用户名: 密码: 验证码:
三元合金去合金化及纳米多孔银基、铜锡合金的形成和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文中,我们采用快速凝固方法获得多种成分配比的Al-Ag-Ni/Ru/Fe前驱体合金薄带,在20wt.%NaOH溶液中进行化学去合金化法处理,研究了去合金化法诱导的非混溶体系(Ag-Ni、Ag-Ru和Ag-Fe)纳米合金化的可行性,并制备出多种纳米多孔银基合金。同时对三种配比快速凝固所得Mg-Cu-Sn前驱体合金薄带在1wt.%酒石酸中去合金化处理,获得了纳米多孔Cu-Sn合金,并对所得纳米多孔Cu6Sn5合金进行了锂离子电池充放电测试。
     通过X射线衍射结合二元平衡相图分析,发现本文所用快速凝固Al-Ag-Ni/Ru/Fe前驱体合金薄带分别由单一Al(Ag,Ni)、Al(Ag,Ru)和Al(Ag,Fe)相组成,Ag与Ni、Ag与Ru、Ag与Fe均固溶在Al的晶格中形成固溶体。通过X射线衍射、扫描/透射电镜、高分辨透射电镜和纳米束能谱等分析手段发现,Al-Ag-Ni和Al-Ag-Ru前驱体合金薄带在20wt.%NaOH溶液中化学去合金化之后,Ag与Ni、Ag与Ru这两种非混溶体系均实现了纳米合金化,在局部区域形成了Ag(Ni)或者Ag(Ru)的固溶体,这说明通过对三元合金去合金化处理来诱导非混溶体系的纳米合金化是可行的,另外由于Ni或者Ru的存在,所得到的纳米多孔Ag(Ni)、Ag(Ru)固溶体的韧带尺寸可以降低至数十纳米;对Ag(Ru)固溶体的热处理得到的Ag-RuO2复合材料的电化学测试表明其表现出了良好的超级电容器电容性能,有望在超级电容器电极材料领域获得实际应用;Al-Ag-Fe前驱体合金薄带在20wt.%NaOH溶液中化学去合金化时,Ag扩散为双连续纳米多孔结构的Ag基体,而Fe在OH-的环境下经过一系列反应被氧化为八面体Fe3O4颗粒,Ag与Fe最终形成了纳米多孔Ag-Fe3O4复合材料,且纳米多孔Ag基体的韧带尺寸仅为20~50nm;为了探究纳米多孔Ag-Fe3O4复合材料的潜在应用,我们对其做了磁性测试和抗菌实验,结果表明所得纳米多孔Ag-Fe3O4复合材料具有良好的磁性和对大肠杆菌E. Coli K12优异的抗菌性能,并且磁性Fe3O4颗粒的存在使得样品在外加磁场下可以回收重复使用,可以作为潜在的新型抗菌材料。
     另外,对快速凝固所得Mg66Cu25.5Sn8.5、Mg67Cu18Sn15和Mg66Cu10.2Sn23.8三种前驱体合金薄带的X射线衍射结果表明,Mg66Cu25.5Sn8.5合金由Mg2Cu和Mg2Sn两相组成,Mg67Cu18Sn15和Mg66Cu10.2Sn23.8合金均仅由Mg2Sn相组成。X射线衍射、扫描/透射电镜和X射线能谱分析表明,在1wt.%酒石酸中去合金化之后,三种前驱体合金中的Mg元素均被完全腐蚀掉,Mg66Cu25.5Sn8.5合金形成了纳米多孔Cu3Sn合金,Mg67Cu18Sn15合金形成了纳米多孔Cu6Sn5合金, Mg66Cu10.2Sn23.8合金形成了纳米多孔Cu6Sn5-Sn复合材料,这些结果说明Mg-Cu-Sn三元合金的去合金化可以诱导纳米多孔Cu-Sn合金的形成。对纳米多孔Cu6Sn5合金的锂离子电池充放电实验说明去合金化法所得纳米多孔Cu6Sn5合金具有良好的循环性能,在100mA/g的电流密度下可以稳定100圈没有明显降低,通过优化参数提高容量密度之后有作为锂离子电池负极材料的潜力。
In this thesis, rapidly solidified Al-Ag-Ni/Ru/Fe precursor alloys were dealloyed in a20wt.%NaOH solution to investigate the nano-alloying of immiscible systems (Ag-Ni, Ag-Ru and Ag-Fe) induced by dealloying. Various Ag-based nanoporous alloys were fabricated. In addition, three rapidly solidified Mg-Cu-Sn precursor alloys were also dealloyed in a1wt.%tartaric acid to fabricated Cu-Sn alloys. Li-ion battery discharge/charge tests of as-dealloyed nanoporous CugSn5were carried out to investigate its potential application as anode materials of Li-ion batteries.
     X-ray diffraction (XRD), combined with binary equilibrium phase diagram was used to study the rapidly solidified Al-Ag-Ni/Ru/Fe precursor alloy ribbons. The results revealed that the Al-Ag-Ni/Ru/Fe precursor alloys consist of single Al(Ag,Ni), Al(Ag,Ru) and Al(Ag,Fe) phases respectively, in which Ag and Ni, Ag and Ru, Ag and Fe form solid solutions with Al. The as-dealloyed Al-Ag-Ni and Al-Ag-Ru precursor alloys were observed and analyzed through XRD, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX). transmission electron microscopy (TEM), and high resolution TEM (HRTEM) with nano-beam energy dispersive X-ray analysis (NB-EDX). The results showed that Ag and Ni, as well as Ag and Ru, has formed Ag(Ni) and Ag(Ru) solid solutions. It indicates that the nano-alloying of immiscible systems induced by dealloying of ternary alloys is feasible. After heat treatment, Ag(Ru) solid solution dealloyed and formed nanoporous Ag-RuO2nanocomposites. Nanoporous Ag-RuO2nanocomposites show good supercapacity property and can be potential electrode materials in supercapacity. The NPS/Fe3O4nanocomposites were obtained by chemically dealloying of rapidly solidified Al-Ag-Fe precursor alloys in a20wt.%NaOH solution. In the nanocomposites, the NPS matrix exhibits an open bicontinuous interpenetrating ligament-channel structure with ligament/channel sizes of20~50nm, and the embedded Fe3O4particles are octahedral and several hundred nanometers in size. Through changing the Ag/Fe atomic ratio in the Al-Ag-Fe precursors, we can tune the magnetic properties of the NPS/Fe3O4nanocomposites. Antibacterial tests demonstrate that the NPS/Fe3O4nanocomposites show excellent antibacterial activities against E. Coli K12, and the embedded Fe3O4makes these materials magnetically recyclable. The present NPS/Fe3O4nanocomposites are potential antibacterial materials with magnetically recyclable property.
     XRD results showed that the rapidly solidified Mg66Cu25.5Sn8.5alloy consists of Mg2Cu and Mg2Sn phases, while both Mg67Cu18Sn15and Mg66Cu10.2Sn23.8alloys consist of Mg2Sn phase. After dealloyed in1wt.%tartaric acid, these Mg-Cu-Sn precursor alloys formed3D nanoporous Cu3Sn, Cu6Sn5and Cu6Sn5-Sn composites, respectively. Li-ion battery discharge/charge tests showed that the as-dealloyed Mg67Cu18Sn15precursor alloys performed excellent cyclic life under the current density of100mA/g.
引文
[1]H. Lechtman, Sci. Am.250 (1984) 56.
    [2]M. Raney. U.S. Patent No.1563587,1925.
    [3]H. Lei, Z. Song, D.L. Tan, X.H. Bao, X.H. Mu, B.N. Zong, E.Z. Min, Appl. Catal. A 214 (2001) 69.
    [4]H.W. Pickering, J. Electrochem. Soc.117 (1970) 8.
    [5]C.H. Stillwell, E.C. Turniseed, Ind. Eng. Chem.26 (1934) 740.
    [6]R.B. Abrams, Trans. Am. Electrochem. Soc.42 (1922) 39.
    [7]C.F. Nixon, Trans. Am. Electrochem. Soc.45 (1924) 297.
    [8]F.H. Rhodes, J.T. Carty, Ind. Eng. Chem.17 (1925) 909.
    [9]E.B. Storey, Met. Chem. Eng.17 (1917) 653.
    [10]R.M. Horton, Corrosion 26 (1970) 160.
    [11]H.W. Pickering, C. Wagner. J. Electrochem. Soc.114 (1967) 698.
    [12]K. Sieradzki. R.C. Newman, J. Electrochem. Soc.133 (1986) 1979.
    [13]R.C. Newman, F.T. Meng, K. Sieradzki, Corros. Sci.28 (1988) 523.
    [14]A. Parthasarathi, N.W. Polan, Metall. Trans. A 13 (1982) 2027.
    [15]H.W. Pickering, P.R. Swann, Corrosion 19 (1963) 373.
    [16]P.R. Swann. Corrosion 25 (1969) 147.
    [17]A. J. Forty, P. Durkin, Phil. Mag. A 42 (1980) 295.
    [18]K. Sieradzki, R. C. Newman, U.S. Patent 4977038,1990.
    [19]I. C. Oppenheim, D. J. Trevor, C. E. D. Chidsey, P. L. Trevor, K. Sieradzki, Science 254 (1991) 687.
    [20]R. C. Newman, K. Sieradzki, MRS Bull 24 (1999) 12.
    [21]J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410 (2001)450.
    [22]Y. Ding, J. Erlebacher, J. Am. Chem. Soc.125 (2003) 7772.
    [23]Y. Ding, M.W. Chen, J. Erlebacher, J. Am. Chem. Soc.126 (2004) 6876.
    [24]Y. Ding, Y.J. Kim, J. Erlebacher,Adv. Mater.16 (2004) 1897.
    [25]J. F. Huang, I. W. Sun, Adv. Funct. Mater.15 (2005) 989.
    [26]F. H. Yeh, C. C.Tai. J. F. Huang, I. W. Sun, J. Phys. Chem. B,110 (2006) 5215.
    [27]J. F. Huang. I. W. Sun. Chem. Mater.16 (2004) 1829.
    [28]Y. W. Lin, C. C. Tai, I. W. Sun, J. Electrochem. Soc.154 (2007) D316.
    [29]Z. H. Zhang, Y. Wang, Z. Qi, J. K. Lin, X. F. Bian, J. Phys. Chem. C 113 (2009) 1308.
    [30]X. G. Wang, Z. Qi, C. C. Zhao, W. M. Wang, Z. H. Zhang, J. Phys. Chem. C 113 (2009)13139.
    [31]Z. Qi, C. C. Zhao, X. G. Wang, J. K. Lin, W. Shao, Z. H. Zhang, X. F. Bian, J. Phys. Chem. C 113 (2009) 6694.
    [32]T. T. Song, Y. L. Gao, Z. H. Zhang, Q. J. Zhai, CrystEngComm.13 (2011) 7058.
    [33]J. L. Xu, Y. Wang, Z. H. Zhang, J. Phys. Chem. C 116 (2012) 5689.
    [34]H. Ji, C. Zhang. J. L. Xu, C. C. Zhao, X. G. Wang, Z. H. Zhang, CrystEngComm. 13(2011)4846.
    [35]J. Erlebacher.J. Electrochem. Soc.151 (2004) C614.
    [36]R. B. Bbrahms, Trans. Am. Electrochem. Soc.42 (1992) 39.
    [37]A J. Forty, Philos Mag A.43 (1981) 171.
    [38]K. Sieradzki, R. R. Corderman, K. Shukla, R.C. Newman, Phil Mag A.59 (1989) 713.
    [39]J. Erlebacher, K. Sieradzki, Scripta Mater.49 (2003) 991.
    [40]H. Ji,J. Frenzel, Z. Qi. X.G. Wang, C.C. Zhao. Z.H. Zhang, G. Eggeler, CrystEngComm.12 (2010) 4059.
    [41]X.G. Wang, J. Frenzel, W.M. Wang. H. Ji, Z. Qi, Z.H. Zhang, G. Eggeler,J. Phys. Chem. C 115(2011)4456.
    [42]Z.H. Zhang, Y. Wang, Z. Qi, W.H. Zhang, J.Y. Qin, J. Frenzel, J. Phys. Chem. C 113(2009) 12629.
    [43]H.J. Jin, X.L. Wang, S. Parida, K. Wang, M. Seo, J. Weissmuller, Nano Lett.10 (2010) 187.
    [44]Z.H. Zhang, Y. Wang, X.G. Wang, Nanoscale 3 (2011) 1663.
    [45]J.Z. Zhao, H.L. Li, Q.L. Wang, J. He, Comput. Mater. Sci.44 (2008) 400.
    [46]E. Bosco, P. Rizzi, M. Baricco, J. Magn. Magn Mater.262 (2003) 64.
    [47]M. Zhu, Z. F. Wu, M. Q. Zeng, L. Z. Ouyang, Y. Gao, J. Mater. Sci.43 (2008) 3259.
    [48]G. A. Dorofeev, E. P. Elsukov, A. L. Ulyanov, Inorg. Mater.40 (2004) 690.
    [49]M. Zhu, X. Z. Che, Z. X. Li, J. K. L. Lai, M. Qi, J. Mater. Sci.33 (1998) 5873.
    [50]J. Xu, U. Herr, T. Klassen, R. S. Averback, J. Appl. Phys.79 (1996) 3935.
    [51]S. Gohil, R. Banerjee, S. Bosea, P. Ayyub, Scripta Mater.58 (2008) 842.
    [52]R. Banerjee, S. Bose, A. Genc, P. Ayyub, J. Appl. Phys.103 (2008) 033511.
    [53]X. Bai, T. L. Wang, N. Ding, J. H. Li, B. X. Liu, J. Appl. Phys.108 (2010) 073534.
    [54]R.Z. Hu, L. Zhang, X. Liu, M.Q. Zeng, M. Zhu, Electrochem. Commun.10 (2008) 1109.
    [55]F. Zeng, M. Ding, B. Zhao, F. Pan, Mater. Lett.53 (2002) 40.
    [56]M. M. Biener, J. Biener, R. Schalek, C. M. Friend, Surf. Sci.594 (2005) 221.
    [57]L. D. Zhang, S. S. Xie, Beijing:Chemical Industry Press 2005.
    [58]S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C.E. Talley, A.V. Hamza, Appl. Phys. Lett.89(2006)053102.
    [59]B. Juergen. A. M. Hodge, A. V. Hamza, L.M. Hsiung, J. Appl. Phys.97 (2005) 024301.
    [60]J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, F. F. Abraham, Nano Lett.6 (2006) 2379.
    [61]C.X. Xu, J.X. Su. X.H. Xu, P.P. Liu. H.J. Zhao, F. Tian, Y. Ding, J. Am. Chem. Soc.129(2007)42.
    [62]A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Baumer, Science 327 (2010) 319.
    [63]J.T. Zhang, P.P. Liu, H.Y. Ma, Y. Ding, J. Phys. Chem. C 111 (2007) 10382.
    [64]L.H. Qian, X.Q. Yan, T. Fujita, A. Inoue, M.W. Chen, Appl. Phys. Lett.90 (2007) 153120.
    [65]X. Ge, L. Wang, Z. Liu, Y. Ding, Electroanalysis 23 (2011) 381.
    [66]B. Scrosati, J. Hassounab, Y.K. Sun, Energy Environ. Sci.4 (2011) 3287.
    [67]Y.H. Yu, Q. Yang, D.H. Teng, X.P. Yang, S.K. Ryu, Electrochem. Commun.12 (2010) 1187.
    [68]R. Yang, J. Huang, W. Zhao. W.Z. Lai, X.Z. Zhang, J. Zheng, X.G. Li. J. Power Sources 195(2010)6811.
    [69]L. Zou, L. Gan, F.Y. Kang, M.X. Wang, W.C. Shen, Z.H. Huang, J. Power Sources 195(2010) 1216.
    [70]S.Z. Liang, X.F. Zhu, P.C. Lian, W.S. Yang, H.H. Wang, J. Solid State Chem. 184(2011)1400.
    [71]P. Wu, N. Du, J. Liu, H. Zhang, J.X. Yu, D.R. Yang, Mater. Res. Bull.46 (2011) 2278.
    [72]J.Z. Chen, L. Yang, S.H. Fang, S. Hirano, Electrochem. Commun.13 (2011) 848.
    [73]Q.Y. Li, S.J. Hu, H.Q. Wang, F.P. Wang, X.X. Zhong, X.Y. Wang, Electrochim. Acta 54 (2009) 5884.
    [74]J.W. Park, J.Y. Eom, H.S. Kwon, Electrochim. Acta 55 (2010) 1825.
    [75]X.Y. Zhao. Z.H. Xia, D.G. Xia, Electrochim. Acta 55 (2010) 6004.
    [76]S.C. Zhang, Y.L. Xing, T. Jiang, Z.J. Du, F. Li, L. He, W.B. Liu,J. Power Sources 196(2011)6915.
    [77]C.G. Yang, D.W. Zhang, Y.B. Zhao, Y.H. Lu, L. Wang, J.B. Goodenough, J. Power Sources 196 (2011) 10673.
    [78]K. Ui, S. Kikuchi, Y. Jimba, N. Kumagai, J. Power Sources 196 (2011) 3916.
    [79]L.J. Xue. Y.F. Xu. L. Huang, F.S. Ke, Y. He, Y.X. Wang. G.Z. Wei. J.T. Li. S.G. Sun. Electrochim. Acta 56 (2011) 5979.
    [80]S.W. Woo, N. Okada, M. Kotobuki, K. Sasajima, H. Munakata, K. Kajihara, K. Kanamura, Electrochim. Acta 55 (2010) 8030.
    [81]H.R. Jung, E.J. Kim, Y.J. Park, H.C. Shin, J. Power Sources 196 (2011) 5122.
    [82]J. Hassoun, G.A. Elia, S. Panero, B. Scrosati, J. Power Sources 196 (2011) 7767.
    [83]R.G. Zhang, S. Upreti, M.S. Whittingham, J. Electrochem. Soc.158 (2011) A1498.
    [84]W.J. Cui, F. Wang,J. Wang. H.J. Liu, C.X. Wang, Y.Y Xia,J. Power Sources 196(2001)3633.
    [85]Y.S. Lina, J.G. Duh, H.S. Sheu, J. Alloy. Compd.509 (2011) 123.
    [86]X.Y. Fan, Q.C. Zhuang, G.Z. Wei, L. Huang, Q.F. Dong, S.G. Sun, J Appl. Electrochem.39 (2009) 1323.
    [87]R.Z. Hu, M.Q. Zeng, M. Zhu, Electrochim. Acta 54 (2009) 2843.
    [88]M. K. Shukla, R. P. Singh, C. R. K. Reddy, B. Jha, Bioresource Technol.107 (2012)295.
    [89]M. Rai, A. Yadav. A. Gade, Biotechnol. Adv.27 (2009) 76.
    [90]A. N. Pestryakov, N. E. Bogdanchikova, A. Knop-Gericke, Catal. Today 49 (2004)91.
    [91]H. J. Qiu, Z. H. Zhang, X. R. Huang, Y. B. Qu, Chem. Phys. Chem.12 (2011) 2118.
    [92]F.L. Jia, C.F. Yu, K.J. Deng, L.Z. Zhang, J. Phys. Chem. C 111 (2007) 8424.
    [93]C. Zhang, J.Z. Sun, J.L. Xu, X.G. Wang, H. Ji, C.C. Zhao, Z.H. Zhang, Electrochim. Acta 63 (2012) 302.
    [94]S. Chen, Y. Li, C. Guo. J. Wang, J. H. Ma, X. F. Liang, L. R. Yang, H. Z. Liu, Langmuir 23 (2007) 12669.
    [95]S. H. Choi, H. B. Na, Y. I. Park, K. An, S. G. Kwon, Y. Jang, M. Park, J. Moon, J. S. Son, I. C. Song, W. K. Moon, T. Hyeon,J. Am. Chem. Soc.130 (2008) 15573.
    [96]T. Hyeon, S. S. Lee. J. Park, Y. Chung, H. B. Na, J. Am. Chem. Soc.123 (2001) 12798.
    [97]J. Jiang, H. W. Gu, H. L. Shao, E. Devlin, G. C. Papaefthymiou, J. Y. Ying, Adv. Mater.20(2008)4403.
    [98]D. H. Zhang, G. D. Li, J. X. Li, J. S. Chen, Chem. Commun.44 (2008) 3414.
    [99]W. Q. Jiang, Y. F. Zhou, Y. L. Zhang, S. H. Xuan, X. L. Gong, Dalton Trans.41 (2012)4594.
    [100]X. P. Zhang, W. Q. Jiang, X. L. Gong, Z. Zhang, J. Alloy. Compd.508 (2010) 400.
    [101]J. J. Du, C. Y.,Jing,J. Colloid. Interf. Sci.358 (2011) 54.
    [102]J. L. Mietta, M. M. Ruiz, P. S. Antonel, O. E. Perez, A. Butera, G. Jorge, R. M. Negri, Langmuir, a28 (2012) 6985.
    [103]B. Chudasama, A. K. Vala. N. Andhariya, R. V. Upadhyay, R. V. Mehta, Nano Res.2 (2009) 955.
    [104]M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, D. L. Allara, Langmuir 23 (2007) 2414.
    [105]J. H. He, H.W. Sheng, P. J. Schilling, C.L. Chien, E. Ma, Phys. Rev. Lett.86 (2001)2826.
    [106]Z.Y. Zhang, T. M. Nenoff, J.Y. Huang, D. T. Berry, P. P. Provencio, J. Phys. Chem. C 113 (2009) 1155.
    [107]S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukovic, B.E. Conway,J. Electrochem. Soc.125 (1978) 1471.
    [108]B.E. Conway, Kluwer Academic/Plenum, New York,1999.
    [109]C.C. Hu,W.C. Chen, K.H. Chang, J. Electrochem. Soc.151 (2004) A281.
    [110]C.C. Hu, K.H. Chang, M.C. Lin, Y.T.Wu, Nano Lett.6 (2006) 2690.
    [111]J.P. Zheng, P.J. Cygan, T.R. Row, J. Electrochem. Soc.142 (1995) 2699.
    [112]J.P. Zheng, Electrochem. Solid-State Lett.2 (1999) 359.
    [113]K.H. Chang, Y.T. Wu, C.C. Hu, in:V. Gupta (Ed.), Recent Advances in the Electrochemical Supercapacitors, Research Signpost, Kerala, India,2006, (Chapter3).
    [114]I.H. Kim, K.B. Kim, Electrochem. Solid-State Lett.4 (2001) A62.
    [115]Y.G.Wang, X.G. Zhang, Electrochim. Acta 49 (2004) 1957.
    [116]C.C. Hu,W.C. Chen. Electrochim. Acta 49 (2004) 3469.
    [117]M. Min, K. Machida, J.H. Jang, K. Naoi, J. Electrochem. Soc.153 (2006) A334.
    [118]C.C. Hu, M.J. Liu, K.H. Chang, Electrochim. Acta 53 (2008) 2679.
    [119]C.C. Hu, K.H. Chang, Electrochim. Acda 45 (2000) 2685.
    [120]K.H. Chang, C.C. Hu, C.Y. Chou. Electrochim. Acta 54 (2009) 978.
    [121]C. X. Xu, R. Y. Wang, Y. Zhang, Y. Ding, Nanoscale 2 (2010) 906.
    [122]Z. Qi, Y. Z. Gong, C. Zhang, J. L. Xu, X. G. Wang, C. C. Zhao, H. Ji, Z. H. Zhang, J. Mater. Chem.21 (2011) 9716.
    [123]B. J. Evans, L. J. Swatzendruber, Hyper fine Interact.57 (1990) 1815.
    [124]X. M. Liu, S. Y. Fu, H. M. Xiao, Mater. Lett.60 (2006) 2979.
    [125]P. Gong, H. M. Li, X. X. He, K. M. Wang, J. B. Hu, W. Tan, S. C. Zhang, X. H. Yang, Nanotechnology 18 (2007) 285604.
    [126]A. A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, N.Tatjana, Z. Radek, J. Phys. Chem. B 110 (2006) 16248.
    [127]I. Sondi, B. Salopek-Sondi, J. Colloid. Interf. Sci.275 (2007) 177.
    [128]M. Wakihara, Mater. Sci. Eng. R 33 (2001) 109.
    [129]C.K. Chan, H.L. Peng, G. Liu, K. Mcllwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol.3 (2008) 31.
    [130]K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Science 311 (2006) 977.
    [131]J.O. Besenhard, J. Yang, M. Winter,J. Power Sources 68 (1997) 87.
    [132]W.J. Cui, F. Wang, J. Wang, H.J. Liu, C.X. Wang, Y.Y. Xia, J. Power Sources 196(2011)3633.
    [133]S. H. Ju, H. C. Jang, Y. C. Kang,J. Power Sources 189 (2009) 163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700