用户名: 密码: 验证码:
脱合金法制备纳米多孔金属和金属氧化物及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用脱合金法制备纳米多孔金属并对其物理、化学性能,如力学、光学、催化等特性进行研究是纳米材料领域的一个新兴研究方向,而将脱合金法这一简单易行的制备方法进行拓宽,合成其他功能纳米材料亦具有重要意义。本论文即以脱合金过程为基础,进行了以下三方面的研究。
     一、超低Au含量Au-Ag合金的脱合金化过程研究
     炼制了不同原子比例的金银合金(Au1Ag(99),Au5Ag(95)和Au(10)A(90)),并且研究了合金成分、腐蚀方法、腐蚀介质和反应条件对产物纳米多孔金形貌结构的影响。实验结果表明,直接在硝酸中进行自由腐蚀时,对于低Au含量合金,硝酸浓度越低越有利于形成三维网状纳米多孔结构,但是浓度降低到1 M左右腐蚀反应基本停止,所得纳米多孔Au的壁厚在30 nm左右;采用电化学腐蚀方法,在硝酸和高氯酸溶液中均可制得结构均匀的纳米多孔金,壁厚约5nm;在中性的硝酸钾溶液中得到的是Ag2O粉末,但是在硝酸和硝酸钾的混合溶液中也可获得尺寸匀称的纳米多孔金结构;特别的是,通过在稀硝酸中加入氟化铵进行电化学腐蚀可得到孔壁尺寸仅有2 nm左右但形貌结构均匀的纳米多孔金。
     二、纳米多孔金在葡萄糖氧化反应中的催化活性研究
     通过简单的脱合金化方法制备了不同尺寸和不同含Ag量的纳米多孔金催化剂。实验结果表明,即使是孔壁尺寸大于10 nm时,这种无负载的纳米多孔金催化剂对葡萄糖氧化生成葡萄糖酸的反应都具有良好的催化活性和催化选择性。孔壁尺寸为6 nm的纳米多孔金表现出最高的催化活性而且不容易失活;30 nm的纳米多孔金表现出良好的结构稳定性。研究还发现,纳米多孔金催化剂中的残留Ag并没有提高其对葡萄糖氧化反应的催化活性。基于上述研究结果,我们认为纳米多孔金中边、角处的Au原子是纳米多孔金的反应活性位。葡萄糖氧化反应的反应动力学研究说明,在纳米多孔金表面发生的葡萄糖氧化反应的速控步骤是孔中葡萄糖分子的内部扩散和葡萄糖分子在催化剂表面的吸附。总的来说,由于完全不同的催化剂结构和反应进程,纳米多孔金的催化活性无法和纳米金颗粒相媲美,但是纳米多孔金却具有作为催化剂的独特的优势,如易于制备、回收和循环利用;催化剂材料结构上的连续性和良好的导电性使其表面容易功能化修饰上其他材料并以此来设计和开发新型器件,如适合工业应用的薄膜反应器等。
     三、贵金属掺杂纳米多孔TiO2的制备及其催化性能研究
     开发了一条新颖的合成路线,以金属间化合物TiAl3、Ti(1-x)AuxAl3、Ti(1-x)PtxAl3和Ti(1-x)PdxAl3作为源材料,通过碱腐蚀-酸处理-高温退火这一途径成功制备了贵金属Au、Pt、Pd掺杂的纳米多孔TiO2。实验结果表明,用浓碱液对金属间化合物进行腐蚀后,必须将产物进行酸化-退火处理才能得到纳米多孔的锐钛矿TiO2。以脱合金化过程为基础的这一制备方法可以推广到其他金属氧化物或复合氧化物的合成领域。对所得产物的光催化活性进行研究发现,掺杂Au、Pt、Pd可有效提高纳米多孔TiO2的光催化活性,说明采用脱合金这一简单方法可以制备贵金属掺杂的TiO2光催化剂,并达到提高其光催化活性的目的。本文还研究了Au掺杂Tio2对CO氧化反应的催化活性,结果表明所制备出的Au掺杂的TiO2对CO氧化反应有很好的催化作用。
A newly emerging research direction that preparing nanoporous metals by dealloying method and investigating their physical and chemical properties such as mechanical, optical, catalytical properties has been attracted a number of scientists. Furthermore, it is also very important to extend the facile dealloying method to prepare other functional materials. The content of this thesis contains three parts based on the dealloying process.
     i) Dealloying of Au-Ag alloy with ultra low Au contents
     Au-Ag alloys with different Au/Ag molar ratios (Au1Ag99, Au5Ag95, and Au10A90) were made and the effects of alloy composition, etching method and electrolyte on the structure and morphology of nanoporous gold were investigated. The experimental results indicated that, the lower concentration of the nitric acid, the more uniform of the nanoporous gold while the alloy with ultra-low Au content (1%) was free dealloyed in nitric acid. When the Au-Ag alloy was electrochemically dealloyed in nitric acid and perchloric acid respectively, the products both were homogeneous nanoporous structure with ligament size about 5 nm. Furthermore, nanoporous gold with ultra-small ligament size 2 nm could be obtained in dilute nitric acid added ammonium fluoride by electrochemical dealloying method.
     ii) Aerobic oxidation of D-glucose on unsupported nanoporous gold
     NPG catalysts were fabricated by a simple dealloying method with different ligament sizes and Ag residual contents. This unsupported Au was found to be active and highly selective for the aerobic oxidation of D-glucose to D-gluconic acid, even when the ligament sizes are larger than 10 nm. NPG catalyst with a ligament size of 6 nm exhibits the highest catalytic activity and is more resistant to deactivation. Additionally, the 30 nm sample was found to have better structure stability during the whole catalytic process, while keeping decent catalytic activity. The presence of residual Ag atoms does not seem to contribute to the activity of NPG for glucose oxidation. On the basis of the above results, we suggest that the active sites of NPG are Au atoms on the corners and step edges. The investigation on reaction kinetics suggests that internal diffusion in pores as well as the adsorption of glucose molecules etermine the overall reaction rate on NPG. Finally, although the catalytic activity of NPG can not match that of Au nanoparticles due to their completely different structures and reaction configurations, NPG holds additional advantages as a catalyst, in a way that it can be easily prepared, recovered, and recycled. Their structural continuity and excellent electric conductivity also allow surface functionalization with other materials to design and develop novel devices such as membrane reactors for industrial applications.
     iii) Preparation of noble metal doped nanoporous TiO2 by dealloying method and their catalytic properties
     A novel synthesis route, originated from dealloying of intermetallic compound (TiAl3, Ti1-xAuxAl3, Ti1-xPtxAl3 and Ti1-xPdxAl3) to acidic treatment and thermal treatment, has been developed for the preparation of noble metal (Au, Pt, Pd) doped nanoporous TiO2. The experimental results indicated the important process of acidic treatment for the preparation of nanoporous TiO2 and furthermore, this route can be extended to fabricate other metal oxides or composite metal oxides. The doped TiO2 was applied in photodegradation of methyl orange and the results showed the greatly enhanced photocatalytic acitivity by noble metal doping. The Au doped nanoporous TiO2 was used in CO oxidation reaction. The resuts exhibited an effective catalytic activity of the sample and the good stability under 400℃.
引文
[1]Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. and Siemieniewska,T., Reporting physisorption date for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984), Pure Appl. Chem.,1985,57,603-619
    [2]Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,159,710-712
    [3]Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T-W., Olson, D.H., Sheooard, E.W., McCullen, S.B., Higgins, J.B. and Schlenker, J.L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc.,1992,114,10834-10843
    [4]Breck, D.W., Zeolite Molecular Sieves,1984, Krieger Publishing Company
    [5]Szoztak, R., Molecular Sieves:Principles of Synthesis and Identification,1989, Van Nostrand Reinhold Catalytic Series
    [6]Keller, F., Hunter, M.S. and Robinson, D.L. Structural features of oxide coatings on aluminium. J. Electrochem. Soc.,1953,100,411-419
    [7]Li, A.P., Mullar, F., Birner, A., Nielsch, K. and Gosele, U., Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys.,1998,84,6023-6026
    [8]Uhlir, A., Electrolytic shaping of germanium and silicon, BellSyst. Tech. J.,1956, 35,333-347
    [9]Smith, R.L. and Collins, S.D., Porous silicon formation mechanism, J. Appl. Phys.,1992,71,R1-R22
    [10]Rolison, D.R., Catalytic nanoarchitectures-The importance of nothing and the unimportance of periodicity, Science,2003,299,1698-1701
    [11]Bucknall, D.G., and Anderson, H.L., Polymers get organized, Science,2003,302, 1904-1905
    [12]Ishizaki, K., Porous materials:process technology and applications,1998, Kluwer Academic Publishing Company
    [13]Guo, Y.G., Hu, J.S., Zhang, H.M., Liang, H.P., Wan, L.J., Bai, C.L., Tin/Platinum bimetallic nanotube array and its electrocatalytic activity for methanol oxidation, Adv. Mater.,2005,17,746-746
    [14]Park, J., Cheon, J., Synthesis of "Solid Solution" and "Core-Shell" type Cobalt-Platinum magnetic nanoparticles via transmetalation reaction, J. Am. Chem. Soc,2001,123,5743-5746
    [15]Ji, R., Lee, W., Scholz, R., Gosele, U., Nielsch, K., Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition, Adv. Mater.,2006,18,2593-2596
    [16]Lee, U.H., Jung, D.Y., Kwon, Y.U., High-density arrays of platinum nanostructures and their hierarchical patterns, Adv. Mater,2006,18,2825-2828
    [17]Habas, S.E., Lee, H., Radmilovic, V., Somorjai, G.A., Yang, P., Shaping binary metal nanocrystals through epitaxial seeded growth, Nature Mater.,2007,6, 692-697
    [18]Sun, Y.G., Mayers, B., Xia, Y.N., Metal nanostructures with hollow interiors, Adv. Mater,2003,15,641-646
    [19](a) He, X., Antonelli, D., Recent advances in synthesis and applications of transition metal containing mesoporous molecular Sieves, Angew. Chem., Int. Ed., 2001,41,214-229. (b) Noort, D., Mandenius, C., Porous gold surfaces for biosensor applications, Biosens. Bioelectron.,2000,15,203-209
    [20]Xu, C.X., Xu, X.H., Su, J.X., Ding, Y., Research on unsupported nanoporous gold catalyst for CO oxidation, J. Catal.,2007,252,243-248
    [21]Xu, C.X., Su, J.X., Xu, X.H., Liu, P.P., Zhao, H.J., Tian, F., Ding, Y, Low temperature CO oxidation over unsupported nanoporous gold, J. Am. Chem. Soc., 2007,129,42-43
    [22]Yu,F., Ahl, S., Caminade, A.M., Majoral, J. P., Knoll, W., Erlebacher, J., Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes, Anal. Chem.,2006,78,7346-7350
    [23]Maaroof, A. I., Gentle, A., Smith, G. B., Cortie, M. B., Bulk and surface plasmons in highly nanoporous gold films, J. Phys. D:Appl. Phys.,2007,40,5675-5682
    [24]Danny van Noort 1, Carl-Fredrik Mandenius, Porous gold surfaces for biosensor applications, Biosens. Bioelectron.,2000,75,203-209
    [25]Hu, K., Lan, D., Li, X., Zhang, S., Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes, Anal. Chem.,2008,80,9124-9030
    [26]Ertenberg, R.W., Andraka, B., Takano, Y, Prospects of porous gold as a low-temperature heat exchanger for liquid and solid helium, Physica B,2000, 284-288,2022-2023
    [27]Velev, O.D., Tessier, P.M., Lenhoff, A.M., Kaler, E.W., A class of porous metallic nanostructures, Nature,1999,401,548-548
    [28]Kulinowski, K.M., Jiang, P., Vaswani, H., Colvin, V.L., Porous metals from colloidal templates, Adv. Mater,2000,12,833-838
    [29]Pu, L., Bao, X., Zou, J., Feng, D., Individual alumina nanotubes, Angew. Chem., Int. Ed,2001,40,1490-1493
    [30]Chu, S., Wada, K., Inoue, S., Todoroki, S., Fabrication of oxide nanostructures on glass by aluminum anodization and sol-gel process, Surf. Coat. Technol.,2003, 169-170,190-194
    [31]Seshadri, R., Meldrum, F.C., Bioskeletons as templates for ordered macroporous structures, Adv. Mater.,2000,12,1149-1151
    [32]Attard, G.S., Leclerc, S.A.A., Maniguet, S., Russell, A.E., Nandhakumar, I., Gollas, B.R., Bartlett, P.N., Liquid crystal phase templated mesoporous platinum alloy, Micropor. Mesopor. Mater,2001,44-45,159-163
    [33]Shchukin, D.G., Caruso, R.A., Template synthesis of porous gold microspheres, Chem. Commun.,2003,1478-1479
    [34]Zhang, H., Cooper, A.I., New approaches to the synthesis of macroporous metals, J. Mater. Chem.,2005,75,2157-2159
    [35]Forty, A.J., Corrosion micromorphology of noble metal alloys and depletion, Nature,1979,282,597-598
    [36]Pickering, H.W., Characteristic features of alloy polarization curves, Corros. Sci, 1983,23,1107-1120
    [37]Newman, R.C., Sieradzki, K., Metallic corrosion, Science,1994,263,1708-1709
    [38]Raney, M., Method of producing finely-divided nickel, US Patent,1927,1,628, 190
    [39]Pavlic, A.A., Adkins, H., Preparation of a Raney nickel catalyst, J. Am. Chem. Soc.,1946,68,1471-1471
    [40]Stratmann, M., Rohwerder, M., A pore view of corrosion, Nature,2001,410, 420-421
    [41]Senior, N.A., Newman, R.C., Synthesis of tough nanoporous metals by controlled electrolytic dealloying, Nanotechnology,2006,17,2311-2316
    [42]Erlebacher, J., Aziz, M.J., Karama, A., Dimitrov, N., Sieradzki, K., Evolution of nanoporosity in dealloying, Nature,2001,410,450-453
    [43](a)Fritz, J.D., Pickering, H.W., Selectivve anodic dissolution of Cu-Au alloys: TEM and current transient study, J. Electrochem Soc.,1991,138,3209-3218 (b)Ding, Y., Erlebacher, J., Nanoporous metal architectures with controlled multimodal pore size distributions, J. Am. Chem. Soc,2003,125,7772-7773 (c)Ding, Y., Kim, Y.J., Erlebacher, J., Nanoporous gold leaf:ancient technology/advanced material, Adv. Mater.,2004,16,1897-1900
    [44]《光催化》张金龙,陈锋,何斌编著。
    [45]Fujishima, A., Honda, K., Photolysis-decomposition of water at the surface of an irradiated semiconductor, Nature,1972,238,37-39
    [46](a) Chen, D. and Ray, A.K., Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2, Appl. Catal., B,1999,23,143-157 (b) Ding, Z., Lu, G.Q. and Greenfield. P.F., A kinetic study on photocatalytic oxidation of phenol in water by silica-dispersed titania nanoparticles, J. Colloid Interface Sci.,2000,232, 1-9 (c) Ilsz, I., Laszlo, Z. and Dombi, A., Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I:Effect of charge-trapping species on the degradation kinetics, Appl. Catal., A,1999,180, 25-33
    [47](a) Inoue, H., Kubo, Y. and Yoneyama, H., Photocatalytic fixation of carbon dioxide in oxoglataric acid using isocitrate dehydrogenase and cadmium sulphide, J. Chem. Soc., Faraday Trans.,1991,87,553-557 (b) Sclafani, A., Palmisano, L. and Eavi, E., Photocatalytic degradation of phenol in aqueous polycrystalline TiO2 dispersions:the influence of Fe3+, Fe2+ and Ag+on the reaction rate, J. Photochem. Photobiol, A,1991,56,113-123
    [48]Kozhukharov, V., Vitanov, P., Stefchev, P., Kabasanova, E., Kabasanov, K., Machkova, M., Blaskov, V., Simeonov, D., Tzaneva, G., TiO2-photocatalyzed oxidative water pollutants degradation:a review of the state-of-art, J. Environ. Prot.Eco.,2001,2,107-111
    [49](a) Ohno, T., Sarukawa, K. and Matsumura, M., Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution, J. Phys. Chem. B,2001,105,2417-2420 (b) Salvador, P., Garcia, M.L.G., Munoz, F., Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile, J. Phys. Chem. B,1992,96, 10349-10353
    [50]尹峰,林瑞峰,林原,肖绪瑞,TiO2表面电子结构及其光催化活性,催化学报,1999,19,343-346
    [51](a) Martra, G, Lewis acid and base sites at the surface of microcrystalline TiO2 anatase:relationships between surface morphologh and chemical behavior, Appl. Catal., A,2000,200,275-283 (b) Serpone, N. et al., Post-irradiation effect and reductive dechlorination of chlorphenols at oxygen-free TiO2/water interfaces in the presence of prominent hole scavengers, J. Photochem. Photobiol., A,2000, 136,145-152
    [52](a) Litter, M.I., Navio, J.A., Photocatalytic properties of iron-doped Titania semiconductors, J. Photochem. Photobiol., A,1996,98,171-181 (b) Choi, W., Termin, A., Hoffmann, M.R., The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem.,1994,98,13669-13679
    [53](a) Asahi, R. et al., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293,269-271 (b) Irie, H., Watanabe, Y, Hashimoto, K., Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B,2003,107,5483-5486
    [54](a) Vogel, R., Hoyer, P., Weller, H., Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, J. Phys. Chem.,1994,98,3183-3188 (b) Sukharev, V., Kershaw, R., Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water, J. Photochem. Photobiol., A,1996,98,165-169 (c) Bedja, I., Kamat, P.V., Capped semiconductor colloids, synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites, J. Phys. Chem.,1995,99, 9182-9188
    [55]方晓明,陈焕钦,纳米TiO2的液相合成方法,化工进展,2001,9,17-21
    [1]Thorp, J.C., Sieradzki, K., Tang, L., Crozier, P. A., Misra, A., Nastasi, M., Mitlin, D., Picraux, S.T., Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1-x, Appl Phys. Lett.,2006,88,033110
    [2]Wang, X.G., Qi, Z., Zhao, C.C., Wang, W.M., Zhang, Z.H., Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al-Ag alloys, J. Phys. Chem. C,2009,113,13139-13150
    [3]Spasspv, T., Lyubenova, L., Liu, L., Bliznakov, S., Spassova, M., Dimitrov, N., Mechanochemical synthesis, thermal stability and selective electrochemical dissolution of Cu-Ag solid solutions, J. Alloys Compd.,2009,478,232-236
    [4]Hakamada, M., Mabuchi, M., Fabrication of nanoporous palladium by dealloying and its thermal coarsening, J. Alloys Compd.,2009,479,326-329
    [5]Hakamada, M., Nakano, H., Furukawa, T., Takahashi, M., Mabuchi, M., Hydrogen storage properties of nanoporous Palladium fabricated by dealloying, J. Phys. Chem. C,2010,114,868-873
    [6]Xu, C.X., Wang R.Y., Chen, M.W., Zhang, Y., Ding, Y., Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties, Phys. Chem. Chem. Phys.,2010,12,239-246
    [7]Erlebacher, J., Aziz, M.J., Karama, A., Dimitrov, N., Sieradzki, K., Evolution of nanoporosity in dealloying, Nature,2001,410,450-453
    [8]Erlebacher, J., An atomistic description of dealloying-porosity evolution, the critical potential, and rate-limiting behavior, Electrochem. Soc.,2004,151, C614-C626
    [9]Forty, A.J., Corrosion micromorphology of noble metal alloys and depletion, Nature,1979,282,597-598
    [10]Zhang, Z.H., Wang, Y, Wang, Y.Z., Wang, X.G., Qi, Z., Ji, H., Zhao, C.C., Formation of ultrafine nanoporous gold related to surface diffusion of gold adatoms during dealloying of Al2Au in an alkaline solution, Scr. Mater,2010,62, 137-140
    [11]Zhang, Z.H., Wang, Y, Qi, Z., Lin, J.K. and Bian, X.F., Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al-Au alloys, J. Phys. Chem. C,2009,113,1308-1314
    [12]Jia, F.L., Yu, C.F., Ai, Z.H., Zhang, L.Z., Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity, Chem. Mater., 2007,19,3648-3653
    [13]Lu, X., Balk, T.J. and Spolenak, R., Dealloying of Au-Ag thin films with a composition gradient:Influence on morphology of nanoporous Au, Thin Solid Films,2007,575,7122-7126
    [14]Huang, J.F., Sun, I.W., Formation of nanoporous platinum by selective anodic dissolution of PtZn surface alloy in a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid, Chem. Mater,2004,16,1829-1831
    [15]Yu, C., Jia, F., Ai, Z. and Zhang, L., Direct oxidation of methanol on self-supported nanoporous gold film electrodes with high catalytic activity and stability, Chem. Mater.,2007,19,6065-6067
    [16]Yoon, J., Chan, M.H.W., Superfluid transition of 4He in porous gold, Phys. Rev. Lett.,1997,78,4801-4804
    [17]Van Der Lingen, E., Cortie, M.B., Glaner, L., Gold catalysts and methods for their preparation, South African Patent,2001,5816
    [18]Parida, S., Kramer, D., Volkert, C.A., Rosner, H., Erlebacher, J. and Weissmuller, J., Volume change during the formation of nanoporous gold by dealloying, Phys. Rev. Lett.,2006,97,035504
    [19]Kramer, D., Viswanath, R.N. and Weissmuller, J., Surface-stress induced macroscopic bending of nanoporous gold cantilevers, Nano Lett.,2004,4, 793-796
    [20]Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V.,and Abraham, F.F., Size effects on the mechanical behavior of nanoporous Au, Nano Lett.,2006,6,2379-2382
    [21]Volkert, C.A., Lilleodden, E.T., Kramer, D. and Weissmuller, J., Approaching the theoretical strength in nanoporous Au, Appl. Phys. Lett,2006,89,061920
    [22]Qian, L.H., Ding, Y., Fujita, T. and Chen, M.W., Synthesis and optical properties of three-dimensional porous core-shell nanoarchitectures, Langmuir,2008,24, 4426-4429
    [23]Xu, C, Su, J., Xu, X., Liu, P., Zhao, H., Tian, F. and Ding, Y., Low temperature CO oxidation over unsupported nanoporous gold, J. Am. Chem. Soc.,2007,129, 42-43
    [24]Yin, H., Zhou, C., Xu, C., Liu, P., Xu, X. and Ding, Y., Aerobic oxidation of D-glucose on support-free nanoporous gold, J. Phys. Chem. C,2008,112, 9673-9678
    [25]Zhang, J., Liu, P., Ma, H. and Ding, Y, Nanostructured porous gold for methanol electro-oxidation, J. Phys. Chem. C,2007,111,10382-10388
    [26]Dursun, A., Pugh, D.V., Corcoran, S.G., Dealloying of Ag-Au alloys in halide-containing electrolytes, J. Electrochem. Soc.,2003,150, B355-B360
    [1]Mallat, T., Baiker, A., Oxidation of alcohols with molecular oxygen on solid catalysts, Chem. Rev.,2004,104,3037-3058
    [2]Muzart, J., Palladium-catalysed oxidation of primary and secondary alcohols, Tetrahedron,2003,59,5789-5816
    [3]Karski, S., Witonska, I., Bismuth as an additive modifying the selectivity of palladium catalysts, J. Mol. Catal. A:Chem.,2003,191,87-92
    [4]Wenkin, M., Renard, C., Ruiz, P., Delmon, B., Devillers, M., Promoting effects of bismuth in carbon-supported bimetallic bismuth-palladium catalysts for the selective oxidation of glucose to gluconic acid, Stud. Surf. Sci. Catal.,1997,110, 517-526
    [5]Nikov, I., Paev, K., Palladium on alumina catalyst for glucose oxidation:reaction kinetics and catalyst deactivation, Catal. Today,1995,24,41-47
    [6]Haruta, M., Yamada, N., Kobayashi, T., and Iijima, S., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,J.Catal.,1989,115,301-309
    [7]Murzina, E.V, Tokarev, A.V., Krisztian, K., Karhu, H., Mikkola, J.-P., Murzin, D.Y., D-Lactose oxidation over gold catalysts, Catal. Today,2008,131,385-392
    [8]Biella, S., Prati, L., Rossi, M., Selective oxidation of D-glucose on gold catalyst, J. Catal.,2002,206,242-247
    [9]Mirescu, A., PrUβe, U., Selective glucose oxidation on gold colloids, Catal. Comm.,2006,7,11-17
    [10]Beltrame, P., Comotti, M., Pina, C.D., Rossi, M., Aerobic oxidation of glucose Ⅱ. Catalysis by colloidal gold, Appl. Catal., A,2006,297,1-7
    [11]Comotti, M., Pina, C.D., Rossi, M., Mono-and bimetallic catalysts for glucose oxidation, J. Mol. Catal. A:Chem.,2006,251,89-92
    [12]Comotti, M., Pina, C.D., Matarrese, R., Rossi, M., The catalytic activity of "naked" gold particles, Angew. Chem., Int. Ed.,2004,43,5812-5815
    [13]Porta, F., Rossi, M., Gold nanostructured materials for the selective liquid phase catalytic oxidation, J. Mol. Catal. A:Chem.,2003,204,553-559
    [14]Xu, C.X., Su, J.X., Xu, X.H., Liu, P.P., Zhao, H.J., Tian, F., Ding, Y., Low temperature CO oxidation over unsupported nanoporous gold, J. Am. Chem. Soc., 2007,129,42-43
    [15]Xu, C.X., Xu, X.H., Su, J.X., Ding, Y., Research on unsupported nanoporous gold catalyst for CO oxidation, J. Catal.,2007,252,243
    [16]Ding, Y., Kim, Y.J., Erlebacher, J., Nanoporous gold leaf:'Ancient technology', Adv. Mater.,2004,16,1897-1900
    [17]Zhang, J.T., Liu, P.P., Ma, H.Y., Ding, Y., Nanostructured porous gold for methanol electro-oxidation, J. Phys. Chem. C,2007,111,10382-10388
    [18]Zielasek, V., Jurgens, B., Schulz, C, Biener, J., Biener, M.M., Hamza, A.V., Baumer, M., Gold catalysts:Nanoporous gold foams, Angew. Chem., Int. Ed., 2006,45,8241-8244
    [19]Zeis, R., Lei, T., Sieradzki, K., Snyder, J., Erlebacher, J., Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, J. Catal.,2008,253,132-138
    [20]Onal, Y., Schimpf, S., Claus, P., Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts, J. Catal., 2004,223,122-133
    [21]Haruta, M., Size-and support-dependency in the catalysis of gold, Catal. Today, 1997,36,153-166
    [22]Haruta, M., Date, M., Advances in the catalysis of Au nanoparticles, Appl. Catal, A,,2001,222,427-437
    [23]Liu, R., Crozier, P.A., Smith, C.M., Hucul, D.A., Blackson, J., Salaita, G., In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration processes, Microsco. Microanal.,2004,10, 77-85
    [24]Hvolb(?)k, B., Janssens, T.V.W., Clausen, B.S., Falsig, H., Christensen, C.H., N(?)rskov, J.K., Catalytic activity of Au nanoparticles, Nanotoday,2007,2,14-18
    [25]Mallat, T., Baiker, A., Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions, Catal. Today,1994,19,247-283
    [26]Converti, A., Zilli, M., Arni, S., Felice, R.D., Borghi, M.D., Estimation of viscosity of highly viscous fermentation media containing one or more solutes, Biochem. Engin. J.,1999,4,81-85
    [27]Wang, A.Q., Hsieh, Y.P., Chen, Y.F., Mou, C.Y., Au-Ag alloy nanoparticle as catalyst for CO oxidation:Effect of Si/Al ratio of mesoporous support, J. Catal, 2006,237,197-206
    [28]Liu, J.H., Wang, A.Q., Chi, Y.S., Lin, H.P., Mou, C.Y., Synergistic effect in an Au-Ag alloy nanocatalyst:CO oxidation, J. Phys. Chem. B,2005,109,40-43
    [29]Haruta, M., New generation of gold catalysts:nanoporous foams and tubes-is unsupported gold catalytically active?, Chem. Phys. Chem.,2007,8,1911-1913
    [1]McFarland, E.W., Tang, J., A photovoltaic device structure based on internal electron emission, Nature,2003,421,616-618
    [2]Gratzel, M., Photoelectrochemical cells, Nature,2001,414,338-344
    [3]Kamat, P.V., Meeting the clean energy demand:nanostructure architectures for solar energy conversion, J. Phys. Chem. C,2007,111,2834-2860
    [4]Linsebigler, A.L., Lu, G., Yates Jr, J.T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev.,1995,95,735-758
    [5]Wu, G.P., Chen, T., Su, W.G., Zhou, G.H., Zong, X., Lei, Z.B., Li, C., H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst, Int. J. Hydrogen Energy,2008,33,1243-1251
    [6]Wu, G.P., Chen, T., Zong, X., Yan, H.J., Ma, G.J., Wang, X.L., Xu, Q., Wang, D.G., Lei, Z.B., Li, C., Suppressing CO formation by anion adsorption and Pt deposition on TiO2 in H2 production from photocatalytic reforming of methanol, J. Catal.,2008,253,225-227
    [7]Bowker, M., Millard, L., Greaves, J., James, D., Soares, J., Photocatalysis by Au nanoparticles:reforming of methanol, Gold Bulletin,2004,37,170-173
    [8]Carp, O., Huisman, C.L., Reller, A., Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem.,2004,32,33-177
    [9]Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T., Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater.,1998,10,135-135
    [10]Rodriguez, J.A., Ma, S., Liu, P., Hrbek, J., Evans, J., Perez, M., Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction, Science, 2007,318,1757-1760
    [11]Thompson, T.L., Yates, J.T., Surface science studies of the photoactivation of TiO2. New photochemical processes, Chem. Rev.,2006,106,4428-4453
    [12]Jakob, M., Levanon, H., Kamat, P.V., Charge distribution between UV-irradiated TiO2 and gold nanoparticles:determination of shift in the Fermi level, Nano Lett., 2003,3,353-358
    [13]Paramasivalm, I., Macak, J.M., Schmuki, P., Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles, Electrochem. Commun., 2008,10,71-75
    [14]Subramanian, V., Wolf, E.E., Kamat, P.V., Catalysis with TiO2/Gold nanocomposites effect of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc.,2004,126,4943-4950
    [15]Furube, A., Du, L., Hara, K., Katoh, R., Tachiya, M., Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles, J. Am. Chem. Soc., 2007,129,14852-14853
    [16]Chen, M.S., Goodman, D.W., The structure of catalytically active gold on titania, Science,2004,306,252-255
    [17]Chen, X., Zhu, H.Y., Zhao, J.C., Zheng, Z.T., Gao, X.P., Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports, Angew. Chem, Int. Ed.,2008,47,5353-5356
    [18]Drew, K., Girishkumar, G., Vinodgopal, K., Kamat, P.V., Boosting fuel cell performance with a semiconductor photocatalyst:TiO2/Pt-Ru hybrid catalyst for methanol oxidation, J. Phys. Chem. B,2005,109,11851-11857
    [19]Enache, D.I., Edwards, J.K., Landon, P., Solsona-Espriu, B., Carley, A.F., Herzing, A.A., Watanabe, M., Kiely, C.J., Knight, D.W., Hutchings, G.J., Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts, Science,2006,311,362-365
    [20]Hepel, M., Kumarihamy, I., Zhong, C.J., Nanoporous TiO2-supported bimetallic catalysts for methanol oxidation in acidic media, Electrochem. Commun.,2006,8, 1439-1444
    [21]Valden, M., Lai, X., Goodman, D.W., Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science,1998,281, 1647-1650
    [22]Yamakata, A., Ishibashi, T.A., Onishi, J., Effects of water addition on the methanol oxidation on Pt/TiO2 photocatalyst studied by time-resolved infrared absorption spectroscopy, J. Phys. Chem. B,2003,107,9820-9823
    [23]Yang, L.X., Yang, W.Y., Cai, Q.Y., Well-dispersed PtAu nanoparticles loaded into anodic titania nanotubes:a high antipoison and stable catalyst system for methanol oxidation in alkaline media, J. Phys. Chem. C,2007,111,16613-16617
    [24]Enache, D.I., Edwards, J.K., Landon, P., Solsona-Espriu, B., Carley, A.F., Herzing, A.A., Watanabe, M., Kiely, C.J., Knight, D.W., Hutchings, G.J., Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts, Science, 2006,311,362-365
    [25]Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Ichikawa, S., Haruta, M., Au/TiO2 nanosized samples:a catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation, J. Catal.,2001,202,256-267
    [26]Pichat, P., Mozzanega, M.N., Disdier, J., Herrmann, J.M., Platinum content and temperature effects on the photocatalytic hydrogen production from aliphatic alcohols over platinum/titanium dioxide, Nouv. J. Chim.,1982,11,559-564
    [27]Zhang, Z.H., Wang, Y, Qi, Z., Lin, J.K., Bian, X.F., Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al-Au alloys, J. Phys. Chem. C,2009,113,1308-1314
    [28]Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K., Evolution of nanpoporosity in dealloying, Nature,2001,410,450-453
    [29]Jaffrexic-Renault, N., Disdier, P., Pichat, P., Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide, J. Phys. Chem.,1990,94,6820-6825
    [1]Mallat, T., Baiker, A., Oxidation of alcohols with molecular oxygen on solid Catalysts, Chem. Rev.,2004,104,3037-3058
    [2]Muzart, J., Palladium-catalysed oxidation of primary and secondary alcohols, Tetrahedron,2003,59,5789-5816
    [3]Karski, S., Witonska, I., Bismuth as an additive modifying the selectivity of palladium catalysts, J. Mol. Catal. A:Chem.,2003,191,87-92
    [4]Wenkin, M., Renard, C., Ruiz, P., Delmon, B., Devillers, M., Promoting effects of bismuth in carbon-supported bimetallic bismuth-palladium catalysts for the selective oxidation of glucose to gluconic acid, Stud. Surf. Sci. Catal.,1997,110, 517-526
    [5]Nikov, I., Paev, K., Palladium on alumina catalyst for glucose oxidation:reaction kinetics and catalyst deactivation, Catal. Today,1995,24,41-47
    [6]Murzina, E.V, Tokarev, A.V., Krisztian, K., Karhu, H., Mikkola, J.-P., Murzin, D.Y., D-Lactose oxidation over gold catalysts, Catal. Today,2008,131,385-392
    [7]Biella, S., Prati, L., Rossi, M., Selective oxidation of D-glucose on gold catalyst, J. Catal.,2002,206,242-247
    [8]Mirescu, A., PrUβe, U., Selective glucose oxidation on gold colloids, Catal. Comm.,2006,7,11-17
    [9]Beltrame, P., Comotti, M., Pina, C.D., Rossi, M., Aerobic oxidation of glucose Ⅱ. Catalysis by colloidal gold, Appl. Catal, A,2006,297,1-7
    [10]Comotti, M., Pina, C.D., Rossi, M., Mono-and bimetallic catalysts for glucose oxidation, J. Mol. Catal. A:Chem.,2006,251,89-92
    [11]Comotti, M., Pina, C.D., Matarrese, R., Rossi, M., The catalytic activity of "naked" gold particles, Angew. Chem., Int. Ed.,2004,43,5812-5815
    [12]Porta, F., Rossi, M., Gold nanostructured materials for the selective liquid phase catalytic oxidation, J. Mol. Catal. A:Chem.,2003,204,553-559
    [13]Xu, C.X., Su, J.X., Xu, X.H., Liu, P.P., Zhao, H.J., Tian, F., Ding, Y., Low temperature CO oxidation over unsupported nanoporous gold, J. Am. Chem. Soc., 2007,129,42-43
    [14]Xu, C.X., Xu, X.H., Su, J.X., Ding, Y., Research on unsupported nanoporous gold catalyst for CO oxidation, J. Catal.,2007,252,243
    [15]Ding, Y, Kim, Y. J., Erlebacher, J., Nanoporous gold leaf:'Ancient technology', Adv. Mater,2004,16,1897-1900
    [16]Zhang, J.T., Liu, P.P., Ma, H.Y., Ding, Y, Nanostructured porous gold for methanol electro-oxidation, J. Phys. Chem. C,2007,111,10382-10388
    [17]Zielasek, V., Jurgens, B., Schulz, C., Biener, J., Biener, M.M., Hamza, A.V., Baumer, M., Gold catalysts:Nanoporous gold foams, Angew. Chem., Int. Ed., 2006,45,8241-8244
    [18]Zeis, R., Lei, T., Sieradzki, K., Snyder, J., Erlebacher, J., Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, J. Catal.,2008,253,132-138
    [19]Onal, Y., Schimpf, S., Claus, P., Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts, J. Catal., 2004,223,122-133
    [20]Haruta, M., Size-and support-dependency in the catalysis of gold, Catal. Today, 1997,36,153-166
    [21]Haruta, M., Date, M., Advances in the catalysis of Au nanoparticles, Appl. Catal., A,2001,222, 427-437
    [22]Liu, R., Crozier, P.A., Smith, C.M., Hucul, D.A., Blackson, J., Salaita, G, In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration processes, Microsco. Microanal.,2004,10, 77-85
    [23]Hvolbaek, B., Janssens, T.V.W., Clausen, B.S., Falsig, H., Christensen, C.H., N(?)rskov, J.K., Catalytic activity of Au nanoparticles, Nanotoday,2007,2,14-18
    [24]Mallat, T., Baiker, A., Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions, Catal. Today,1994,19,247-283
    [25]Converti, A., Zilli, M., Arni, S., Felice, R.D., Borghi, M.D., Estimation of viscosity of highly viscous fermentation media containing one or more solutes, Biochem. Engin. J.,1999,4,81-85
    [26]Wang, A.Q., Hsieh, Y.P., Chen, Y.F., Mou, C.Y, Au-Ag alloy nanoparticle as catalyst for CO oxidation:Effect of Si/Al ratio of mesoporous support, J. Catal., 2006,237,197-206
    [27]Liu, J.H., Wang, A.Q., Chi, Y.S., Lin, H.P., Mou, C.Y, Synergistic effect in an Au-Ag alloy nanocatalyst:CO oxidation, J. Phys. Chem. B,2005,109,40-43.
    [28]Haruta, M., New generation of gold catalysts:nanoporous foams and tubes-is unsupported gold catalytically active, Chem. Phys. Chem.,2007,8,1911-1913
    [1]Thorp, J.C., Sieradzki, K., Tang, L., Crozier. P. A., Misra, A., Nastasi, M., Mitlin, D., Picraux, S.T., Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1-x,Appl. Phys. Lett.,2006,88,033110
    [2]Wang, X.G., Qi, Z., Zhao, C.C., Wang, W.M., Zhang, Z.H., Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al-Ag alloys, J. Phys. Chem. C,2009,113,13139-13150
    [3]Spasspv, T., Lyubenova, L., Liu, L., Bliznakov, S., Spassova, M., Dimitrov, N., Mechanochemical synthesis, thermal stability and selective electrochemical dissolution of Cu-Ag solid solutions,J. Alloys Compd.,2009,478,232-236
    [4]Hakamada, M., Mabuchi, M., Fabrication of nanoporous palladium by dealloying and its thermal coarsening, J. Alloys Compd.,2009,479,326-329
    [5]Hakamada, M., Nakano, H., Furukawa, T., Takahashi, M., Mabuchi, M., Hydrogen storage properties of nanoporous Palladium fabricated by dealloying, J. Phys. Chem. C,2010,114,868-873
    [6]Xu, C.X., Wang R.Y., Chen, M.W., Zhang, Y., Ding, Y., Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties, Phys. Chem. Chem. Phys.,2010,12,239-246
    [7]Erlebacher, J., Aziz, M.J., Karama, A., Dimitrov, N., Sieradzki, K., Evolution of nanoporosity in dealloying, Nature,2001,410,450-453
    [8]Erlebacher, J., An atomistic description of dealloying-porosity evolution, the critical potential, and rate-limiting behavior, Electrochem. Soc.,2004,151, C614-C626
    [9]Forty, A.J., Corrosion micromorphology of noble metal alloys and depletion, Nature,1979,282,597-598
    [10]Zhang, Z.H., Wang, Y, Wang, Y.Z., Wang, X.G., Qi, Z., Ji, H., Zhao, C.C., Formation of ultrafine nanoporous gold related to surface diffusion of gold adatoms during dealloying of Al2Au in an alkaline solution, Scr. Mater.,2010,62, 137-140
    [11]Zhang, Z.H., Wang, Y, Qi, Z., Lin, J.K. and Bian, X.F., Nanoporous gold ribbons
    with bimodal channel size distributions by chemical dealloying of Al-Au alloys, J. Phys. Chem. C. 2009,113,1308-1314
    [12]Jia, F.L., Yu, C.F., Ai, Z.H., Zhang, L.Z., Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity, Chem. Mater. 2007,19,3648-3653
    [13]Lu, X., Balk, T.J. and Spolenak, R., Dealloying of Au-Ag thin films with a composition gradient:Influence on morphology of nanoporous Au, Thin Solid Films,2007,515,7122-7126
    [14]Huang, J.F., Sun, I.W., Formation of nanoporous platinum by selective anodic dissolution of PtZn surface alloy in a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid, Chem. Mater,2004,16,1829-1831
    [15]Yu, C., Jia, F., Ai, Z. and Zhang, L., Direct oxidation of methanol on self-supported nanoporous gold film electrodes with high catalytic activity and stability, Chem. Mater,2007,19,6065-6067
    [16]Yoon, J., Chan, M.H.W., Superfluid transition of 4He in porous gold, Phys. Rev. Lett.,1997,78,4801-4804
    [17]Van Der Lingen, E., Cortie, M.B., Glaner, L., Gold catalysts and methods for their preparation, South African Patent,2001,5816
    [18]Parida, S., Kramer, D., Volkert, C.A., Rosner, H., Erlebacher, J. and Weissmuller, J., Volume change during the formation of nanoporous gold by dealloying, Phys. Rev. Lett.,2006,97,035504
    [19]Kramer, D., Viswanath, R.N. and Weissmuller, J., Surface-stress induced macroscopic bending of nanoporous gold cantilevers, Nano Lett.,2004,4, 793-796
    [20]Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V.,and Abraham, F.F., Size effects on the mechanical behavior of nanoporous Au, Nano Lett.,2006,6,2379-2382
    [21]Volkert, C.A., Lilleodden, E.T., Kramer, D. and Weissmuller, J., Approaching the theoretical strength in nanoporous Au, Appl. Phys. Lett.,2006,89,061920
    [22]Qian, L.H., Ding, Y, Fujita, T. and Chen, M.W., Synthesis and optical properties of three-dimensional porous core-shell nanoarchitectures, Langmuir,2008,24, 4426-4429
    [23]Xu, C, Su, J., Xu, X., Liu, P., Zhao, H., Tian, F. and Ding, Y, Low temperature CO oxidation over unsupported nanoporous gold, J. Am. Chem. Soc.,2007,129, 42-43
    [24]Yin, H., Zhou, C., Xu, C., Liu, P., Xu, X. and Ding, Y., Aerobic oxidation of D-glucose on support-free nanoporous gold, J. Phys. Chem. C,2008,112, 9673-9678
    [25]Zhang, J., Liu, P., Ma, H. and Ding, Y., Nanostructured porous gold for methanol electro-oxidation, J. Phys. Chem. C,2007,111,10382-10388
    [26]Dursun, A., Pugh, D.V., Corcoran, S.G., Dealloying of Ag-Au alloys in halide-containing electrolytes, J. Electrochem. Soc.,2003,150, B355-B360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700