4824.
    [79] Chu X, Barnett S A, Wong M S, et al. Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings. Surf. Coat. Technol., 1993, 57: 13-18.
    [80] Barshilia H C, Rajam K S. Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf. Coat. Technol., 2002, 155: 195-202.
    [81] Misra A, Kung H. Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater., 2001, 3(4): 217-222.
    [82] Misra A, Hirth J P, Kung H. Single-dislocation-based strengthening mechanisum in nanoscale metallic multilayers. Phil. Mag. A, 2002, 82: 2935-2951.
    [83] Cammarata R C, Sieradzki K. Effects of surface stress on the elastic moduli of thin films and superlattices. Phys. Rev. Lett., 1989, 62: 2005-2008.
    [84] Clemens B M, Eesley G L. Relationship between interfacial strain and the elastic response of multilayer metal films. Phys. Rev. Lett., 1988, 61: 2356-2359.
    [85] Small M K, Nix W D. Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. J. Mater. Res., 1992, 7: 1553-1563.
    [86] Fartash A, Fullerton E E, Schuller I K. Evidence for the supermodulus effect and enhanced hardness in metallic superlattices. Phys. Rev. B, 1991, 44: 13760-13763.
    [87] Schweitz K O, Chevallier J, B?ttiger J, et al. Hardness in Ag/Ni, Au/Ni and Cu/Ni multilayers. Philos. Mag. A, 2001, 81(8): 2021-2032.
    [88] Lehoczky S L. Strength enhancement in thin-layered Al-Cu laminates. J. Appl. Phys., 1978, 49(11): 5479-5485.
    [89] Lehoczky S L. Retardation of dislocation generation and motion in thin-layered metal laminates. Phys. Rev. Lett., 1978, 41(26): 1814-1818.
    [90] Koehler J S. Attempt to design a strong solid. Phys. Rev. B, 1970, 2(2): 547-551.
    [91] Henein G E, Hilliard J E. Elastic modulus in composition-modulated silver-palladium and copper-gold foils. J. Appl. Phys., 1983; 54: 728-733.
    [92] Tsakalakos T, Hilliard J E. Elastic modulus in composition-modulated copper-nickel foils. J. Appl. Phys., 1983; 54: 734-737.
    [93] Pickett W E. Relationship between the electronic structure of coherent composition modulated alloys and the supermodulus effect. J. Phys. F, 1982; 12: 2195-2204.
    [94] Jankowski A F, Tsakalakos T. The effect of strain on the elastic-constants of noble-metals. J. Phys. F: Met. Pyhs., 1985, 15(6): 1279-1292.
    [95] Tejada J, Badia F, Martinez B, et al. Magnetic properties of compositionally modulated thin films of rare earth and transition metal. J. Magn. Magn. Mater., 1991, 101(1-3): 181-186.
    [96] Kiwamu T, Reiko A, Yuzuru H, et al. Exchange-biased soft underlayers for perpendicular recording. IEEE T. Magn., 2005, 41(2): 577-580.
    [97]李晓伟.防伪非晶薄膜的结构与性能: [博士学位论文].北京:清华大学, 2007.
    [98] Feng B, Cao D M, Meng W J, et al. Characterization of microstructure and mechanical behavior of sputter deposited Ti-containing amorphous carbon coatings. Surf. Coat. Technol., 2001, 148(2-3): 153-162.
    [99] Koningsberger D C, Prins R. X-ray Absorption: Principles, Applications, Techniques of EXAFS and XANES. Wiley, New York, 1988.
    [100] Vella J B, Mann A B, Kung H, et al. Mechanical properties of nanostructured amorphous metal multilayer thin films. J. Mater. Res., 2004, 19: 1840-1848.
    [101] Veprek S, Reiprich S. A concept for the design of novel superhard coatings. Thin solid films, 1995, 268: 64-71.
    [102] Leng Y, Courtney T H. Some tensile properties of metal metallic-glass laminates. J. Mater. Sci., 1989, 24(6): 2006-2010.
    [103]陈宝清.离子镀及溅射技术.北京:国防工业出版社, 1990.
    [104]马礼敦,杨福家.同步辐射应用概论.上海:复旦大学出版社, 2001.
    [105] Rehr J J, Albers R C. Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys., 2000, 72(3): 621-654.
    [106]王其武,刘文汉. X射线吸收精细结构及其应用.北京:科学出版社, 1994.
    [107] Gould C, Pappert K, Schmidt G, et al. Magnetic anisotropies and (Ga,Mn)As-based spintronic devices. Adv. Mater., 2007, 19: 323-340.
    [108] Tazaki M, Nishibori M, Kinosita K. Ultra-microhardness of vacuum-deposited films: II results for silver, gold, copper, MgF2, LiF and ZnS. Thin solid films, 1978, 51: 13-21.
    [109] Pethica J B, Hutchings R, Oliver W C. Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A, 1983, 48: 593-606.
    [110] Sneddon I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci., 1965, 3: 47-57.
    [111] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res., 1992, 7: 1564-1583.
    [112]杨国华.若干二元钴基金属多层膜的微结构与磁学性能的研究: [博士学位论文].北京:清华大学, 2004.
    [113] Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact., 2002, 48: 11-36.
    [114] Zaidia H, Djamaia A, China K J, et al. Characterisation of DLC coating adherence by scratch testing. Tribol. Int., 2006, 39: 124-128.
    [115] Misra R D K, Hadal R, Duncan S J. Surface damage behavior during scratch deformation of mineral reinforced polymer composites. Acta Mater., 2004, 52: 4363-4376.
    [116] Xie Y, Hawthorne H M. On the possibility of evaluating the resistance of materials to wear by ploughing using a scratch method. Wear, 2000, 240: 65-71.
    [117] Jardret V, Lucas B N, Oliver W, et al. Scratch durability of automotive clear coatings: A quantitative, reliable and robust methodology. J. Coat. Technol., 2000, 72(907): 79-88.
    [118] Randalla N X, Consiglio R. Nanoscratch tester for thin film mechanical properties characterization. Rev. Sci. Instrum., 2000, 71(7): 2796-2799.
    [119] Concustell A, Alcala G, Mato S, et al. Effect of relaxation and primary nanocrystallization on the mechanical properties of Cu60Zr22Ti18 bulk metallic glass. Intermetallics, 2005, 13(11): 1214-1219.
    [120] Zeng F, Gao Y, Li L, et al. Elastic modulus and hardness of Cu–Ta amorphous films. J. Alloy. Compd., 2005, 389(1-2): 75-79.
    [121] Zhang G P, Wang W, Zhang B, et al. On rate-dependent serrated flow behavior in amorphous metals during nanoindentation. Scripta Mater., 2005, 52(11): 1147-1151.
    [122] KaczmarJ. Effect of production engineering parameters on structure and properties of Cu-W composite powders. Powder Metal., 1989, 32(3): 171-174.
    [123] Ono H, Nakano T, Ohta T. Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W). Appl. Phys. Lett., 1994, 64: 1511-1513.
    [124] Radic N, Nikola B, Grzeta D, et al. Preparation and structure of Cu-W thin films. Thin Solid Films, 1993, 228(1-2): 225-228.
    [125] Rizzo H F, Massalski T B, Nastasi M. Metastable crystalline and amorphous structures formed in the Cu-W system by vapor-deposition. Metall. Trans. A, 1993, 24: 1027-1037.
    [126] Ma E, He J H, Schilling P J. Mechanical alloying of immiscible elements: Ag-Fe contrasted with Cu-Fe. Phys. Rev. B, 1997, 55: 5542-5545.
    [127] Azaroff L V. Theory of extended fine structure of X-ray absorption edges. Rev. Mod. Phys., 1963, 35(4): 1012-1022.
    [128] He J H, Sheng H W, Schilling P J, et al. Amorphous structures in the immiscible Ag-Ni system. Phys. Rev. Lett., 2001, 86: 2826-2829.
    [129] Magnan H, Chandesris D, Villette B, et al. EXAFS study of the local order in metastable fcc iron films. Surf. Sci., 1991, 251-252(1): 597-601.
    [130] Zhang G A, Yan P X, Wang P, et al. Influence of nitrogen content on the structural, electrical and mechanical properties of CrNx thin films. Mater. Sci. Eng. A, 2007, 460-461(15): 301-305.
    [131] Fischer-Cripps A C. Nanoindentation. New York: Springer Press, 2002: 61-77.
    [132] Sun Y, Bell T, Zheng S. Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurement by nanoindentation. Thin Solid Films, 1995, 258: 198-204.
    [133] Kim H S, Estrin Y, Bush M B. Plastic deformation behavior of fine-grained materials. Acta Mater., 2000, 48(2): 493-504.
    [134] Wang N, Wang Z, Aust K T, et al. Effect of grain size on mechanical properties of nanocrystalline materials. Acta Mater., 1995, 43(2): 519-528.
    [135] Ashby M F. Criteria for selecting the components of composites. Acta Metall. Mater., 1993, 41(5): 1313-1335.
    [136]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社, 1998.
    [137] Hyun S, Kraft O, Vinci R P. Mechanical behavior of Pt and Pt–Ru solid solution alloy thin films. Acta Mater., 2004, 52(14) : 4199-4211.
    [138] Haasen P. Physical metallurgy, Cambridge University Press, 1996.
    [139] Cahn R W. Aluminum-based glassy alloys. Nature, 1989, 341: 183-184.
    [140] Greer A L, Castellero A, Madge S V, et al. Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng. A, 2004, 375: 1182-1185.
    [141] Cheng Y Q, Cao A J, Sheng H W, et al. Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater. 2008, 56: 5363-5275.
    [142] Ridgway M C, Yu K M, Glover C J, et al. Composition-dependent bond lengths in crystalline and amorphized GexSi1-x alloys. Phys. Rev. B, 1999, 60: 10831-10836.
    [143] Kim J J, Choi Y, Suresh S, et al. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science, 2002, 295: 654-657.
    [144] Lee S W, Lee C M, Ahn J P, et al. A parameter governing the plasticity of Cu–Zr containing bulk metallic glasses.Mater. Sci. Eng. A, 2007, 449-451(25): 172-175.
    [145] Hajlaoui K, Yavari A R, LeMoulec A, et al. Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non-cryst. Solids, 2007, 353(3): 327-331.
    [146] Hagg G. Regularities in the crystal structure of the hydrides, borides, carbides and nitrides of the transitional elements. Z. Phys. Chem., 1931, 12(1-2): 33-56.
    [147] De Boer F R, Boom R, Miedema A R, et al. Cohesion in Metals: Transition Metal Alloys. Amsterdam: North-Holland, 1989: 293-328.
    [148] Lopez J M, Alonso J A, Gallego L J. Determination of the glass-forming concentration range in binary alloys from a semiempirical theory: Application to Zr-based alloys. Phys. Rev. B, 1987, 36: 3716-3722.
    [149]龚浩然.若干互不固溶二元系统中界面稳定性和亚稳合金相的计算: [博士学位论文].北京:清华大学, 2004.
    [150] Chu X, Barnett S A. Model of supperlattice yield stress and hardness enhancement. J. Appl. Phys., 1995, 77: 4403-4411.
    [151] Clemens B M, Kung H, Barnett S A. Structure and strength of multilayers. MRS Bull., 1999, 24(2): 20-26.
    [152] Hovsepian P Eh, Lewis D B, Munz W D. Recent progress in large scale manufacturing of multilayer/superlattice hard coatings. Surf. Coat. Technol., 2000, 133-134: 166-175.
    [153] Cavallotti P L, Lecis N, Fauser H, et al. Electrodeposition of magnetic multilayers. Surf. Coat. Technol., 1998, 105 (3): 232-239.
    [154] McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci., 1999, 44(4): 291-433.
    [155] Choi K H, Kim J Y, Lee Y S, et al. ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode. Thin Solid Films, 1999, 341(1-2): 152-155.
    [156] Li X W, Wang L Y, Yang J, et al. Interface diffusion of sputtered CoZrNb films on silicon substrate, Rare Metals, 2006, 25: 36-40.
    [157] Shin B, Park I H, Lee J W, et al. High density plasma etching of amorphous CoZrNb films for thin film magnetic devices. Thin Solid Films, 2006, 496(2): 631-635.
    [158] Miura M, Katahashi H, Muramori K, et al. Annealing behavior of magnetic anisotropy in CoNbZr films. IEEE Trans. Magn., 1988, 24(5) 2215-2220.
    [159] Daniels B J, Nix W D, Clemens B M. Effect of coherency stressed on the hardness of epitaxial Fe(001)/Pt(001) multilayers. Appl. Phys. Lett., 1995, 66(22): 2969-2971.
    [160] Lee H J, Kwon K L, Ryu C, et al. Thermal stability of a Cu/Ta multilayer: an intriguing interfacial reaction. Acta Mater., 1999, 47(15-16): 3965-3975.
    [161] Pan F, Liu B X. Ion-mixing-induced amorphization in an immiscible Au - Mo system with a small size difference. J. Phys.: Condens. Mater., 1996, 8: 383-388.
    [162] Martens H C F, Vlutters R, Prangsma J C. Thickness dependent crystallization speed in thin phase change layers used for optical recording. J. Appl. Phys., 2004, 95: 3977-3983.
    [163] Zhou G F, Jacobs B A J, van Es-Spiekman W. Laser-induced crystallization in Ge-Sb-Te optical recording materials. Mater. Sci. Eng. A, 1997, 226-228 (15): 1069-1073.
    [164] Mara N, Sergueeva A, Misra A, et al. Structure and high-temperature mechanical behavior relationship in nano-scaled multilayered materials. Scripta Mater., 2004, 50(6): 803-806.
    [165] Wen S P, Zong R L, Zeng F, et al. Thermal stability of microstructure and mechanical properties of Ni/Ru multilayers. Surf. Coat. Technol., 2008, 202(10): 2040-2046.
    [166] Kim S U, Kim K H, Koo Y M. The crystal fraction determination of the nanocrystalline phase transformed from the Fe-base amorphous matrix using EXAFS. J. Alloy. Compd., 2004, 368(1-2): 357-361.
    [167] Wei S Q, Li Z R, Yin S L, et al. Annealed crystallization of ultrafine amorphous NiB alloy studied by XAFS. J. Synchrotron Radiat., 2001, 8(2): 566-568.
    [168] Crozier E D. Impact of the asymmetric pair distribution function in the analysis of XAFS. Physica B, 1995, 208(1-4): 330-333.
    [169] Wei S Q, Oyanagi H, Liu W H, et al. Local structure of liquid gallium studied by X-ray absorption fine structure. J. Non-cryst. Solids, 2000, 275(3): 160-168.
    [170] Das J, Tang M B, Kim K B, et al. Ductile bulk metallic glass. Phys. Rev. Lett., 2005, 94: 205501.
    [171] Li X W, Song C, Zong R L, et al. Soft magnetic properties of amorphous-CoZr/ polycrystalline-M (M = Cu, Ag, Al, Cr) multilayers. Appl. Phys. A-Mater., 2008, 90(2): 305-310.
    [172] Warren B E. X-ray Diffraction. Reading Massachus-ctts: Addison-Wesley. New York, 1969. pp. 251.
    [173]文胜平.若干金属多层膜的微结构及力学性能研究: [博士学位论文].北京:清华大学, 2007.
    [174] Li T S, Li H, Pan F. Microstructure and nanoindentation hardness of Ti/TiN multilayered films. Surf. Coat. Technol., 2001, 137(2-3): 225-229.
    [175] Tse Y Y, Babonneau D, Michel A, et al. Nanometer-scale multilayer coatings combining a soft metallic phase and a hard nitride phase: study of the interface structure and morphology. Surf. Coat. Technol., 2004, 180-181(1): 470-477.
    [176]曲敬信,汪泓宏.表面工程手册.北京:化学工业出版社, 1998.
    [177] Lafaye S, Troyon M. On the friction behavior in nanoscratch testing. Wear, 2006, 261(7-8): 905-913.
    [178] Hodge A M, Nieh T G. Evaluating abrasive wear of amorphous alloys using nanoscratch technique. Intermetallics, 2004, 12(7-9): 741-748.
    [179] Moore M A. The relationship between the abrasive wear resistance, hardness and microstructure of ferritic materials. Wear, 1974, 28(1): 59-68.
    [180] Lv F, Wen S P, Zong R L, et al. Nanoindentation study of amorphous-Co79Zr13Nb8/Cr multilayers. Surf. Coat. Technol., 2008, 202(14): 3239-3245.
    [181] Chen I-W, Winn E J, Menon M. Application of deformation instability to microstructural control in multilayer ceramic composites. Mater. Sci. Eng. A, 2001, 317: 226-235.
    [182] Lowe P G. Basic Principles of plate theory. Surrey University Press, 1982, pp.44-46.
    [183] Anderson P M, Li C. Hall-Petch relations for multilayered materials. Nanostruct. Mater., 1995, 5(3): 349-362.
    [184] Spaepen F, Yu D Y W. A comparison of the strength of multilayers, thin films and nanocrystalline compacts. Scripta Mater., 2004, 50(6): 729-732.
    [185] Sun Y F, Shek C H, Guan S K, et al. Formation, thermal stability and deformation behavior of graphite-flakes reinforced Cu-based bulk metallic glass matrix composites. Mater. Sci. Eng. A, 2006, 435-436(5): 132-138.
    [186] Fan C, Ott R T, Hufnagel T C. Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett., 2002, 81: 1020.
    [187] Zhang G P, Liu Y, Wang W, et al. Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett., 2006, 88: 013105.
    [188]黄立业,徐可为,吕坚.类金刚石碳膜在纳米划擦过程中的弹-塑性变形及断裂机制分析.金属学报, 2001, 37(7): 733-736.
    [189] Shieh J, Hon M H. Observation of plastic deformation in TiAlCN/a-C ceramic nanocomposite coating. Appl. Phys. A-Mater., 2005, 80: 131-134.
    [190] Lu X C, Li M, Tang X M, et al. Micromechanical properties of hydrogenated diamond-like carbon multilayers. Surf. Coat. Technol., 2006, 201(3-4): 1679-1684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700