用户名: 密码: 验证码:
纳米氧化镁及其掺杂粉体的制备与吸附、抗菌性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米氧化镁(MgO)作为一种新型的多功能无机材料,在许多领域有着广阔应用前景,尤其是在与人类生存和健康密切相关的环境净化和抗菌方面显示了独特的优势。在氧化物的晶格中掺入外来元素会产生空位、间隙原子、置换原子和位错等晶格缺陷,而这些缺陷的产生可以在一定程度上促进母体氧化物的物理和化学性能。本文正是基于这一点,选用与Mg2+离子半径相近的Ti4+、Zn2+和Li+三种不同价态的金属离子作掺杂剂,拟通过掺杂来提高纳米MgO的吸附和抗菌性能。首先简要概述了MgO在环境净化和抗菌方面的研究进展以及纳米MgO的制备方法和掺杂改性的研究。然后采用修饰沉淀法或溶胶-凝胶法分别制备了纳米MgO和掺杂纳米MgO粉体,研究了制备工艺参数及掺杂对粉体结构、形貌的影响。最后,研究了三种不同离子掺杂对纳米MgO粉体的吸附和抗菌性能的影响,在此基础上初步探讨掺杂促进性能的机理。主要包括以下几方面:
     以聚乙二醇(PEG)为分散剂,采用直接化学沉淀法制备了纳米MgO粉体。正交实验结果显示:反应温度对晶粒影响最大,其它影响因素依次为PEG用量、反应时间、氨水用量和Mg2+浓度;就收率而言,氨水用量影响最大,PEG用量和反应时间次之,反应温度的影响更次之,Mg2+浓度的影响最小。确定纳米MgO的制备工艺条件为:氨水用量8mL,Mg2+浓度0.5mol/L,PEG用量8mL,反应温度50℃,反应时间1.5h,煅烧温度500℃。PEG对粉体颗粒的形状和大小有影响,在Mg(OH)2成核数少时,形成了片状形貌;随着成核数的增加,形成了细小颗粒密堆的“网络”状形貌。以冰乙酸作修饰剂,不仅可以避免了直接沉淀法中局部沉淀剂浓度过高,发生不均匀沉淀的现象,还可以促进前驱体Mg(OH)2晶体在(001)面的取向生长,降低由氢氧化物到氧化物热分解温度,有利于氧化物的晶化。
     直接沉淀法制备的掺钛纳米MgO,得到的粉体颗粒尺寸随着掺钛量的增加而显著增大,硬团聚严重;而修饰沉淀法制备的样品颗粒尺寸随着掺钛量的增加而减小,且团聚少,分散性好。制得的前躯体在500℃下煅烧后,所有样品均只有MgO相,而经800℃煅烧,掺钛量大于1mol%的样品中有含钛的杂相析出,因而可以确认钛在MgO晶格中固溶度为1mol%左右。随着掺钛量的增加,MgO的结晶性能降低,晶粒变小。在修饰沉淀法制备了掺锌纳米MgO中,研究发现锌含量的增加对衍射峰的强度和晶粒及颗粒大小基本上没有影响。与未加冰乙酸制备的样品相比,使用冰乙酸制得的粉体晶粒尺寸大,结晶性能好。说明冰乙酸在此制备过程中的促进了由氢氧化物到氧化物的转变,有利于产物的晶化,这与修饰沉淀法制备纳米MgO中的结论是一致的。
     采用廉价的无机溶胶-凝胶法制备了纳米MgO及掺锂纳米MgO。在制备纳米MgO过程中,溶剂用量、反应温度和柠檬酸用量对凝胶时间和晶粒都有不同程度的影响。干凝胶的热处理采用了在低温下分步预处理一段时间,然后在600℃下煅烧2h,可以制得白色的高纯纳米MgO。掺锂后干凝胶的热分解温度向高温方向偏移。600℃煅烧后,0.5% Li和1% Li样品中只有MgO相,而掺锂量高的样品中均有杂相。随着掺锂量的增加,衍射峰强度变强,晶粒和颗粒尺寸都变大,形貌也由粒状变成了薄片状。经800℃煅烧,所有掺锂样品中都有杂相存在,衍射峰更尖锐,强度更强。
     以甲基橙和大肠杆菌为模型来研究所制备粉体的吸附性能和抗菌性能。纳米MgO的吸附性能随着晶粒的变小,对甲基橙的吸附量变大,吸附速率也变快。随着处理温度的升高,达到吸附平衡时的吸附量略有增加,但吸附速率变慢。掺钛MgO对甲基橙的吸附性能都较纯MgO的好,其中1% Ti样品的吸附性能最好;掺锌MgO的吸附性能开始随着掺锌量的增大而减弱,但当掺锌量达到15mol%时,吸附速率虽减慢,但平衡时的吸附量反而增大;掺锂MgO的吸附性能随着掺锂量的增加而逐渐减弱。对大肠杆菌实验表明,掺钛MgO的抗菌性能均较纯MgO的差;掺锌MgO样品中,5% Zn和10% Zn具有良好的杀菌性能,而1% Zn几乎没有抗菌作用;1% Li和5% Li的抑菌性能与纯MgO基本相当,而10% Li的抑菌效果稍好一些。掺锂MgO的杀菌率均达99%以上,显示了优良的杀菌性能。
As a new type multifunction inorganic material, nano-MgO has wide application prospect in many fields, especially in environment purification and antibacterial materials which are closely correlated with the survival and health of human beings. Doping other ion into oxide matrix, could cause lattice defects such as vacancies, interstitials and antisites, which play an important role in modifying the physical and chemical properties of mother oxide at a certain extent. Based on this point, this paper aims to improve the adsorption and antibacterial properties of nano-MgO through doping with three different value state metal ions of Ti4+ ion, Zn2+ ion and Li+ ion, the ion radius of whose are close to Mg2+ ion. Firstly, the research progress of MgO in environment purification and antibacterial materials, and the studies of nano-MgO preparation and doping modification were introduced in brief. Subsequently, undoped and doped MgO nano-powders were synthesized by modified precipitation or sol-gel method. The influences of preparation technology and doping on the structure and morphology of nano-powders were also investigated. Finally, the adsorption and antibacterial properties of three different ions doped nano-MgO powders were studied in detail. On the basis of experimental results, the mechanism for doping to improve properties of nano-MgO was primarily discussed. This work mainly includes the following aspects:
     Nano-MgO powders were prepared by direct chemical precipitation using polyethylene glycol (PEG) as dispersing agent. The results of orthogonal experiment showed that the most important effect factor on crystalline size was reaction temperature, and then amount of PEG, reaction time, amount of ammonia and concentration of Mg2+ ion, as for product yield, the effect order was in turn amount of ammonia, amount of PEG, reaction time, reaction temperature and concentration of Mg2+ ion. The technological conditions for nano-MgO preparation were 8mL NH3·H2O, 0.5mol/L Mg2+ ions, 8mL PEG, reaction at 50℃, reaction time 1.5h and calcination at 500℃. The influence of PEG on the morphology of nano-particles was investigated. The results show that PEG may be adsorbed preferably on the (001) crystal plane of Mg(OH)2, and the growth along this facet is therefore considerably restricted to produce plates. With the increase of the nuclei, the selective adsorption is weakened, and the nuclei are mainly wrapped with PEG, which inhibit the nuclei growth to form a network-like shape. Glacial acetic acid used as a modifier not only avoids a high local concentration of precipitant, which could result in the phenomenon of inhomogeneous precipitation, but also enhances the crystal growth of the precursor Mg(OH)2 in (001) orientation, and significantly lowers the transition temperature from Mg(OH)2 to MgO in favor of the crystallization of MgO.
     Ti-doped MgO powders prepared by direct precipitation showed serious hard-agglomeration, and the particle size increasing with Ti content. However the powders prepared by modified precipitation showed a clear decrease in particle size and improved particle dispersion with the increase of Ti content. When the obtained precursors were calcinated at 500℃, all of the samples have only MgO phase. However, new phases containing titanium present besides magnesia phase in 2mol% and more Ti-doped samples calcined at 800℃, which indicated the solid solubility limit of Ti into MgO crystal lattice was about 1mol%. In addition, Ti doping has the effect of inhibiting crystallization of MgO, and the crystallite size gradually decreased with the increase of titanium content. During the preparation of Zn-doped nano-MgO by modified precipitation, it was found that Zn content has no effect on crystallization, crystallite size and particle size. Compared to the samples without using glacial acetic acid, the powders using glacial acetic acid showed big crystallite size and good crystallization. It was demonstrated that glacial acetic acid could promote the transition from hydroxide to oxide and enhance the crystallization of product, which is consistent with the results in nano-MgO preparation by modified precipitation.
     The pure and Li-doped nano-MgO were prepared by sol-gel method using low-cost inorganic salts as starting materials. In the process of MgO preparation, the amount of solvent, reaction temperature and the amount of citric acid have varying effects on gel time and crystallite size. To obtain white high-purity nano-MgO, xerogel was pretreated by the stepped temperature heat treatment at low temperature, and then calcined at 600℃for 2h. The decomposition temperature of Li-doped xerogel was shift to high temperature with increasing Li content. After calcination at 600℃, 0.5%Li and 1%Li samples only have MgO phase,and other Li-doped samples have the presence of other phases beside MgO phase. With the increase of Li content, the intensity of diffraction peak was much strong, the crystalline size and particle size were much large, and the morphology changed from granular to thin sheet-like. All of Li-doped samples calcined at 800℃have the presence of other phases beside MgO phase (including 0.5% Li sample). The diffraction peaks were much sharper, and the intensity of peaks was much stronger.
     Methyl orange and E. coli were selected as models to investigate the adsorption and antibacterial properties of the as-synthesized powders. With decreasing crystalline size of powders, the adsorption capacity of methyl orange on nano-MgO increased, and the adsorption rate was also improved. As the heat treatment temperature increased, the equilibrium adsorption capacity increased slightly, and the adsorption rate was slower. The adsorption properties of Ti-doped MgO were better than that of pure MgO, and the 1% Ti sample's adsorption performance is the best one. The adsorption properties of Zn-doped MgO start to weaken with Zn content. When Zn content achieves 15mol%, although the adsorption rate reduces, the equilibrium adsorption capacity instead increases. The adsorption properties of Li-doped MgO weaken gradually with the increase of Li content. The antibacterial experiments on E. coli indicated that the antibacterial properties of Ti-doped MgO were poorer than pure MgO. In the Zn-doped samples, 5% Zn and 10% Zn have the good sterilization performance, but 1% Zn shows hardly any antibacterial function. The antibacterial properties of 1% Li and 5% Li is almost similar to that of pure MgO, but the bacteriostatic effect of 10% Li is slightly better. The bactericidal rate of Li-doped samples reach above 99%, which demonstrates the excellent sterilization performance.
引文
[1]金宗哲.无机抗菌材料及应用.北京:化学工业出版社, 2004. 1-7
    [2] Sunada K., Kikuchi Y., Hashimoto K, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science & Technology, 1998, 32(5): 726-728
    [3] Benabbou A.K., Derriche Z., Felix C., et al. Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Applied Catalysis B: Environmental, 2007, 76(3-4): 257-263
    [4] Zang Yujing, Farnood Ramin. Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide. Applied Catalysis B: Environmental, 2005, 57(4): 275-282
    [5] Rengaraj S., Venkataraj S., Yeon Jei-Won, et al. Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Applied Catalysis B: Environmental, 2007, 77(1-2): 157-165
    [6] Tran T.H., Nosaka A.Y., Nosaka Y. Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. Journal of Physical Chemistry B, 2006, 110(50): 25525-25531
    [7] Sawai J., Igarashi H., Hashimoto A., et al. Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. Journal of Chemical Engineering of Japan, 1995, 28(5): 556-561
    [8] Sawai J., Ishizu N., Itoh M. Kinetic analysis of the bactericidal action of magnesium oxide powder slurry against Escherichia coli. Biocontrol Science, 2003, 8(3): 123-127
    [9] Sawai J., Kojima H., Igarashi H., et al. Antibacterial characteristics of magnesium oxide powder. World Journal of Microbiology & Biotechnology, 2000, 16(2): 187-194
    [10]黄蕾,李殿卿,林彦军等.纳米MgO的可控制备及其对B. niger的杀灭性能.科学通报, 2004, 49(22): 2294-2299
    [11] Makhluf S., Dror R., Nitzan Y., et al. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Advanced Functional Materials, 2005, 15(10): 1708-1715
    [12] Stark J.V., Klabunde K.J. Nanoscale metal oxide particles/clusters as chemical reagents. Adsorption of hydrogen halides, nitric oxide, and sulfur trioxide on magnesium oxide nanocrystals and compared with microcrystals. Chemistry of Materials, 1996, 8(8): 1913-1918
    [13] Stoimenov P.K., Zaikovski V., Klabunde K.J. Novel halogen and interhalogen adducts of nanoscale magnesium oxide. Journal of the American Chemical Society, 2003, 125(42):12907-12913
    [14] Kakkar R., Kapoor P.N., Klabunde K.J. Theoretical study of the adsorption of formaldehyde on magnesium oxide nanosurfaces: size effects and the role of low-coordinated and defect sites. Journal of Physical Chemistry B, 2004, 108(47): 18140-18148
    [15] Decker S.P., Klabunde J.S., Khaleel A., et al. Catalyzed destructive adsorption of environmental toxins with nanocrystalline metal oxides. fluoro-, chloro-, bromocarbons, sulfur, and organophosophorus compounds. Environmental Science & Technology, 2002, 36(4): 762-768
    [16] Jeevanandam P., Klabunde K.J. A study on adsorption of surfactant molecules on magnesium oxide nanocrystals prepared by an aerogel route. Langmuir, 2002, 18(13): 5309-5313
    [17]任冰.浅议生态环境与政治生态化.陕西行政学院学报, 2007, 21(1): 78-80
    [18] Shand M.A. The chemistry and technology of magnesia. Hoboken: John Wiley & Sons, Inc., 2006, 129
    [19] Rodriguez J.A., Jirsak T., Freitag A., et al. Interaction of SO2 with MgO(100) and Cu/MgO(100): decomposition reactions and the formation of SO3 and SO4. Journal of Physical Chemistry B, 2000, 104(31): 7439-7448
    [20] Rodriguez J.A., Perez M., Jirsak T., et al. DeNOx Reactions on MgO(100), ZnxMg1-xO(100), CrxMg1-xO(100), and Cr2O3(0001): correlation between electronic and chemical properties of mixed-metal oxides. Journal of Physical Chemistry B, 2001, 105(23): 5497-5505
    [21] Rodriguez J.A., Maiti A. Adsorption and decomposition of H2S on MgO(100), NiMgO(100), and ZnO(0001) surfaces: a first-principles density functional study. Journal of Physical Chemistry B, 2000, 104(15): 3630-3638
    [22] Andrea Scagnelli, Cristiana Di Valentin, Gianfranco Pacchioni. Catalytic dissociation of N2O on pure and Ni-doped MgO surfaces. Surface Science, 2006, 600 (2): 386-394
    [23] Ulrich Rappold, Gerhard Luft. New dry process for separating HCl from flue gases by adsorption on MgO. Chemical Engineering & Technology, 1999, 22(10): 843-846
    [24]刘朋杰,高宇,胡筱敏等.氧化镁基催化吸附剂的制备及脱硝性能研究.环境污染与防治, 2007, 29(11): 820-823
    [25] Tomoyasu Ito, Toshihiko Tashiro, Mineko Kawasaki, et al. Adsorption of methane on magnesium oxide studied by temperature-programmed desorption and ab initio molecular orbital methods. Journal of Physical Chemistry, 1991, 95(11): 4476-4483
    [26] Gregg S.J., Ramsay J. Adsorption of carbon dioxide by magnesia studied by use of infrared and isotherm measurements. Journal of the Chemical Society A, 1970, 2784-2787
    [27] Gloria Berlier, Takashi Yamamoto, Giuseppe Spoto, et al. IR spectra of ozone adsorbed on MgO. Physical Chemistry Chemical Physics, 2002, 4(15):3872-3875
    [28] Domenica Scarano, Serena Bertarione, Adriano Zecchina, et al. Adsorption of CS2 on MgO microcrystals: formation of a S-doped MgO surface. Physical Chemistry Chemical Physics, 2002, 4(2): 366-374
    [29] Bert M. Weckhuysen, Gerhard Mestl, Michael P. Rosynek, et al. Destructive adsorption of carbon tetrachloride on alkaline earth metal oxides. Journal of Physical Chemistry B, 1998, 102(19): 3773-3778
    [30] Xu Y.J., Zhang Y.F., Lu N.X., et al. Cluster models study of CH2O adsorption and dissociation at defect sites of MgO (001) surface. Physica B: Condensed Matter, 2004, 348(1-4): 190-197
    [31] Javier F. Sanz, Jaime Oviedo, Antonio Marquez, et al. Adsorption of acetone onto MgO: experimental and theoretical evidence for the presence of a surface enolate. Angewandte Chemie International Edition, 1999, 38(4): 506-509
    [32] Street S.C., Guo Q., Xu C., et al. Adsorption and electronic states of benzene on ordered MgO and Al2O3 thin films. Journal of Physical Chemistry, 1996, 100(44): 17599-17605
    [33] Jeevanandam P., Klabunde K.J. Redispersion and reactivity studies on surfactant-coated magnesium oxide nanoparticles. Langmuir, 2003, 19(13): 5491-5495
    [34] Michalkova A., Ilchenko M., Gorb L., et al. Theoretical study of the adsorption and decomposition of sarin on magnesium oxide. Journal of Physical Chemistry B, 2004, 108(17): 5294-5303
    [35] Li Y.X., Schlup J.R., Klabunde K.J. Fourier transform infrared photoacoustic spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium oxide. Langmuir, 1991, 7(7): 1394-1399
    [36] Rajagopalan Shyamala, Olga Koper, Shawn Decker, et al. Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chemistry-A European Journal, 2002, 8(11): 2602-2607
    [37] Campbell C.T., Starr D.E. Metal adsorption and adhesion energies on MgO(100). Journal of the American Chemical Society, 2002, 124(31): 9212-9218
    [38] Kim Y.D., Stultz J., Wei T., et al. Interaction of Ag with MgO(100). Journal of Physical Chemistry B, 2002, 106(27): 6827-6830
    [39] Shuhui Cai, Konstantin M. Neyman, Anguang Hu, et al. Tungsten atoms and clusters adsorbed on the MgO(001) surface: a density functional study. Journal of Physical Chemistry B, 2000, 104(48): 11506-11514
    [40] Javier Guzman, Bruce C. Gates. Gold nanoclusters supported on MgO: synthesis, characterization, and evidence of Au6. Nano Letters, 2001, 1(12): 689-692
    [41] Giovanni Barcaro, Edoardo Apra, Alessandro Fortunelli. Structure of Ag clusters grown on Fs-defect sites of an MgO (100) surface. Chemistry-A European Journal, 2007, 13(22):6408-6418
    [42]季君晖,史维明.抗菌材料.北京:化学工业出版社, 2003, 8
    [43] Jun Sawai, Hideo Igarashi, Atsushi Hashimoto, et al. Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. Journal of Chemical Engineering of Japan, 1995, 28(3): 288-293
    [44] Lei Huang, Dian-Qing Li, Yan-Jun Lin, et al. Controllable preparation of Nano-MgO and investigation of its bactericidal properties. Journal of Inorganic Biochemistry, 2005, 99(5): 986-993
    [45]张志刚,袁媛,刘昌胜.溶胶-凝胶法制备纳米氧化镁.硅酸盐学报, 2005, 33(8): 968-974
    [46]张志刚.纳米氧化镁的制备及其抗菌性能研究: [硕士学位论文].上海:华东理工大学,2005
    [47] Stoimenov P.K., Klinger R.L., Marchin G.L., et al. Metal oxide nanoparticles as bactericidal agents. Langmuir, 2002, 18(17): 6679-6686
    [48] Koper O.B., Klabunde J.S., Marchin G.L., et al. Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins. Current Microbiology, 2002, 44(1): 49-55
    [49] Chiesa M., Paganini M.C., Spoto G., et al. Single electron traps at the surface of polycrystalline MgO: Assignment of the main trapping sites. Journal of Physical Chemistry B. 2005, 109(15): 7314-7322
    [50] Sterrer M., Berger T., Diwald O., et al. Chemistry at corners and edges: Generation and adsorption of H atoms on the surface of MgO nanocubes. Journal of Chemical Physics, 2005, 123(6): 1-7
    [51] Yamanoto O., Sawai J., Sasamoto T. Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution. International Journal of Inorganic Materials, 2000, 2(5): 451-454
    [52] Balint I., Springuel-Huet M., Aika K., et al. Evidence for oxygen vacancy formation in HZSM-5 at high temperature. Physical Chemistry Chemical Physics, 1999, 1(16): 3845-3851
    [53]张立德,牟季美.纳米材料和纳米结构.北京:科学技术出版社, 2001, 72-93
    [54] Aramendia M.A., Borau V., Jimenez C., et al. Magnesium oxides as basic catalysts for organic processes: study of the dehydrogenation-dehydration of 2-propanol. Journal of Catalysis, 1996, 161(2): 829-838
    [55] Choudary B.M., Lakkoju Chakrapani, Thekkathu Ramani, et al. Direct asymmetric aldol reaction catalyzed by nanocrystalline magnesium oxide. Tetrahedron, 2006, 62(41): 9571-9576
    [56] Maria A. Aramendia, Victoriano Borau, César Jimenez, et al. Influence of the preparation method on the structural and surface properties of various magnesium oxides and their catalytic activity in the Meerwein-Ponndorf-Verley reaction. Applied Catalysis A: General, 2003, 244(2): 207-215
    [57] Choudary B.M., Mulukutla R.S., Klabunde K.J. Benzylation of aromatic compounds with different crystallites of MgO. Journal of the American Chemical Society, 2003, 125(8): 2020-2021
    [58] Choudary B.M., Kantam M.L., Ranganath K.V.S., et al. Bifunctional nanocrystalline MgO for chiral epoxy ketones via Claisen-Schmidt condensation-asymmetric epoxidation reactions. Journal of the American Chemical Society, 2004, 126(11): 3396-3397
    [59] Choudary B.M., Ranganath K.V.S., Jagajit Yadav, et al. Synthesis of flavanones using nanocrystalline MgO. Tetrahedron Letters, 2005, 46(8): 1369-1371
    [60] Ilya V. Mishakov, Alexander F. Bedilo, Ryan M. Richards, et al. Nanocrystalline MgO as a dehydrohalogenation catalyst. Journal of Catalysis, 2002, 206(1): 40-48
    [61] Kantam M.L., Roy Sarabindu, Roy Moumita, et al. Nanocrystalline magnesium oxide-stabilized palladium(0): an efficient and reusable catalyst for suzuki and stille cross-coupling of aryl halides. Advanced Synthesis & Catalysis, 2005, 347(15): 2002- 2008
    [62]石秋杰,刘宁,梁义. MgO负载Cu2O催化剂的制备及其催化环己醇脱氢.催化学报, 2007, 28(1): 57-61
    [63]刘红霞,苏凤莲,周圣明等.溶胶-凝胶法制备MgxZn1-xO及其特性.人工晶体学报, 2005, 34(5): 849-852
    [64]洪伟良,刘剑洪,罗仲宽等.纳米MgO/SnO2复合粉体的制备及性能研究.无机材料学报, 2004, 19(5): 1158-1162
    [65] Hiroaki Tada, Miwako Yamamoto, Seishiro Ito. Promoting effect of MgOx submonolayer coverage of TiO2 on the photoinduced oxidation of anionic surfactants. Langmuir, 1999, 15(11): 3699-3702
    [66] Jung Hyun Suk, Lee Jung-Kun, Nastasi Michael. Enhancing photocatalytic activity by using TiO2-MgO core-shell-structured nanoparticles. Applied Physics Letters, 2006, 88(1): 013107
    [67] Bandara J., Hadapangoda C.C., Jayasekera W.G. TiO2/MgO composite photocatalyst: the role of MgO in photoinduced charge carrier separation. Applied Catalysis B: Environmental, 2004, 50(2): 83-88
    [68] Taguchi Taketo, Zhang Xin-tong, Sutanto Irwan, et al. Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. Chemical Communications, 2003, (19): 2480-2481
    [69] Jung Hyun Suk, Lee Jung-Kun, Nastasi Michael. Preparation of nanoporous MgO-Coated TiO2nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir, 2005, 21(23): 10332-10335
    [70] Bandara J., Kuruppu S.S., Pradeep U.W. The promoting effect of MgO layer in sensitized photodegradation of colorants on TiO2/MgO composite oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276(1-3): 197-202
    [71] Lee Ha-Young, Riehemann Werne, Mordike Barry Leslie. Sintering of nanocrystalline ZrO2 and zirconia toughened alumina (ZTA). Journal of the European Ceramic Society, 1992, 10(3): 245-253
    [72]王欣,王佩玲,程一兵. TiO2和MgO微量添加剂对A12O3陶瓷烧结致密化的影响.无机材料学报, 2001, 16(5): 879-984
    [73] Bhargava A., Alarco J.A., Mackinnon I.D.R., et al. Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi2Sr2CaCu2O8. Materials Letters, 1998, 34(3-6): 133-142
    [74] Guilmeau E., Andrzejewski B., Noudem J.G. The effect of MgO addition on the formation and the superconducting properties of the Bi2223 phase. Physica C: Superconductivity, 2003, 387(3-4): 382-390
    [75] Watari Takanori, Nakayoshi Kazumi, Kato Akio. Preparation of submicron magnesium oxide powders by vapor-phase reaction of magnesium and oxygen. Journal of the Chemical Society of Japan, 1984, (6): 1075-1076
    [76] Tokushi Kizuka. Structures of nanocrystalline MgO, ZnO and WO3 prepared by gas evaporation and in situ compaction. Materials Transactions JIM, 1998, 39(4): 508-514
    [77] Suzuki M, Kagawa M, Syono Y, et al. Synthesis of ultrafine single-component oxide particles by the spray-ICP technique. Journal of Materials Science, 1992, 27(3): 679-684
    [78]汪国忠,程素芳,何国良等.纳米级MgO粉体的合成.合成化学, 1996, 4(4): 300-302
    [79]酒金婷,李立平,葛钥等.用高分子保护的纳米MgO的合成.无机化学学报, 2001, 17(3): 361-365
    [80] Alvarado E., Torres-Martinez L.M., Fuentes A.F., et al. Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite. Polyhedron, 2000, 19(22-23): 2345-2351
    [81]张近.均匀沉淀法制备纳米氧化镁的研究.功能材料, 1999, 30(2): 193-194
    [82]王海霞,胡炳元,王麟生等.高分子保护沉淀法制备超细纳米氧化镁.无机化学学报, 2006, 22(2): 363-366
    [83] Yan Chenglin, Xue Dongfeng, Zou Longjiang. Fabrication of hexagonal MgO and its precursors by a homogeneous precipitation method. Materials Research Bulletin, 2006, 41(12):2341-2348
    [84] Lopez T., Garcia-Cruz I., Gomez R. Synthesis of magnesium oxide by the sol-gel method: Effect of the pH on the surface hydroxylation. Journal of Catalysis, 1991, 127(1): 75-85
    [85] Bokhimi X., Morales A., Lopez T., et al. Crystalline structure of MgO prepared by the sol-gel technique with different hydrolysis catalysts. Journal of Solid State Chemistry, 1995, 115(2): 411-415
    [86] Wang J.A., Novaro O., Bokhimi X., et al. Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO. Materials Letters, 1998, 35(5-6): 317-323
    [87]陈改荣,徐绍红,杨军.硬脂酸溶胶凝胶法制备氧化镁纳米微粒的研究.功能材料, 2002, 33(5): 521-523
    [88]徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社, 2001, 534
    [89] Yan Li, Zhuang Jing, Sun Xiaoming, et al. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Materials Chemistry and Physics, 2002, 76(2): 119-122
    [90] Yan Chenglin, Xue Dongfeng. Novel self-assembled MgO nanosheet and its precursors. Journal of Physical Chemistry B, 2005, 109(25): 12358-12361
    [91]戚祖德,王嘉讯,冯素伟等. W/O微乳液中制备MgO超细粒子.武汉化工学院学报, 2005, 27(5): 11-13
    [92]廖莉玲,刘吉平.固相法合成纳米氧化镁.精细化工, 2001, 18(12): 696-698
    [93]管洪波,王培,赵璧英等.低温固相法制备高比表面积的纳米MgO.催化学报, 2006, 27(9): 793-798
    [94] Jan Roggenbuck, Michael Tiemann. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon. Journal of the American Chemical Society, 2005, 127(4): 1096-1097
    [95]孙明,余林,余坚等.微波固相法合成纳米氧化镁.功能材料, 2006, 37(12): 1978-1984
    [96] Du Yuansheng, Inman D. Synthesis of MgO powders from molten salts. Journal of Materials Science, 1997, 32(9): 2373-2379
    [97]李春虎,赵九生,王大祥.纳米MgO和MgAl2O4尖晶石的制备与表征.无机材料学报, 1996, 11(3): 557-560
    [98] Aramendia M.A., Borau V., Jimenez C., et al. Synthesis and characterization of MgO-B2O3 mixed oxides prepared by coprecipitation; selective dehydrogenation of propan-2-ol. Journal of Materials Chemistry, 1999, 9(3): 819-825
    [99] Hirofumi Aritani, Hiroyuki Yamada, Takashi Nishio, et al. Characterization of Li-doped MgOcatalysts for oxidative coupling of methane by means of Mg K-Edge XANES. Journal of Physical Chemistry B, 2000, 104(44): 10133-10143
    [100] Choudhary V.R., Mulla S.A.R., Pandit M.Y., et al. Influence of precursors of Li2O and MgO on surface and catalytic properties of Li-promoted MgO in oxidative coupling of methane. Journal of Chemical Technology & Biotechnology, 2000, 75(9): 828-834
    [101] Trionfetti C., Babich I.V., Seshan K., et al. Formation of high surface area Li/MgO-Efficient catalyst for the oxidative dehydrogenation/cracking of propane. Applied Catalysis A: General, 2006, 310: 105-113
    [102] Bedilo A.F., Sigel M.J., Koper O.B., et al. Synthesis of carbon-coated MgO nanoparticles. Journal of Materials Chemistry, 2002, 12(12): 3599-3604
    [103] Jung Kwang-Deog, Joo Oh-Shim, Cho Seong-Hoon, et al. Catalytic wet oxidation of H2S to sulfur on Fe/MgO catalyst. Applied Catalysis A: General, 2003, 240(1-2): 235-241
    [104] Hossain M.D. Dielectric properties of titanium and gadolinium doped MgO single crystals. Applied Physics A, 1982, 29(1): 29-32
    [105] Ioan Balint, Ken-ichi Aika. Specific defect sites creation by doping MgO with lithium and titanium. Applied Surface Science, 2001, 173(3-4): 296-306
    [106] Slavica Stankic, Martin Sterrer, Peter Hofmann, et al. Novel optical surface properties of Ca2+-doped MgO nanocrystals. Nano Letters, 2005, 5(10): 1889-1893
    [107] Copp A.N. Magnesia/magnesite. American Ceramic Society Bulletin, 1995, 74(6): 135-137
    [108] Jimmy C.Y., Xu A.W., Zhang L.Z., et al. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. Journal of Physical Chemistry B, 2004, 108(1): 64-70
    [109] Ding Y., Zhang G.T., Wu H., et al. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chemistry of Materials, 2001, 13(2): 435-440
    [110]陶新永,张孝彬,孔凡志等. PEG辅助氧化锌纳米棒的水热法制备.化学学报, 2004, 62(17): 1658-1662
    [111]杜会静,田永君.超硬纳米多层膜致硬机理研究.无机材料学报, 2006, 121(4): 769-775.
    [112] Maxim S.M., Vladimir B.F., Elena A.M., et al. Textural changes during topochemical decomposition of nanocrystalline Mg(OH)2 to MgO. Journal of Physical Chemistry B, 2003, 107(11): 2427-2434
    [113] Zhang Z., Sun H., Shao X., et al. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Advanced Materials, 2005, 17(1): 42-47
    [114] Si R., Zhang Y.W., You L.P., et al. Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angewandte Chemie International Edition, 2005, 44(21): 3256-3260
    [115] Zhang Q., Vickers M.E., Patel A., et al. Determination of particle size and shape during thehydrolysis of Pb(Zr0.3Ti0.7)O3 precursor solutions. Journal of Sol-Gel Science and Technology, 1998, 11(2): 141-152
    [116] Xu J., Wilkinson A.P., Pattanaik S. Solution processing of calcium zirconate titanates, Ca(ZrxTi1-x)O3: An X-ray absorption spectroscopy and powder diffraction study. Chemistry of Materials, 2000, 12(11): 3321-3330
    [117] Kim J.Y., Jung H.S., Hong K.S. Effects of acetic acid on the crystallization temperature of sol-gel derived MgO nano-powders and thin films. Journal of the American Ceramic Society, 2005, 88(3): 784-787
    [118] Qiu L.Z., Xie R.C., Ding P., et al. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA. Composite Structures, 2003, 62(3-4): 391-395
    [119] Hayashi H., Suzuki H., Kaneko S. Effect of chemical modification on hydrolysis and condensation reaction of zirconium alkoxide. Journal of Sol-Gel Science and Technology, 1998, 12(2): 87-94
    [120]中本一雄.无机和配位化合物的红外和拉曼光谱(第四版).黄如德,汪任庆.北京:化学工业出版社, 1991, 255-257
    [121] Jung H.S., Lee J.K., Kim J.Y., et al. Crystallization behaviors of nanosized MgO particles from magnesium alkoxides. Journal of Colloid and Interface Science, 2003, 259(1): 127-132
    [122] Tardio M., Ramirez R., Gonzalez R. Electrical conductivity of MgO crystals implanted with lithium ions. Nuclear Instruments and Methods in Physics Research Section B, 2002, 191(1-4): 191-195
    [123]杜尚丰,高卫民,刘建等. Ga3+掺杂对纳米氧化锌粉体导电性能的影响.稀有金属材料与工程, 2006, 35(7): 1139-1142
    [124] Liu X.M., Wu S.L., Chua P.K, et al. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method. Materials Science and Engineering: A, 2006, 426(1-2): 274-277
    [125] Yang Y., Li X.J., Chen J.T., et al. Effect of doping mode on the photocatalytic activities of Mo/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 517-522
    [126] Xie Y.B., Yuan C.W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Applied Catalysis B: Environmental, 2003, 46(2): 251-259
    [127] Matsunaga K., Nakamura A., Yamamoto T., et al. Theoretical study of defect structures in pure and titanium-doped alumina. Solid State Ionics, 2004, 172(1-4): 155-158
    [128] Lu J.J., Lu Y.M., Tasi S.I., et al. Conductivity enhancement and semiconductor-metal transition in Ti-doped ZnO films. Optical Materials, 2007, 29(11): 1548-1552
    [129] Choi J.S., Kwon H.H., Lim T.H., et al. Development of nickel catalyst supported on MgO-TiO2 omposite oxide for DIR-MCFC. Catalysis Today, 2004, 93-95: 553-560
    [130] Bokhimi X., Boldu J.L., Munoz E., et al. Structure and composition of the nanocrystalline phases in a MgO-TiO2 system prepared via sol-gel technique. Chemistry of Materials, 1999, 11(10): 2716-2721
    [131]高金堂,王宏刚,毛绍兰.纳米材料的结构分析.分析测试技术与仪器, 2000, 6(2): 70-74
    [132] Bortz M., Ohuchi F.S. An x-ray photoelectron spectroscopy study of the interfacial relations between titanium and cordierite-based ceramic thin films. Journal of Applied Physics, 1988, 64(4): 2054-2058
    [133] Nie L.H., Shi C., Xu Y., et al. Atmospheric cold plasmas for synthesizing nanocrystalline anatase TiO2 using dielectric barrier discharges. Plasma Processes and Polymers, 2007, 4(5): 574-582
    [134] Lin S.S., Huang J.L., Lii D.F. Effect of substrate temperature on the properties of Ti-doped ZnO films by simultaneous rf and dc magnetron sputtering. Materials Chemistry and Physics, 2005, 90(1): 22-30
    [135] Oh S.C., Jeong J.H., Nam K.T., et al. Magnetic and electrical properties of magnetic tunnel junctions with radical oxidized MgO barriers. IEEE Transactions on Magnetics, 2006, 42(10): 2642-2644
    [136]余家国,赵修建,韩建军等. TiO2/SiO2复合薄膜的晶型和晶粒尺寸研究.硅酸盐学报, 2001, 29(3): 286-290
    [137]张青红,高濂,孙静.氧化硅对二氧化钛纳米晶相变和晶粒生长的抑制作用.无机材料学报, 2002, 17(3): 415-421
    [138]肖循,唐超群. TiO2薄膜的溶胶-凝胶法制备及其光学特性.功能材料, 2003, 34(4): 442-444
    [139]靳正国,郭瑞松,师春生等.材料科学基础.天津:天津大学出版社, 2005, 165-172
    [140] Hsieh Cheng-Yen, Fung Kuan-Zong. Effect of divalent dopants on defect structure and electrical properties of Bi2WO6. Journal of Physics and Chemistry of Solids, 2008, 69(2-3): 302-306
    [141] Ohtomo A., Kawasaki M., Koida T., et al. MgxZn1-xO as a II–VI widegap semiconductor alloy. Applied Physics Letters, 1998, 72(19): 2466-2468
    [142] Tang Haiping, He Haiping, Zhu Liping, et al. Synthesis and characterization of dendritic ZnMgO nanostructures. Journal of Physics D: Applied Physics, 2006, 39(17):3764-3768
    [143] Geng Wangchang, Li Nan, Li Xiaotian, et al. Synthesis and photoluminescent properties of mesoporous (MgO)(ZnO)1?x materials. Materials Research Bulletin, 2008, 43(3): 601-610
    [144] Wang J.R., Ye Z.Z., Huang J.Y., et al. ZnMgO nanorod arrays grown by metal-organic chemical vapor deposition. Materials Letters, 2008, 62(8-9): 1263-1266
    [145] Takashi Minemoto, Takayuki Negami, Shiro Nishiwaki, et al. Preparation of Zn1?xMgxO films by radio frequency magnetron sputtering. Thin Solid Film, 2000, 372(1-2): 173-176
    [146] Fang Guo-Jia, Li Dejie, Yao Bao-Lun, et al. Cubic-(111) oriented growth of Zn1-xMgxO thin films on glass by DC reactive magnetron sputtering. Journal of Crystal Growth, 2003, 258(3-4): 310-317
    [147] Haruki Ryoken, Naoki Ohashi, Isao Sakaguchi, et al. Structures and properties of (Zn, Mg)O films studied from the aspect of phase equilibria. Journal of Crystal Growth, 2006, 287(1): 134-138
    [148] Ghosh R., Basaka D. Composition dependence of electrical and optical properties in sol-gel MgxZn1?xO thin films. Journal of Applied Physics, 2007, 101(2): 023507
    [149] Jian Quan Qi, Hu Yong Tian, Yu Wang, et al. Analyzing core-shell structured zinc doped MgO wrapped Ba1-xSrxTiO3 nanoparticles. Journal of Physical Chemistry B, 2005, 109(29): 14006-14010
    [150] Ji Zhenguo, Song Yongliang, Xiang Yin, et al. Characterization of MgxZn1-xO thin films prepared by sol-gel dip coating. Journal of Crystal Growth, 2004, 256(3): 537-540
    [151] Tomoaki Terasako, Sho Shirakata, Tetsuya Kariya. Photoluminescence from highly oriented MgxZn1-xO films grown by chemical spray pyrolysis. Thin Solid Films, 2002, 420(1): 13-18
    [152] Ogata K., Koike K., Tanite T., et al. ZnO and ZnMgO growth on a-plane sapphire by molecular beam epitaxy. Journal of Crystal Growth, 2003, 251(1-4): 623-627
    [153] Lu Guangqiang, Lieberwirth Ingo, Wegner Gerhard. A general polymer-based process to prepare mixed metal oxides: The case of Zn1-xMgxO nanoparticles. Journal of the American Chemical Society, 2006, 128(48): 15445-15450
    [154] Qin Lirong, Zhao Jianwei, Zhang Lide, et al. Controlled growth and morphology evolution of urchin-like ZnO/MgO hierarchical structures. Journal of Crystal Growth, 2007, 308(2): 417-423
    [155]彭秧锡,刘漫.微波辅助制备纳米MgO·ZnO复合粉体.硅酸盐通报, 2007, 26(4): 826-829
    [156]华南理工大学无机化学教研室编.无机化学.北京:化学工业出版社, 2001, 346
    [157]张学骜,吴文健,满亚辉等.溶胶-凝胶法制备ITO薄膜研究进展.材料科学与工艺, 2007, 15(2): 264-268
    [158] Yang Juan, Weng Wenjian, Ding Zishang. The drawing behavior of Y-Ba-Cu-O sol from nonaqueus solution by a complex process. Journal of Sol-Gel Science and Technology, 1995, 4(3): 187-193
    [159] López T., Gómez R., Ramírez-Solis A., et al. Li/MgO sol-gel catalysts. Journal of MolecularCatalysis, 1994, 88(1): 71-84
    [160] Boldu J. L., Munoz E., Bokhimi X., et al. Spectroscopic studies of sol-gel Li/MgO catalysts. Langmuir, 1999, 15(1): 32-35
    [161] Han Yingchao, Li Shipu, Wang Xinyu, et al. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method. Materials Research Bulletin, 2004, 39(1): 25-32
    [162]汪汉斌,刘祖黎,卢强华等.柠檬酸根对纳米Fe3O4颗粒的生长及性能的影响.无机化学学报, 2004, 20(11): 1279-1283
    [163] Mali A., Ataie A. Influence of the nitrates to citric acid molar ratio on the combustion process and the phase constitution of barium hexaferrite particles prepared by sol-gel combustion method. Ceramics International, 2004, 30(7): 1979-1983
    [164] Zhang G., Liu M. Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. Journal of Materials Science, 1999, 34(13): 3213-3219
    [165] Wojciech L.S., Pavel S., Kulllaiaii B., et al. Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials, 2002, 23(3): 699-710
    [166]唐新村,何莉萍,陈宗璋等.尖晶石LiMn2O4前驱体的低热固相反应法合成机理及其结构与热分解过程研究.高等学校化学学报, 2003, 23(4): 576-579
    [167]孙胜龙.环境材料.北京:化学工业出版社, 2002, 1-8
    [168]李菲菲,曾维华.纳米技术在环境污染防治中的应用.化工环保, 2004, 24(6): 426-428
    [169] Alok Mittal, Arti Malviya, Dipika Kaur, et al. Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials. Journal of Hazardous Materials, 2007, 148(1-2): 229-240
    [170]王瀚.重要的模式生物-大肠杆菌.生物学教学, 2008, 33(2): 57-58
    [171]王洪水.纳米银及载银纳米抗菌材料的研究: [博士学位论文].武汉:华中科技大学, 2006
    [172]沈萍,范秀容,李广武.微生物学实验(第三版).北京:高等教育出版社, 1999, 59-98
    [173] Bircan Dindar, Siddik Icli. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140(3): 263-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700