用户名: 密码: 验证码:
纳米多孔金属材料的设计、制备与催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要采用去合金化法制备了一系列纳米多孔的金属材料,分别从纳米多孔材料的制备、形成机理以及性质表征和应用研究几个方面进行了论述,主要内容包括电化学去合金化法制备小孔径的纳米多孔金及CO催化氧化性能研究,去合金化法与氧化还原置换法相结合制备纳米管道状介孔铂系合金纳米结构及其形成机理与电催化性能研究,去合金化三元合金制备纳米多孔的Pt/Au合金及其电催化性能研究。本论文旨在发展一种简便有效的方法来制备纳米多孔的金属材料,并探索这类材料的气相催化与电催化性能,探索它们在燃料电池和工业催化等方面的应用前景。
     1.电化学去合金化法制备小孔径纳米多孔金及其CO催化氧化性能研究
     在双电极体系中,以浓硝酸为电解质,铂片为阴极,25μm厚的Au/Ag合金(42:58,wt.%)片作为阳极,加阳极电压(电压范围0.6-1.0 V),在室温下腐蚀10-15 min制备了小孔径的纳米多孔金a-NPG。a-NPG具有三维双连续的海绵状结构,孔壁尺寸均匀分布在6 nm左右。根据多孔金形成的机理,银的溶解导致的表面粗糙化,与金原子的扩散导致的表面平滑化是相互竞争的,本文中改进了金银合金的去合金化方法,通过加一定的阳极电压,加快了银的溶解,抑制了金的扩散,缩短了去合金化的时间,制得了小尺寸的纳米多孔金。
     基于a-NPG这种新的非负载型金催化体系,系统地研究了a-NPG对CO的一系列催化氧化性质,包括催化反应的活性物种、反应动力学、及反应温度、孔壁尺寸与空速对催化活性的影响。在没有金属氧化物衬底的情况下纳米多孔金对CO氧化显示了很高的低温催化活性。a-NPG中金属态的金是CO与O_2发生催化反应的活性位点。对于反应物浓度对反应速率的影响,通过实验观察到CO的浓度对催化反应的速率影响较大,而O_2的浓度只是轻微地影响了反应的速率,实验结果表明,在讨论的温度区间内CO在a-NPG催化剂表面的吸附可能是反应的速控步骤,CO在a-NPG上的催化氧化的反应速率方程式可以表示为R=K[CO]~(0.78)[O_2]~(0.25)。在233-273 K的温度区间内,CO氧化的反应速率随着温度的升高呈线性变化,在高温下,这种趋势逐渐减慢。利用Arrhenius行为分析估算出a-NPG上CO催化氧化的表观反应活化能大约是28.8 kJ/mol。从探讨纳米多孔金孔壁尺寸的影响中,较大尺寸的a-NPG也显示了一定的CO催化活性,表明了a-NPG高的活性不是量子尺寸效应的结果,可能与a-NPG孔壁尺寸较小时表面上存在的大量低配位金原子有关。电化学去合金化法制备a-NPG催化剂,制备方法简单、结构容易控制、产率高,该制备方法丰富了小尺寸纳米多孔金属材料的制备。基于a-NPG对CO催化氧化进行的一系列研究,通过彻底排除衬底的影响,所进行的一系列研究结果对金催化剂催化活性的起因提供了新的理解与认识。
     2.去合金化法与氧化还原置换法相结合制备纳米管道状介孔铂系合金结构以及电催化性质研究
     将简单的去合金化方法与氧化还原置换法相结合制备了一类以Pt系金属为基础的纳米管道状介孔合金材料。在NaOH溶液中选择性腐蚀50μm厚的Cu_(25)Al_(75)(at.%)合金片制备了纳米多孔铜(NPC)作为模板与还原剂。NPC显示了三维双连续的海绵状形态,其孔壁尺寸均匀分布在50 nm左右,去合金化方法制备NPC模板,简单有效,成本低,适合大量制备。通过透射电镜,扫描电镜及X-射线粉末衍射证明N-PC与H_2PtCl_6发生置换反应后得到了管状的纳米多孔Pt/Cu合金(NM-Pt/Cu),其中管道直径与孔壁的尺寸分别为60和10 nm左右。孔壁是由直径为~5 nm的纳米颗粒和孔径为~3 nm的小孔组成。与K_2PdCl_4溶液的反应产生了类似的纳米管道状介孔结构,其中管道直径和孔壁的尺寸大约为50和6 nm。置换反应过程中这种管道状结构的形成机理如下:当NPC模板与铂系金属前驱体溶液混合以后,表面的Cu与前驱体溶液自发发生了置换反应,被还原生成的Pt或Pd原子沉积到NPC的表面上,随着反应的进行,越来越多的Cu原子从NPC结构内部滤出。同时,NPC结构里面的Cu逐渐向外扩散,溶液中沉积下来的Pt或Pd原子与未反应的Cu原子相互扩散形成合金,而暴露在溶液中的Cu逐渐被Pt或Pd置换并合金化,产物最终变为富Pt的Pt/Cu或富Pd的Pd/Cu合金,但是此时的Cu由于其周围大量Pt或Pd原子的存在而被钝化,导致置换反应终止,最终生成了管道状的纳米多孔合金结构。对于多孔的壳层表面,可能是Cu与金属前驱体溶液反应比较剧烈或高的表面能,使反应过程被还原的Pt或Pd原子聚集形成了纳米颗粒导致了多孔表面的形成。
     在催化性能测试中发现NM-Pt/Cu与NM-Pd/Cu合金对甲醇电氧化,甲酸电氧化,氧还原等有机小分子的电催化具有高的活性,催化稳定性和强的抗中毒能力。这类纳米材料以其优异的催化性能、简便环保的制备方法、独特的结构为其在工业催化和燃料电池技术中的应用提供了明显的优势。
     3.去合金化三元合金制备纳米多孔Pt/Au合金及其电催化性能研究
     采用去合金化三元合金的方法制备了不同铂金组分的结构均匀的纳米多孔Pt/Au合金,其组分分别是Pt_4Au_1、Pt_1Au_1、Pt_1Au_4。纳米多孔的Pt/Au合金是通过电化学腐蚀法溶解Pt/Au/Cu合金的铜制得的。SEM与TEM研究证明选择性的去除三元合金中的铜简单有效地制备了三维双连续的纳米多孔Pt/Au合金。在同样的去合金化条件下,随着金含量的增加,孔径孔壁发生了粗化现象,其中Pt_4Au_1、Pt_1Au_1、Pt_1Au_4的孔径与孔壁尺寸分别是3、5、10 nm。XPS与XRD证明纳米多孔的Pt_4Au_1与Pt_1Au_1具有非常均匀的合金组分与相结构,而Pt_1Au_4发生了轻微的相分离,导致表面富金。这种纳米多孔的结构在金的含量较低时在酸性溶液中对Pt起了良好的结构稳定化作用。电催化性能测试表明,不同组分的Pt/Au合金对甲醇和甲酸的电催化氧化表现出了明显不同的性能。从甲醇催化来看,Pt_4Au_1与Pt_1Au_1具有较高的甲醇催化活性,而Pt_1Au_4却显示了最高的甲酸电催化性能由于采用直接脱氢的催化机理。实验证明通过炼合金时控制最初的Pt/Au双金属比例,可以获得不同的有机小分子电催化活性。去合金化法方法制备纳米多孔合金是一种简便有效的方法,整个过程贵金属基本没有损耗,适于大规模的合成。特别重要的是,去合金化是一个理想的“绿色”化学方法,其中没有任何有机物的参与和产生。这种方法作为一种有效常规的方法可以来合成其它的纳米多孔的合金催化剂。
This paper is focusing on designing and fabricating a novel class of nanoporous metallic materials and exploring their corresponding formation mechanism, catalytic and electrocatalytic properties.Investigations are based on several aspects mainly including:research on unsupported nanoporous gold(NPG) for CO oxidation,fabrication of multifunctional hierarchically hollow platinum-group bimetallic nanocomposites and their electrocatalytic activities, preparation of nanoporous Pt-based metals with controllable size and composition, and related characterization of their electrocatalytic performance.
     1.Preparation of unsupported NPG with small length scale and research on their CO performance.
     Typically,NPG sample with ligament size at~6 nm(a-NPG) was made by etching a piece of 25μm Ag/Au foil in a concentrated nitric acid for 10-15 min with an applied voltage of 0.6-1.0V.Platinum electrode was used as a cathode in a binary electrode system.Based on the dealloying principle,the evolution and formation of nanoporous structure is a competition between dissolution of Ag induced surface roughening and Au diffusion induced surface smoothing.By using the modified electrochemical dealloying method,the applied anode potential accelerates the dissolution of Ag and inhibits the diffusion of Au, resulting in the smaller length scale of NPG.
     Based on the unsupported NPG catalysts,we discussed the catalytic activity of NPG as a function of space velocity,gas concentration,and reaction temperature etc.It was found that a-NPG shows unique catalytic activity towards low-temperature CO oxidation in the absence of metal oxide support.In kinetic studies,we found that the reaction rate of CO oxidation on unsupported NPG depends significantly on CO concentration but only slightly on O_2 concentration. It is considered that the CO adsorption onto the NPG surface may play a decisive role in the reaction as the rate-limiting step.CO oxidation rate on NPG was expressed by the following equation:RCO=K[CO]~(0.78)[O_2]~(0.25).With the increase in reaction temperature CO connversion rapidly increased between 235 and 273 K.At higher temperatures,the trend slowed,and CO reached near complete conversion.The analysis of Arrhenius behavior allows the extrapolation of the apparent activation energy to be 28.8 kJ/mol.Interestingly,we found that NPG with larger pore and ligament size also exhibited high CO catalytic activity.We think that the high catalytic activity of NPG originates form the high concentration of low-coordinated metallic Au atoms but not the quantum size effect.
     The electrochemical dealloying method to prepare NPG is simple and convenient with absolute yield and controllable structure,which enriches the preparation of small-sized nanoporous metallic materials.A series of research on NPG towards CO oxidation provides new insights into gold catalysis by completely excluding the effect of support.
     2.The preparation of nanotubular porous platinum-group bimetallic nanocomposites and research on their electrocatalytic performance.
     In this research,a general approach is employed to large-scale synthesis of a novel class of nanotubular mesoporous platinum-group-metals(PGMs)-based nanostructures based on a simple room-temperature dealloying and galvanic replacement reaction.Dealloying was used to synthesize nanoporous metals to act as sacrificial templates,and followed by reacting with H_2PtCl_6 and K_2PdCl_4 solution precursors.The resulted NM-Pt/Cu and NM-Pd/Cu structures were confirmed by transmission electron spectroscopy(TEM) and scanning electron spectroscopy(SEM).NM-Pt/Cu shows a three-dimensional(3D) bicontinuous nanotubular mesoporous structure with tube diameter around 80 nm and shell thickness about 10 nm.Interestingly,the shell surfaces are not smooth and seamless but rather have many small pores and grains around 3 nm.The NM-Pd/Cu structure also exhibits hierarchical hollow structure with the tube diameter around 60 nm and shell thickness about 6 nm.X-ray diffraction(XRD) analysis confirmed that the resulted NM-Pt/Cu and NM-Pd/Cu have the single-phase alloy structure.The possible formation mechanism of such the hierarchically hollow structure was explained as follows:as Pt(or Pd) atoms are reduced and deposited onto the NPC substrate,Cu atoms are progressively leached away.At the same time,these deposited precious metal surface atoms will interdiffuse with Cu to form an alloy.As the reaction goes on,more Cu will be depleted;and accordingly,the surface was gradually passivated due to the further incorporation of more precious metal atoms.Eventually,a PGM-based bimetallic nanotubular mesoporous structure forms,which also marks the completion of the displacement reaction.
     NM-Pt/Cu catalyst exhibits high catalytic activity and CO-tolerance toward methanol oxidation.Meanwhile,NM-Pd/Cu shows a unique activity towards oxygen reduction reaction.This synthesis strategy is facile and efficient to fabricate similar ultra-high surface area nanocomposites in large scale with hierarchically hollow structures.These nanostructures have obvious structural advantages in terms of unique catalytic properties,simple and clean processing, and saving precious metals,which suggest their great potential for use in heterogeneous catalysis and fuel cell technologies.
     3.Preparation of nanoporous Pt/Au alloys with controllable size and composition by dealloying ternary alloys and research on their electrocatalytic activity.
     A simple and general dealloying method was employed to fabricate nanoporous Au/Pt alloys with pre-determined Au/Pt molar ratios.Structural characterization by electron microscopes confirms that selective etching of Cu from Au/Pt/Cu alloy precursors results in the formation of 3-dimensional bicontinuous porous network structures with uniform pores and ligaments.The as-made Pt_4Au_1,Pt_1Au_1,and Pt_1Au_4 samples are all resulted in the similar 3D bicontinuous network with ligament size at 3,5,and 10 nm,respectively.A careful inspection shows that under the same dealloying conditions,nanoporous alloys with high Pt content generally result in smaller feature sizes.X-ray photoelectron spectroscopy and X-ray diffraction demonstrate that Pt_4Au_1 and Pt_1Au_1 nanoporous alloys adopt a relatively uniform bimetallic alloy structure across the entire length scale,while Pt_4Au_1 sample shows slight phase segregation,leading to an Au-rich surface layer.These nanostructures show distinct surface structure sensitive electrocatalytic properties. For methanol electrooxidation,nanoporous Pt_4Au_1 and Pt_1Au_1 showed an obviously improved performance in structure stability and electrocatalytic activity with higher specific activity and lower peak potentials,as compared with the commercial nanoparticle-based catalysts.In sharp contrast,nanoporous Pt_1Au_4 exhibited the best activity for formic acid oxidation amongst all samples,which was characterized by a preferential dehydrogenation reaction process at lower potential. The resulted nanoporous alloys typically represent a class of macroscopic nanostructured materials with a three-dimensional bicontinuous spongy morphology, which are expected to have evident structural advantages as compared with zero-dimensional nanomaterials.Dealloying method is extremely simple and flexible,which is appropriate for large-scale synthesis.In addition,this method is a chemical "green" method,which offers new opportunities for the preparation of nanoporous Pt-M bimetallic catalysts with high surface area and high activities.
引文
[1]Kuehezev,S.O.;Hayes,J.R.;Biener,J.;Huser,T.;Tallez,C.E.;Hamza,A.V.Surface-enhanced Raman scattering on nanoporous Au.Appl.Phys.Lett.2006,89,053102-053102.
    [2]Dixon,M.C.;Daniel,T.A.;Hieda,M.;Smilgies,D.M.;Chan,M.H.W.;Allara,D.L.Preparation,structure,and optical properties of nanoporous gold thin films.Langmuir 2007,23,2414-2422.
    [3]Zielasek,V.,J(u|¨)rgens,B.;Schulz,C.;Biener,J.;Biener,M.M.;Hamza,A.V.;B(a|¨)umer,M.Gold Catalysts:Nanoporous Gold Foams.Angew.Chem.Int.Edit.2006,45(48),8241-8244.
    [4]Zeis,R.;Mathur,A.;Fritz,G.;Lee,J.;Erlebacher,J.Platinum-plated nanoporous gold:An efficient,low Pt loading electrocatalyst for PEM fuel cells,J.Power Sources 2007,1(165),65-72.
    [5](a) Kelf,T.A.;Sugawara,Y.;Baumberg,J.J.;Abdelsalam,M.;Bartlett,P.N.Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Su,rfaces. Phys. Rev. Lett. 2005, 95, 116802-116805.
    (b) Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V. Stefan A. Maier nanoporous plasmonic metamaterials. Adv. Mater. 2008, 20, 1211-1217.
    [6] Maaroof, A. I.; Gentle, A.; Smith, G. B.; Cortie, M. B.Bulk and surface plasmons in highly nanoporous gold films. J. Phys. D: Appl.Phys. 2007, 40, 5675-5682.
    [7] (a) He, X.; Antonelli, D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular Sieves. Angew. Chem. Intl. Ed. 2001, 41, 214-229.
    (b) Noort, D.; Mandenius, C. Porous gold surfaces for biosensor applications. Biosensors &Bioelectronics 2000, 75, 203-209.
    [8] Yu, F.; Ahl, S.; Caminade, A.M.; Majoral, J. P.; Knoll, W.; Erlebacher, J. Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal. Chem. 2006, 78(20), 7346-7350.
    [9] Maaroof, A. I.; Gentle, A.; Smith, G. B.; Cortie, M. B. Bulk and surface plasmons in highly nanoporous gold films. J. Phys. D: Appl. Phys. 2007, 40, 5675-5682.
    [10] Danny van Noort 1, Carl-Fredrik Mandenius.Porous gold surfaces for biosensor applications. Biosensors & Bioelectronics, 2000, 75, 203-209.
    [11] Hu, K.; Lan, D.; Li, X.; Zhang, S. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal. Chem. 2008, 80, 9124-9030.
    [12] Ertenberg, R. W.; Andraka, B.; Takano, Y. Prospects of porous gold as a low-temperature heat exchanger for liquid and solid helium. Physica B, 2000, 284-288, 2022-2023.
    [13] Velev, O. D.; Tessier, P. M.; Lenhoff, A. M.; Kaler, E. W. A class of porous metallic nanostructures, Nature 1999, 401, 548-548.
    [14] Kulinowski, K. M.; Jiang, P.; Vaswani, H.; Colvin, V. L. Porous metals from colloidal templates, Adv. Mater. 2000, 12, 833-838.
    [15] Walsh, D.; Arcelli, L.; Ikoma, T.; Tanaka, J.; Mann, S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature. Mater. 2003, 2, 386-390.
    [16] Soler-illia, G. J. D.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 702, 4093-4138.
    [17] Liang, Z. J.; Susha, A.; Caruso, F. Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof.Chem.Mater 2003,15,3176-3183.
    [18]Ji,T.H.;Lirtsman,V.G.;Avny,Y.;Davidov,D.Preparation,characterization,and application of Au-Shell/polystyrene beads and Au-shell/magnetic beads.Adv.Mater 2001,13,1253-1256.
    [19]Pham,T.;Jackson,J.B.;Halas,N.J.;Lee,T.R.Preparation and characterization of gold nanoshells coated with self-assembled monolayers.Langmuir 2002,18,4915-4920.
    [20]Kulinowski,K.M.;Jiang,P.;Vaswani,H.;Colvin,V.L.Porous Metals from Colloidal Templates.Adv.Mater.2000,12,833-838.
    [21]Velev,O.D.;Lenhoff,A.M.;Kaler,E.W.Science 2000,287,2240-2243.
    [22]Velev,O.D.;Kaler,E.W.Structured porous materials via colloidal crystal templating:From inorganic oxides to metals.Adv.Mater.2000,12,531-534.
    [23]Holland,B.T.;Blanford,C.F.;Stein,A.Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids.Science 1998,281,538-540.
    [24]Velev,O.D.;Jede,T.A.;Lobo,R.F.;Lenhoff,A.M.Porous Silica via colloidal crystallization.Nature 1997,389,447-448.
    [25]Yan,H.;Blanford,C.F.;Holland,B.T.;Parent,M.;Smyrl,W.H.;Stein,A.A chemical synthesis of periodic macroporous NiO and metallic Ni.Adv.Mater 1999,11,1003-1006.
    [26]Shi,W.L.;Sahoo,Y.;Swihart,M.T.;Prasad,P.N.Gold nanoshells on polystyrene cores for control of surface plasmon resonance.Langmuir.2005,21,1610-1617.
    [27]Xu,H.;Tseng,C.H.;Vickers,T.J.;Mann,C.K.;Schlenoff,J.Near-infrared surface-enhanced Raman spectroscopy of chemisorbed compounds on gold colloids.Surf.Sci.1994,311,707-711.
    [28]Duff,D.G.;Baiker,A.;Gameson,I.;Edwards,P.P.A new hydrosol of gold clusters.Ⅱ:A comparison of some different measurement techniques.Langmuir.1993,9,2310-2317.
    [29]Jiang,P.;Cizeron,J.;Bertone,J.F.;Colvin,V.L.Preparation of Macroporous Metal Films fromColloidal Crystals.J.Am.Chem.Soc.1999,121,7957-7958.
    [30]Bartlett,P.N.;Birkin P.R.;Ghanem,M.A.Electrochemical deposition of macroporous platinum,palladium and cobalt films using polystyrene latex sphere templates.Chem.Commun.2000,1671-1672.
    [31]Barlett,P.N.;Baumberg,J.J.;Birkin,P.R.;Ghanem,M.A.;Netti,M.C.Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres.Chem.Mater.2002,14,2199-2208.
    [32]Schofield,E.Anodic routes to nanoporous materials.Transactions of the Institute of Metal Finishing,2005,83,35-42.
    [33]Pu,L.;Bao,X.;Zou,J.;Feng,D.Individual Alumina Nanotubes.Angew.Chem.Int.Eel.2001,40,1490-1493.
    [34]Chu,S.;Wada,K.;Inoue,S.;Todoroki,S.Fabrication of oxide nanostructures on glass by aluminum anodization and sol-gel process.Surf.Coat.Technol.2003,169-170,190-194.
    [35]Brumlick,C.J.;Martin,C.R.Microhole array electrodes based on microporous alumina membrane.Analyt.Chem.1992,64,1201-1203.
    [36]Lahav,M.;Sehayek,T.;Vaskevich,A.;Rubinstein,I.Nanoparticle nanotubes.Angew.Chem.Int.Ed.2003,42,5576-5579
    [37](a) Li,A.P.;Muller,F.;Birner,A.;Nielsch,K.;Gosele,U.Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina.J.Appl.Phys.1998,84,6023-6026.
    (b) Foss,C.A.;Hornyak,G.L.;Stockert,J.A.;Martin,C.R.Optical properties of composite membranes containing arrays of nanoscopic gold cylinders.J.Phys.Chem.1992,96,7497-7499.
    (c) Vito,S.D.;Martin,C.R.Toward colloidal dispersions of template-synthesized polypyrrole nanotubules.Chem.Mater.1998,10,1738-1741.
    (d) Ying,J.Y.;Mehnert,C.P.;Wong,M.S.Synthesis and applications of supramolecular-templated mesoporous materials.Angew.Chem.Int.Ed.1999,38,56-57.
    (e) Wang,L.Z.;Shi,J.L.;Zhang,W.H.;Ruan,M L.;Yu,J.;Yah,D.S.Self-organization of ordered silver nanocrystal arrays on cubic mesoporous silica surfaces.Chem.Mater.1999,11,3015-3017.
    [38]Meldrum,F.C.;Seshadri,R.Porous gold structures through templating by echinoid skeletal plates.Chem.Commun.2000,29-30.
    [39]Seshadri,R.;Meldrum,F.C.Bioskeletons as templates for ordered,Macroporous structures.Adv.Mater.2000,12,1149-1151.
    [40]Attard,G.S.;Leclerc,S.A.A.;Maniguet,S.;Russell,A.E.;Nandhakumar,I.;Gollas,B.R.;Bartlett,P.N.Liquid crystal phase templated mesoporous platinum alloy.Micropor.Mesopor.Mater.2001,44-45,159-163.
    [41]Kresge,C.T.;Leonowicz,M.E.;Roth,W.J.;Vartuli,J.C.;Beck,J.S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Nature.1992,359,710-712.
    [42]Attard,G.S.;Bartlett,P.N.;Coleman,N.R.B.;Elliot,J.M.;Owen,J.R.;Wang,J.H.Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases.Science 1997,278,838-840.
    [43]Shchukin,D.G.;Caruso,R.A.Template synthesis of porous gold microspheres.Chem.Commun.2003,1478-1479.
    [44](a) Walsh,D.;Arcelli,L.;Ikoma,T.;Tanaka,J.;Mann,S.Dextran templating for the synthesis of metallic and metal oxide sponges.Nat.Mater.2003,2,386-390.
    (b) D.G.Shchukin,R.A.Caruso.Template synthesis of porous gold microspheres.Chem.Commun.2003,1478-1479.
    [45]Zhang,H.;Cooper,A.I.New approaches to the synthesis of macroporous metals.J.Mater.Chem.2005,15,2157-2159.
    [46]Zhang,H.;Hussain,I.;Brust,M.;Cooper,A.I.Emulsion-templated Gold beads using Gold nanoparticles as Building Blocks.Adv.Mater.2004,16,27-30.
    [47]Lu,Y.X.;Wang,Q.F.;Sun,J.Q.;Shen,J.C.Selective dissolution of the silver component in colloidal Au and Ag multilayers:A facile way to prepare nanoporous gold film materials.Langmuir 2005,21,5179-5184,
    [48]Breck,D.W.Zeolite Molecular Sieves-Structure Chemistry and Use,Krieger Publishing Company 1984.593-724.
    [49]Beck,J.S.;Vartuli,J.C.;Roth,W.J.;Leonowicz,M.E.Kresge,C.T.;Schmitt,K.D.;Chu,C.T-W.;Olson,D.H.;Sheppard,E.W.;McCullen,S.B.;Higgins,J.B.;Schlenker,J.L.A new family of mesoporous molecular sieves prepared with liquid cyrstal templates.J.Am.Chem.Soc.1992,114,10834-10843.
    [50]Tian,B.Z.;Liu,X.Y.;Tu,B.;Yu,C.;Fan,J.;Xie,S.;Stucky,G.D.;Zhao,D.Y.Self-adjusted general synthesis of ordered stable mesoporous minerals via acid-base pairs.Nature Mater.2003,2,159-163.
    [51]Swann,P.R.Mechanism of corrosion tunnelling with special reference to Cu_3Au.Corrosion.1969,25,869.
    [52]Forty,A.J.Corrosion micromorphology of noble metal alloys and depletion.Nature 1979,282,597-598.
    [53]Picketing,H.W.Characteristic features of alloy polarization curves.Corros.Sci.1983,23.1107-1120.
    [54]Li,R.;Sieradzld,K.Ductile-brittle transition in random porous Au.Phys.Rev.Lett.1992,68,1168-1171.
    [55]Corcoran,S.G.Proc.Electrochemical Society,Symp.on 'Critical Factors in Localized Corrosion Ⅲ',1998.
    [56]Newman,R.C.;Sieradzki,K.Metallic.corrosion.Science 1994,263,1708-1709.
    [57]Pugh,D.V.;Dursun,A.;Corcoran,S.G.Formation of nanoporous platinum by selective dissolution of Cu from Cu_(0.75) Pt_(0.25).J.Mater.Res.2003,18,216.
    [58]Stratmann,M.;Rohwerder,M.Materials science.A pore view of corrosion.Nature 2001,410,420-421.
    [59]Hayes,J.R.;Hodge,A.M.;Biener J.;Hamza,A.V;Sieradzki,K.Monolithic nanoporous copper by dealloying Mn-Cu.J.Mater Res.2006,21,2611-2616.
    [60]Raney,M.Method of producing finely-divided nickel.US Patent 1927,1,628,190.
    [61]Pavlic,A.A.;Adkins,H.Preparation of a Raney nickel catalyst.J.Am.Chem.Soc.1946,68,1471.
    [62]Fritz,J.D.;Picketing,H.W.Selectivve anodic dissolution of Cu-Au alloys:TEM and current transient study.J.Electrochem Soc.1991,138,3209-3218.
    [63]Ding,Y.;Erlebacher,J.Nanoporous metal architectures with controlled multimodal pore size distributions.J.Am.Chem.Soc.2003,125,7772-7773.
    [64]Ding,Y.;Kim,Y.J.;Erlebacher,J.Nanoporous Gold Leaf:Ancient Technology/Advanced Material.Adv.Mater 2004,16,1897-1900.
    [65]Feng,S.H.;Xu,R.R.New materials in hydrothermal synthesis.Acc.Chem.Res.2001,34,239-247.
    [66]Kresge,C.T.;Leonwoicz,M.E.;Roth,W.J.;Vartuli,J.C.;Beck,J.S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,Nature.1992,359,710-712.
    [67]Lechtman,H.Pre-Columbian surface metallurgy.Sci.Am.1984,250,56-63.
    [68]Stratmann,M.;Rohwerder,M.A pore view of corrosion.Nature 2001,410,420-421.
    [69]Senior,N.A.;Newman,R.C.Synthesis of tough nanoporous metals by controlled electrolytic dealloying.Nanotechnology,2006,17,2311-2316.
    [70]Erlebacher,J.;Aziz,M.J.;Karama,A.;Dimitrov,N.;Sieradzld,K.Evolution of nanoporosity in dealloying.Nature 2001,410,450-453.
    [71]Erlebacher,J.An atomistic description of dealloying-porosity evolution,the critical potential,and rate-limiting behavior.Electrochem.Soc.2004,151,C614-C626.
    [72]Moffat,T.P.;Fan,F.F.;Bard,A.J.Electrochemical and scanning tunneling microscopic study of dealloying of Cu_3Au.J.Electrochem.Soc.1991,138,3224-3235.
    [73]Duffo,G.S.;Giordano,M.;Galvele,J.R.Surface mobility in the dealloying of Ag-Cd alloys in halide solutions.Corros.Sci.1990,30,1149-1152.
    [74]Gardiazabal,J.I.;Galvele,J.R.Selective dissolution of Cd-Mg alloys.J.Electrochem.Soc.1980,127,259-265.
    [1]Haruta,M.;Kobayashi,T.;Sano,H.;Yamada,N.Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃.Chem.Lett.1987,16,405-408.
    [2]Haruta,M.;Yamada,N.;Kobayahsi,T.;Iijima,S.Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide.J.Catal.1989,115,301-309.
    [3]Donka,A.Low temperature water gas shift over gold catalysts.Good Bulletin.2002,35/3,82-88.
    [4](a) Andreeva,D.;Tabakova,T.;Idakiev,V.;Christov,P.;Giovanoli,R.Au/α-Fe_2O_3 catalyst for water-gas shift reaction prepared by deposition-precipitation.Appl.Catal.A,1998,169,9-14.
    (b) Kim,C.H.;Thompson,L.T.Deactivation of Au/CeO_x water gas shift catalysts.J.Catal.2005,230,66-74.
    [5]Hughes,M.D.;Xu,Y.J.;Jenkins,P.;McMorn,P.;Landon,P.;Enache,D.I.;Carley,A.F.;Attard,G.A.;Hutchings,G.J.;King,F.;Stitt,E.H.;Johnston,P.;Griffin,K.;Kiely,C.J.Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions.Nature.2005,437,1132-1135.
    [6]Waters,R.D.;Weimer,J.J.;Smith,J.E.Catal.Lett.1995,30,181.
    [7](a) Haruta,M.Size- and support-dependency in the catalysis of gold.Catal.Today,1997,36,153-166.
    (b) Haruta,M.Novel catalysis of gold deposited on metal oxides.Catalysis Surveys of Japan,1997,1,61-73.
    [8]Ueda,A.;Haruta,M.Nitric Oxide reduction with Hydrogen,Carbon monoxide,and Hydrocarbons over Gold catalysts.Gold Bulletin 1999,32(1),3-11.
    [9]Bamwenda,G.R.;Obuchi,A.;Ogata,A.;Oi,J.;Kushiyama,S.;Mizuno,K.The role of the metal during NO_2 reduction by C_3H_6 over alumina and silica-supported catalysts.J.Mol.Catal.A:Chemical 1997,126,151-159.
    [10]Ueda,A.;Haruta,M.Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides.Appl.Catal.B:Environmental 1997,12(2-3),81-93.
    [11](a) Salama,T.M.;Ohnishi,R.;Shido,T.;Ichikawa,M.Highly selective catalytic reduction of NO by H_2 over Au~0 and Au(I) Impregnated in NaY zeolite catalysts. J. Catal. 1996, 162, 169-178.
    (b) Ueda, A.; Haruta, M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B: Environmental, 1997, 12(2-3), 81-93.
    [12] Chou, J.; McFarland, E. W. Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania. Chem. Comm. 2004, 1648-1649.
    [13] Stangland, E. E.; Taylor, B.; Andres, R. P.; Delgass, W. N. Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H_2/O_2: Effects of support, neutralizing agent, and pretreatment. J. Phys. Chem. B 2005,109, 2321-2330.
    [14] Chou, J.; McFarland, E. W. Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania. Chem. Comm. 2004, (14), 1648-1649.
    [15] Comotti, M; Li, W. C.; Spliethoff, B.; Schuth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006,128, 917-924.
    [16] Carrettin, S.; Concepcion, P.; Corma, A.; Jose, Lopez Nieto, M.; Puntes, V. F. Nanocrystalline CeO_2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. 2004, 43, 2538 -2540.
    [17] Arrii, S.; Morfin, F.; Renouprez, A. J.; Rousset, J. L. Oxidation of CO on Gold supported catalysts prepared by laser vaporization: Direct evidence of support contribution. J. Am. Chem. Soc. 2004, 126, 1199-1205.
    [18] Schubert, M. M; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO Oxidation over supported Gold catalysts—"Inert" and "Active" support materials and their role for the Oxygen supply during reaction. J. Catal. 2001, 197,113-122.
    [19] Haruta, M. When Gold Is Not Noble: Catalysis by Nanoparticles. The Chemical Record, 2003, 3, 75-87.
    [20] Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today. 1997, 36,153-166.
    [21] Tsubota, S.; Haruta, M.; Kobayashi, T.; Ueda, A.; Nakahara, Y. Preparation of highly dispersed gold on titanium and magnesium oxide. Studies Surf Sci Catal. 1991, 63, 695-704.
    [22] Haruta, M; Yamada, N.; Kobayahsi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide.J Catal. 1989,115, 301-309.
    [23] Kobayashi, T.; Haruta, M.; Tsubota, S.; Sano; Delmon B. Thin films of supported Gold catalysts for CO detection. Sensors and Actuators B, 1990, 1, 222-225.
    [24] Yuan, Y.; Kozlova, A.P.; Asakura, K.; Wan, H.; Tsai, K.; Iwasawa, Y. Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal Hydroxides: Characterization and low-temperature CO oxidation. J. Catal. 1997, 170, 191-199.
    [25] (a) Okumura, M.; Tsubota, S.; Iwamoto, M.; Haruta, M. Chemical Vapor deposition of Gold nanoparticles on MCM-41 and their catalytic activities for the low-temperature oxidation of CO and of H_2. Chem. Lett. 1998, 27, 315-315.
    (b) Yuan, Y.; Kozlova, A.P.; Asakura, K.; Wan, H.; Tsai, K.; Iwasawa, Y. Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal Hydroxides: Characterization and low-temperature CO oxidation. J. Catal. 1997, 170, 191-199.
    [26] Prati, L.; Rossi, M. Green Chemistry: Challenging Perspectives. Tundo P, Anastas P, Eds. Oxford, 2000. p183.
    [27] Schwartz, V.; Mullins, D. R.; Yan, W. F.; Chen, B.; Dai, S. Steven H. Overbury. XAS study of Au supported on TiO_2: Influence of oxidation state and particle size on catalytic activity. J. Phys, Chem. B 2004,108, 15782-15790.
    [28] Newman, R. C.; Sieradzki, K. Metallic Corrosion. Science 1994, 263, 1708-1709.
    [29] Erlebacher, J.; Aziz, M. J.; Karama, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature. 2001, 410, 450-453.
    [30] Ding, Y; Erlebacher, J. Nanoporous. Metal architectures with controlled multimodal pore size distributions. J. J. Am. Chem. Soc. 2003,125,7772-7773.
    [31] Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous Gold leaf: Ancient technology/Advanced material. Adv. Mater. 2004,16, 1897-1900.
    [32]Bond,G.C.;Thompson,D.T.The catalysis of gold.Catal.Catal.Rev.Sci.Eng.1999,41,319-388.
    [33]Valden,M.;Lai,X.;Goodman,D.W.Onset of catalytic activity of Gold clusters on Titania with the appearance of nonmetallic properties.Science 1998,281,1647-1650.
    [34]Comotti,M.;Pina,C.D.;Matarrese,R.;Rossi,M.The catalytic activity of "Naked" Gold particles.Angew.Chem.Int.Ed.2004,43,5812-5815.
    [35]Cortie,M.B.;van der Lingen,E.Catalytic Gold nano-particles.Materials Forum.2002,26,1-14.
    [36]Yang,J.H.;Henao,J.D.;Raphulu,M.C.;Wang,Y.M.;Caputo,T.;Groszek,A.J.;Kung,M.C.;Scurrell,M.S.;Miller,J.T.;Kung,H.H.Activation of Au/TiO_2 catalyst for CO oxidation.J.Phys.Chem.B 2005,109,10319-10326.
    [37]Remediakis,I.N.;Lopez,N.;Norskov,J.K.CO oxidation on rutile-supported Au nanoparticles.Angew.Chem.,Int.Ed.2005,44,1824-1826.
    [38]Fierro-Gonzalez,J.C.;Gates,B.C.Evidence of active species in CO oxidation catalyzed by highly dispersed supported gold.Catalysis Today 2007,122,201-210.
    [39]Lopez,N.;Norskov,J.K.Catalytic CO oxidation by a Gold nanoparticle:A density functional study.J.Am.Chem.Soc.2002,124,11262-11263.
    [40]Fu,L.;Wu,N.Q.;Yang,J.H.;Qu,F.;Johnson,D.;Kung,C.;Kung,H.H.;Dravid,V.P.Direct evidence of oxidized Gold on supported Gold catalysts.J.Phys.Chem.B 2005,109,3704-3706.
    [41]Boyen,H.G.;Kastle,G.;Weig,F.;Koslowski,B.;Dietrich,C.;Ziemann,P.;Spatz,J.P.;Riethmuller,S.;Hartmann,C.;Moller,M;Schmid,G.;Garnier,M.G.;Oelhafen,P.Oxidation-resistant Gold-55 clusters.Scienc 2002,297,1533-1536.
    [42]Soares,J.M.C.;Morrall,P.;Crossley,A.;Harris,P.;Bowker,M.Catalytic and noncatalytic CO oxidation on Au/TiO_2 catalysts.J.Catal.2003,219,17-24.
    [43]Wang,A.Q.;Liu,J.H.;Lin,S.D.;Lin,T.S.;Mou,C.Y.A novel efficient Au-Ag alloy catalyst system:Preparation,activity,and characterization.J.Catal.2005,233,186-197.
    [44]Liu,J.H.;Wang,A.Q.;Chi,Y.S.;Lin,H.P.;Mou,C.Y.Synergistic effect in an Au-Ag alloy nanocatalyst:CO oxidation.J.Phys.Chem.B 2005,109,40-43.
    [1]Haruta,M.;Kobayashi,T.;Sano,H.;Yamada,N.Novel Gold catalysts for the oxidation of Carbon monoxide at a temperature far below 0 ℃.Chem.Lett.1987,16,405-408.
    [2]Kim,T.S.;Stiehl,J.D.;Reeves,C.T.;Meyer,R.J.;Mullins,C.B.Cryogenic CO oxidation on TiO_2-supported Gold nanoclusters precovered with atomic Oxygen.J.Am.Chem.Soc.2003,125,2018-2019.
    [3]Lopez,N.;Janssens,T.V.W.;Clausen,B.S.;Xu,Y.;Mavrikakis,M.;Bligaard,T.;Nφrskov,J.K.On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation,J.Catal.2004,223,232-235.
    [4]Molina,L.M.;Hammer,B.Active role of Oxide support during CO oxidation at Au/MgO.Phys.Rev.Lett.2003,90,206102-206105.
    [5]Valden,M.;Lai,X.;Goodman,D.W.Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties.Science 1998,281,1647-1650.
    [6]Mavrikakis,M.;Stoltze,P.;Nφrskov,J.K.Making gold less noble.Catal.Lett.2000,6,101-106.
    [7]Giordano,L.;Goniakowski,J.;Pacchioni,G.Characteristics of Pd adsorption on the MgO(100) surface:Role of oxygen vacancies.Phys.Rev.B.2001,64,075417-075425.
    [8]Fu,Q.;Saltsburg,H.;Flytzani-Stephanopoulos,M.Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935-938.
    [9] Chen, M. S.; Goodman, D. W. The structure of catalytically active Gold on Titania. Science 2004, 306, 252-255.
    [10] Maeir, D. C.; Goodman, D. W. The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO_2. J. Am. Chem. Soc. 2004, 126, 1892-1899.
    [11] Weiher, N.; Bus, E.; Delannoy, L.; Louis, C.; Ramaker, D. E.; Miller, J. T.; van Bokhoven, J. A. Structure and oxidation state of gold on different supports under various CO oxidation conditions J. Catal. 2006, 240, 100-107.
    [12] Hutchings, G. J.; Hall, M. S.; Carley, A. F.; Landon, P.; Solsona, B. E.; Kiely, C. J.; Herzing, A.; Makkee, M.; Moulijn, J. A.; Overweg, A.; Fierro-Gonzalez, J. C; Guzman, J.; Gates, B. C. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. J. Catal. 2006, 242, 71-81.
    [13]Guzman, J.; Gates, B. C. Catalysis by supported gold: Correlation between catalytic activity for CO oxidation and oxidation states of gold. J. Am. Chem. Soc. 2004,126, 2672-2673.
    [14]Yan, Z.; Chinta, S.; Mohamed, A. A.; Fackler, J. P.; Goodman, D. W. The role of F-centers in catalysis by au supported on MgO. J. Am. Chem. Soc. 2005, 127, 1604-1605.
    [15]Yoon, B.; Hakkinen, H.; Landman, U.; Worz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au_8 clusters on MgO. Science. 2005, 307, 403-407.
    [16]Socaciu, L. D.; Hagen, J.; Bernhardt, T. M.; Woste, L.; Heiz, U.; Hakkinen, H.; Landman, U. Catalytic CO oxidation by free Au2": Experiment and theory. J. Am. Chem. Soc. 2003, 125, 10437-10445.
    [17]Kozlov, A. I.; Kozlova, A. P.; Asakura, K.; Matsui, Y.; Kogure, T.; Shido, T.; Iwasawa, Y. Supported Gold Catalysts Prepared from a Gold phosphine precursor and as-precipitated metal-hydroxide precursors: Effect of preparation conditions on the catalytic performance. J. Catal. 2000,196, 56-65.
    [18]Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R.J.CO oxidation over supported Gold catalysts-"Inert" and "Active"support materials and their role for the Oxygen supply during reaction.J.Catal.2001,197,113-122.
    [19]Park,E.D.;Lee,J.S.Effects of pretreatment conditions on CO oxidation over supported Au catalysts.J.Catal.1999,186,1-11.
    [20]Comotti,M.;Li,W.C.;Spliethoff,B.;Sch(u|¨)th,F.Support effect in high activity gold catalysts for CO oxidation.J.Am.Chem.Soc.2006,128,917-924.
    [21]Arrii,S.;Morfin,F.;Renouprez,A.J.;Rousset,J.L.Oxidation of CO on Gold supported catalysts prepared by laser vaporization:Direct evidence of support contribution.J.Am.Chem.Soc.2004,126,1199-1205.
    [22]Comotti,M.;Li,W.C.;Spliethoff,B.;Sch(u|¨)th,F.Support effect in high activity gold catalysts for CO oxidation.J.Am.Chem.Soc.2006,128,917-924.
    [23]Bamwenda,G.R.;Tsubota,S.;Nakamura,T.;Haruta,M.The influence of the preparation methods on the performance of Platinum and Gold supported on TiO_2.Catal.Lett.1997,44,83-87.
    [24]Schwartz,V.;Mullins,D.R.;Yan,W.F.;Chen,B.;Dai,S.;Overbury,S.H.XAS study of Au supported on TiO2:influence of oxidation state and particle size on catalytic activity.J.Phys.Chem.B 2004,108,15782-15790.
    [25]Tsubota,S.;Nakamura,T.;Tanaka,K.;Haruta,M.Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO_2powder for CO oxidation.Catal.Lett.1998,56,131-135.
    [26]Boccuzzi,F.;Chiorino,A.;Manzoli,M,;Lu,P.;Akita,T.;Ichikawa,S.;Haruta,M.Au/TiO_2 nanosized samples:A catalytic,TEM,and FTIR study of the effect of calcination temperature on the CO oxidation.J.Catal.2001,202,256-267.
    [27]Yang,J.H.;Henao,J,D.;Raphulu,M.C.;Wang,Y.M.;Caputo,T.;Groszek,A.J.;Kung,M.C.;Scurrell,M.S.;Miller,J.T.;Kung,H.H.Activation of Au/TiO 2catalyst for CO oxidation.J.Phys.Chem.B 2005,109,10319-10326.
    [28]Sanchez-Castillo,M.A.;Couto,C.;Kim,W.B.;Dumesic,J.A.Gold-nanotube membranes for the oxidation of CO at gas-water interfaces.Angew.Chem.Int.Ed.2004,43,1140-1142.
    [29]Zielasek,V.;Jurgens,B.;Schulz,C.;Biener,J.;Biener,M.M.;Hamza,A.V.;Baumer,M.Gold catalysts:nanoporous gold foams.Angew.Chem.Int.Ed.2006,45,8241-8244.
    [30]Xu,C.X.;Su,J.X.;Xu,X.H.;Liu,P.P.;Zhao,H.J.;Tian,F.;Ding,Y.Low temperature CO oxidation over unsupported nanoporous gold.J.Am.Chem.Soc.2007,129,42-43.
    [31](a) Ding,Y.;Kim,Y.J.;Erlebacher,J.Nanoporous gold leaf:"Ancient technology"/advanced material.Adv.Mater.2004,16,1897-1900.
    (b) Ding,Y.;Erlebacher,J.Nanoporous Metals with Controlled Multimodal Pore Size Distribution.J.Am.Chem.Soc.2003,125,7772-7773.
    [32]Ding,Y.;Chen,M.W.;Erlebacher,J.Metallic mesoporous nanocomposites for electrocatalysis.J.Am.Chem.Soc.2004,126,6876-6877.
    [33]Overbury,S.H.;Schwartz,V.;Mullins,D.R.;Yan,W.F.;Dai,S.Evaluation of the Au size effect:CO oxidation catalyzed by Au/TiO_2.J.Catal.2006,241,56-65.
    [34](a) Newman,R.C.;Sieradzki,K.Metallic Corrosion.Science 1994,263,1708-1709.
    (b) Erlebacher,J.;Aziz,M.J.;Karma,A.;Dimitrov,N.;Sieradzki,K.Main navigation.Nature 2001,410.450-453.
    [35](a) Bond,G.C.;Thompson,D.T.Gold-Catalysed Oxidation of Carbon Monoxide.Gold Bull.2000,33/2,41-51(2).41-50.
    (b) Davis,R.J.All that glitters is not Au_0.Science,2003,301,926-927.
    (c) Costello,C.K.;Kung,M.C.;Oh,H.S.;Wang,Y.;Kung,H.H.Nature of the active site for CO oxidation on highly active Au/γ-Al_2O_3.Appl.Catal.A,2002,232,159-168.
    [36]van Bokhoven,J.A.;Louis,C.;Miller,J.T.;Tromp,M.;Safonova,O.V.;Glatzel,P.Activation of Oxygen on Gold/Alumina catalysts:In situ high-energy-resolution fluorescence and time-resolved X-ray Spectroscopy.Angew.Chem.Int.Ed.2006,45,4651-4654.
    [37]Weiher,N.;Beesley,A.M.;Tsapatsaris,N.;Delannoy,L.;Louis,C.;van Bokhoven,J.A.;Schroeder,S.L.M.Activation of Oxygen by metallic Gold in Au/TiO_2 Catalysts.J.Am.Chem.Soc.2007,129,2240-2241.
    [38]Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO_2, α -Fe_2O_3 and Co_3O_4. J. Catal. 1993,144, 175-192.
    [39](a) Boccuzzi, F.; Chiorino, A.; Manzoli, M. FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania. Surf. Sci. 2000, 454-456, 942-946.
    (b) Boccuzzi, F.; Cerrato, G; Pinna, F.; Strukul, G. FTIR, UV-Vis, and HRTEM study of Au/ZrO_2 catalyst: Reduced reactivity in the CO-O_2 reaction of electron-deficient gold sites present on the used sarmples J. Phys. Chem. B, 1998,102, 5733-5736.
    [40]Meier, D. C.; Goodman, D. W. The influence of metal cluster size on adsorption Energies: CO adsorbed on Au clusters supported on TiO2. J. Am. Chem. Soc. 2004,126, 1892-1899.
    [41]McElhiney, G; Pritchard, J. The adsorption of Xe and CO on Au (100). Surf. Sci. 1976, 60, 397-410.
    [42]Gottfried, J. M.; Schmidt, K. J.; Schroeder, S. L. M.; Christmann, K. Adsorption of Carbon monoxide on Au(110)-(1x2). Surf. Sci. 2003,536, 206-224.
    [43]Derrouiche, S.; Gravejat, P.; Bianchi, D. Heats of adsorption of linear CO species adsorbed on the Au° and Ti~(+δ) sites of a 1% Au/TiO_2 catalyst using in situ FTIR spectroscopy under adsorption equilibrium. J. Am. Chem. Soc. 2004, 726,13010-13015.
    [44]Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of Gold clusters on Titania with the appearance of nonmetallic properties. Science. 1998, 281, 1647-1650.
    [1]Guo,Y.G.;Hu,J.S.;Zhang,H.M.;Liang,H.P.;Wan,L.J.;Bai.C.L.Tin/Platinum bimetallic nanotube array and its electrocatalytic activity for methanol oxidation.Adv..Mater.2005,17,746-746.
    [2]Park,J.;Cheon,J.Synthesis of "Solid Solution" and "Core-Shell" type Cobalt-Platinum magnetic nanoparticles via transmetalation reactions.J.Am.Chem.Soc.2001,123,5743-5746.
    [3]Ji,R.;Lee,W.;Scholz,R.;G(o|¨)sele,U.;Nielsch.K.Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition.Adv.Mater.2006,18,2593-2596.
    [4]Lee,U.H.;Lee,J.H.;Jung,D.Y.;Kwon,Y.U.High-Density Arrays of platinum nanostructures and their hierarchical patterns.Adv.Mater.2006,18,2825-2828.
    [5]Habas,S.E.;Lee,H.;Radmilovic,V.;Somorjai,G.A.;Yang.P.Shaping binary metal nanocrystals through epitaxial seeded growth.Nature Mater.2007,6,692-697.
    [6]Sun,Y.G.;Mayers,B.;Xia.Y.N.Metal Nanostructures with Hollow Interiors,Adv.Mater.2003,15,641-646.
    [7](a) Toda,T.;Igarashi,H.;Uchida,H.;Watanabe,M.Enhancement of the electroreduction of oxygen on Pt alloys with Fe,Ni,and Co.J.Electrochem.Soc.1999,146,3750-3756;
    b) Stamenkovic,V.R.;Mun,B.S.;Arenz,M.;Mayrhofer,K.;Lucas,C.A.;Wang,G.;Ross,P.N.;Markovic,N.M.Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces.Nat.Mater 2007,6,241-247;
    c) Yano,H.;Kataoka,M.;Yamashita,H.;Uchida,H.;Watanabe.M.Oxygen reduction activity of carbon-supported Pt-M(M = V,Ni,Cr,Co,and Fe) alloys prepared by nanocapsule method.Langmuir 2007,23,6438-6445.
    [8]Park,J.;Cheon.J.Synthesis of "Solid Solution" and "Core-Shell" type Cobalt-Platinum magnetic nanoparticles via transmetalation reactions.J.Am.Chem.Soc.2001,123,5743-5746.
    [9]Chen,M.S.;Kumar,D.;Yi,C.W.;Goodman.D.W.The promotional effect of Gold in catalysis by Palladium-Gold Science,2005,310,291-293.
    [10]Koczkur,K.;Yi,Q.F.;Chen.A.C.Nanoporous Pt-Ru networks and their electrocatalytical properties.Adv.Mater.2007,19,2648-2648.
    [11]Shao,M.H.;Sasaki,K.;Adzic,R.R.Pd-Fe nanoparticles as electrocatalysts for oxygen reduction.J.Am.Chem.Soc.2006,128,3526-3527.
    [12]Chen,M.S.;Kumar,D.;Yi,C.W.;Goodman,D.W.The promotional effect of Gold in catalysis by Palladium-Gold.Science 2005,310,291-293.
    [13]Koczkur,K.;Yi,Q.F.;Chen,A.C.Nanoporous Pt-Ru networks and their electrocatalytical properties.Aav.Mater.2007,19,2648-2648.
    [14]Zhou,S.;Mcllwrath,K.;Jackson,G.;Eichhorn,B.Enhanced CO tolerance for Hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures.J.Am.Chem.Soc.2006,128,1780-1781.
    [15]Zhong,C.J.;Maye.M.M.Core-Shell assembled nanoparticles as catalysts.Adv.Mater.2001,13,1507-1511.
    [16](a) Wu,M.L.;Chen,D.H.;Huang.T.C.Preparation of Au/Pt bimetallic nanoparticles in water-in-oil microemulsions.Chem.Mater.2001,13,599-606.
    (b)Lang,H.;Maldonado,S.;Stevenson,K.J.;Chandler,B.D.Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles.J.Am.Chem.Soc.2004,126,12949-12956.
    [17]Burda,C.;Chen,X.;Narayanan,R.;EI-Sayed,M.Chemistry and properties of nanocrystals of different shapes.Chem.Rev.2005,105,1025-1102.
    [18](a) Caruso,F.Nanoengineering of particle surfaces.Adv.Mater.2001,13,11-22.
    (b) Bergbreiter,D.E.Self-assembled,sub-micrometer diameter semipermeable capsules Angew.Chem.Int.Ed.1999,38,2870-2872.
    (c) Mathiowitz,E.;Jacob,J.S.;Jong,Y.S.;Carino,G.P.;Chickcring,D.E.;Chaturvedl,P.;Santos,C.A.;Vijayaraghavan,K.;Montgomery,S.;Bassett,M.;Morrell,C.Biologically erodable potential microspheres as oral drug delivery systems.Nature 1997,386,410.
    (d) Huang,H.;Remsen,E.E.;Kowalewski,T.;Wooley,K.L.Nanocages derived from shell cross-linked micelle templates.J.Am.Chem.Soc.1999,121,3805-3806.
    [19](a) Oldenburg,S.J.;Hale,G.D.;Jackson,J.B.;Halas.N.J.Light scattering from dipole and quadrupole nanoshell antennas.Appl.Phys.Lett.1999,75,1063-1065.
    (b) Kim,S.W.;Lee,W.Y.;Hycon,T.Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions.J.Am.Chem.Soc.2002,124,7642-7643.
    [20](a) Zhong,Z.;"Yin,Y.;Gates,B.;Xia,Y.Preparation of mesoscale hollow spheres of TiO_2 and SnO_2 by templating against crystalline arrays of polystyrene beads.Adv.Mater.2000,12,206-206.
    (b) Yin,Y.;Lu,Y.;Gates,B.;Xia,Y.Synthesis and characterization of mesoscopic hollow spheres of ceramic materials with functionalized interior surfaces.Chem.Mater.2001,13,1146-1148.
    (c) Ung,T.;Liz-Marzan,L.M.;Mulvancy,P.Controlled method for silica coating of silver colloids:influence of coating on the rate of chemical reactions.Langmuir,1998,14,3740-3748.
    (d) Caruso,F.;Caruso,R.A.;Mohwald,H.Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating.Science 1998,282,1111-1114.
    [21](a) Lim,B.;Xiong,Y.J.;Xia.Y.N.A water-based synthesis of octahedral,decahedral,and icosahedral Pd nanocrystals.Angew.Chem.Int.Ed.2007,46,9279-9282.
    (b) Xiong,Y.J.;Wiley,B.J.;Chen,J.Y.;Li,Z.Y.;Yin,Y.D.;Xia,Y.N.Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties.Angew.Chem.Int.Ed.2005,44,7913-7917.
    [22]Liang,H.P.;Zhang,H.M.;Hu,J.S.;Guo,Y.G.;Wan,L.J.;Bai,C.L.Pt hollow nanospheres:Facile synthesis and enhanced electrocatalysts.Angew.Chem.Int.Ed.2004,43,1540-1543.
    [23]Liang,H.P.;Lawrence,N.S.;Wan,L.J.;Jiang,L.;Song,W.G;;Jones,T.G J.Controllable synthesis of hollow hierarchical Palladium nanostructures with enhanced activity for Proton/Hydrogen sensing.J.Phys.Chem.C 2008,112,338-344.
    [24]Hayes,J.R.;Hodge,A.M.;Biener,J.;Hamza,A.V.;Sieradzki,K.Monolithic nanoporous copper by dealloying Mn-Cu.J.Mater.Res.2006,21,2611-2616.
    [25]Raney,M.Catalysts from alloys.Ind.Eng.Chem.1940,32,1199.
    [26]Colum,F.In Standard Potentials in Aqueous Solution;Bard,A.J.,Parsons,R.,Jordan,J.,Eds.;Marcel Dekker:New York,1985;Chapters 11,12.
    [27]Sun,Y.G.;Xia,Y.N.Mechanistic study on the replacement reaction between Silver nanostructures and chloroauric acid in aqueous medium.J.Am.Chem.Soc.2004,126,3892-3901.
    [28]Shibata,T.;Bunker,B.A.;Zhang,Z.Y.;Meisel,D.;Vardeman,C.F.;Gezelte,J.D.Size-dependent spontaneous alloying of Au-Ag nanoparticles.J.Am.Chem.Soc.2002,124,11989-11996.
    [29]Ding,Y.;Kim,Y.J.;Edebacher,J.Nanoporous Gold leaf:"Ancient Technology"/Advanced material.Adv.Mater.2004,16,1897-1900.
    [30]Ding,Y.;Mathur,A.;Chen,M.W.;Edebacher,J.Epitaxial casting of nanotubular mesoporous Platinum.Angew.Chem.Int.Ed.2005,44,4002-4006.
    [31]Xu,C.X.;Su,J.X.;Xu,X.H.;Liu,P.P.;Zhao,H.J.;Tian,F.;Ding,Y.Low temperature CO oxidation over unsupported nanoporous Gold.J.Am.Chem.Soc.2007,129,42-43.
    [32]Biener,J.;Nyce,G.W.;Hodge,A.M.;Biener,M.M.;Hamza,A.V.;Maier,S.A.Nanoporous plasmonic metamaterial.Adv.Mater 2008,20,1211-1217.
    [33]Koh,S.;Strasser,P.Electrocatalysis on bimetallic surfaces:Modifying catalytic reactivity for Oxygen reduction by voltammetric surface dealloying.J.Am.Chem.Soc.2007,129,12624-12625.
    [34]Mani,P.;Srivastava,R.;Strasser,P.Dealloyed Pt-Cu Core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes,J.Phys.Chem.C 2008,112,2770-2778.
    [35]Chen,Z.W.;Waje,M.;Li,W.Z.;Yan,Y.S.Angew.Supportless Pt and PtPd nanotubes as electrocatalysts for Oxygen-reduction reactions.Chem.Int.Ed.2007,46,4060-4063.
    [36](a) Ferreira,P.J.;laO,G.J.;Shao-Horn,Y.;Morgan,D.;Makharia,R.;Kocha,S.;Gasteiger,H.A.Instability of Pt/C electrocatalysts in Proton exchange membrane fuel cells,J.Electrochem.Soc.2005,152,A2256-A2271.
    (b) Xie,J.;Wood,D.L.;Wayne,D.M.;Zawodzinski,T.A.;Atanassov,P.;Borup,R.L.Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J. Electrochem. Soc. 2005, 152, A1011-A1020.
    [37] Zhang, J.; Sasaki, K.; Sutler, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 575, 220-222.
    [38] Su, F.; Zeng, J.; Bao, X.; Yu Y.;, Lee, J. Y.; Zhao, X. S. Preparation and characterization of highly ordered graphitic mesoporous Carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater. 2005,17, 3960-3967.
    [39] Chen, Y. X.; Miki, A.; Ye, S.; Sakai, H.; Osawa, M. Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J. Am. Chem. Soc. 2003, 125, 3680-3681.
    
    [40] Lin, W. F.; Wang, J. T.; Savinell, R. F. On-line FTIR spectroscopic investigations of methanol oxidation in a direct methanol fuel cell. Journal of the Electrochemical Society, J. Electrochem. Soc. 1997, 144, 1917-1922.
    
    [41] Yen, C. H.; Shimizu, K.; Lin, Y.Y.; Bailey, F.; Cheng, I. F.; Wai, C. M. Chemical fluid deposition of Pt-based bimetallic nanoparticles on multiwalled Carbon nanotubes for direct methanol fuel cell application. Energy & Fuels, 2007, 27,2268-2271.
    
    [42] Gu, Y.; Wong. W. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation. Langmur, 2006, 22, 11447-11452.
    
    [43] Zhang, J.; Lima, F. H. B.; Shao, M. H.; Sasaki, K.; Wang, J. X.; Hanson, J.; Adzic, R. R. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O_2 reduction. J. Phys. Chem. B 2005, 709, 22701-22704.
    [44] Stamenkovic, V. R; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006,128, 8813-8819.
    [45] Knudsen, J.; Nilekar, A. U.; Vang, R. T.; Schnadt, J.; Kunkes, E. L.; Dumesic, J. A.; Mavrikakis, M.; Besenbacher, F. A Cu/Pt Near-surface alloy for water-gas shift catalysis. J. Am. Chem. Soc. 2007,129, 6485-6490.
    [46]Zhou,S.H.;Varughese,B.;Eichhom,B.;Jackson,G.;Mcllwrath,K.Pt-Cu Core-Shell and alloy nanoparticles for heterogeneous NOx reduction:Anomalous stability and reactivity of a core-shell nanostructure.Angew.Chem.Int.Ed.2005,44,4539-4543.
    [1](a) Choi,W.C.;Woo,S.I.;Jeon,M.K.;Sohn,J.M.;Kim,M.R.;Jeon,H.J.Electron-beam induced formation of highly ordered palladium and platinum nanoparticle arrays on the S layer of bacillus sphaericusNCTC 9602.Aav.Mater 2005,17,446-451.
    (b) Wahl,R.;Mertig,M.;Raff,J.;Selenska-Pobell,S.;Pompe,W.Adv.Mater.2001,13,736-740.
    (c) Wang,H.;Song,Y.;Medforth,C.J.;Shelnutt,J.A.Interracial synthesis of dendritic Platinum nanoshells templated on Benzene nanodroplets stabilized in water by a photocatalytic Lipoporphyrin.J.Am.Chem.Soc.2006,128,9284-9285.
    [2](a) Kardash,D.;Korzeniewski,C.Temperature effects on methanol dissociative chemisorption and water activation at polycrystalline platinum electrodes.Langmuir 2000,22(16),8419-8425.
    (b) Kobayashi,T.;Babu,P.K.;Gancs,L.;Chung,J.H.;Oldfield,E.;Wieckowski,A.An NMR determination of CO diffusion on Platinum electrocatalysts.J.Am.Chem.Soc.2005,127,14164-14165.
    (c) Peng,X.;Koczkur,K.;Nigro,S.;Chen,A.Fabrication and electrochemical properties of novel nanoporous platinum network electrodes.Chem.Commun.2004,21,2872-2783.
    [3]Chen,Z.W.;Waje,M.;Li,W.Z.;Yan,Y.S.Supportless Pt and PtPd nanotubes as electrocatalysts for Oxygen-reduction reactions.Angew.Chem.Int.Ed.2007,22(46),4060-4063.
    [4]Tarasevich,M.R.;Sadkowski,A.;Yeager,E.In Comprehensive Treatise of Electrochemistry;Conway,B.E.;Bockris,J.O.M.;Yeager,E.;Khan,S.U.M.;White,R.E.Eds.;Plenum Press:New York,1953,7,p301.
    [5]Markovic,N.M.;Ross,P.N.Electrocatalysts by design:from the tailored surface to a commercial catalyst.Electrochim.Acta 2000,25-26(45),4101-4115.
    [6]Joo,S.H.;Choi,S.J.;Oh,I.;Kwak,J.;Liu,Z.;Terasaki,O.;Ryoo,R.Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles.Nature 2001,412,169-172.
    [7]Yuasa,M.;Yamaguchi,A.;Itsuki,H.;Tanaka,K.;Yamamoto,M.;Oyaizu,K.Modifying Carbon particles with Polypyrrole for adsorption of Cobalt Ions as electrocatatytic site for Oxygen reduction.Chem.Mater 2005,17,4278-4281.
    [8]Liu,Z.;Xing,Y.;Chen,C.;Zhao,L.;Suib,S.L.Framework doping of Indium in Manganese Oxide materials:synthesis,characterization,and electrocatalytic Reduction of Oxygen.Chem.Mater 2008,20(6),2069-2071.
    [9]Favier,F.;Walter,E.C.;Zach,M.P.;Benter,T.;Penner,R.M.Hydrogen sensors and switches from electrodeposited Palladium mesowire arrays.Science 2001,5538(293),2227-2231.
    [10]Sun,Y.G.;Wang,H.H.High-performance,flexible Hydrogen sensors that use Carbon nanotubes decorated with Palladium nanoparticles.Adv.Mater.2007,19,2818-2823.
    [11]Bedford,R.B.;Singh,U.G.;Walton,R.I.;Williams,R.T.;Davis,S.A.Nanoparticulate palladium supported by covalently modified silicas:Synthesis,characterization,and application as catalysts for the Suzuki coupling of aryl halides.Chem.Mater.2005,4(17),701-707.
    [12]Gallon,B.J.;Kojima,R.W.;Kaner,R.B.;Diaconescu,P.L.Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water.Angew.Chem.Int.Ed.2007,46,7251-7254.
    [13]Narayanan,R.;El-Sayed,M.A.Catalysis with transition metal nanoparticles in colloidal solution:nanoparticle shape dependence and stability,J.Phys.Chem.B 2005,26(109),12663-12676.
    [14]Wilson,O.M.;Knecht,M.R.;Garcia-Martinez,J.C.;Crooks,R.M.Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol.J.Am.Chem.Soc.2006,128(14),4510-4511.
    [15]Solsona,B.E.;Edwards,J.K.;Landon,P.;Carley,A.F.;Herzing,A.;Kiely,C.J.;Hutchings,G.J.Direct synthesis of hydrogen peroxide from H_2 and O_2 using Al_2O_3 supported Au-Pd catalysts.Chem.Mater 2006,18(11),2689-2695.
    [16]Xiao,L.;Zhuang,L.;Liu,Y.;Lu,J.;Abru(?)a,H.D.Activating Pd by morphology tailoring for Oxygen reduction,J.Am.Chem.Soc.2009,131,602-608.
    [17]Yu,J.;Ding,Y.;Xu,C.;Inoue,A.;Sakurai,T.;Chen,M.Chen,M.Nanoporous Metals by Dealloying Multicomponent Metallic Glasses.Chem.Mater.2008,20,4548-4550.
    [18]Zhou,W.P.;Lewera,A.;Larsen,R.;Masel,R.I.;Bagus,P.S.;Wieckowski,A.Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid.J.Phys.Chem.B 2006,110(27),13393-13398.
    [19] Wilson. O. M.; Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J. Am. Chem. Soc. 2006, 128(14), 4510-4511.
    [20] Shao, M; Sasaki, K.; Adzic. R. R. Pd-Fe nanoparticles as electrocatalysts for Oxygen reduction. J. Am. Chem. Soc. 2006,128, 3526-3527.
    [21] Fernandez, J. L.; Walsh, D. A.; Bard, A. J. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by Scanning electrochemical microscopy. M-Co (M : Pd, Ag, Au). J. Am. Chem. Soc. 2005,1(127), 357-365.
    [22] Savadogo, O.; Lee, K.; Oishi, K.; Mitsushimas, S.; Kamiya, N.; Ota, K. I. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem. Commun. 2004, 6, 105-109.
    [23] Sarkar, A.; Murugan, A. V; Manthiram, A. Synthesis and characterization of nanostructured Pd-Mo electrocatalysts for Oxygen reduction reaction in fuel cells. J. Phys. Chem. C 2008,112(32), 12037-12043.
    [24] Adzic, R. R. In DOE Hydrogen and Fuel Cell ReView Meeting; Philadelphia, PA, 2004.
    [25] Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of hollow Palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002, 26(124), 7642-7643.
    [26] Kim, S.W.; Kim, M; Lee, W. Y; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002,124, 7642-7643.
    [27] Narayanan, R.; El-Sayed, M. A. Effect of colloidal catalysis on the nanoparticle size distribution: Dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the Suzuki coupling reaction. J. Phys. Chem. B 2004, 25(108), 8572-8580.
    [28] (a) Lim, B.; Xiong, Y. J.; Xia, Y. N. A Water-Based Synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 9279-9282.
    b) Sun,Y.G.;Mayers,B.T.;Xia,Y.N.Metal nanostructures with hollow iInteriors.Adv.Mater 2003,15,641-646.
    [29](a) Liang,H.P.;Zhang,H.M.;Hu,J.S.;Guo,Y.G.;Wan,L.J.;Bai,C.L.Pt hollow nanospheres:facile synthesis and enhanced electrocatalysts.Angew.Chem.Int.Ed.2004,43,1540-1543.
    (b) Liang,H.P.;Lawrence,N.S.;Wan,L.J.;Jiang,L.;Song,W.G.;Jones,T.G.J.Controllable synthesis of hollow hierarchical Palladium nanostructures with enhanced activity for Proton/Hydrogen sensing.J.Phys.Chem.C 2008,112,338-344.
    [30]Zhang,J.;Qiu,C.;Ma,H.;Liu,X.Facile fabrication and unexpected electrocatalytic activity of Palladium thin films with hierarchical architectures.J.Phys.Chem.C.2008,112(36),13970-13975.
    [31]Ge,J.;Xing,W.;Xue,X.;Liu,C.;Lu,T.;Liao,J.Controllable synthesis of Pd nanocatalysts for direct formic acid fuel cell(DFAFC) application:From Pd hollow nanospheres to Pd nanoparticles.J.Phys.Chem.C.2007,111(46),17305-17310.
    [32]Chen,Z.;Waje,M.;Li,W.;Yan,Y.Supportless Pt and PtPd nanotubes as electrocatalysts for Oxygen-reduction reactions.Angew.Chem.Int.Ed.2007,46,4060-4063.
    [33]Xu,C.;Wang,L.;Wang,R.;Wang,K.;Zhang,Y.;Tian,F.;Ding,Y.Adv.Mater.2009,DOI:10.1002/adma.200702700.
    [34]Raney,M.Ind.Eng.Chem.1940,32,1199-1203.
    [35](a) Kidambi,S.;Bruening,M.L.Multilayered polyelectrolyte films containing palladium nanoparticles:synthesis,characterization,and application in selective hydrogenation.Chem.Mater.2005,17,301-307.
    (b) Knecht,M.R.;Weir,M.G;Frenkel,A.I.;Crooks,R.M.Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations.Chem.Mater.2008,20,1019-1028.
    [36]Shibata,T.;Bunker,B.A.;Zhang,Z.Y.;Meisel,D.;Vardeman,C.F.;Gezelter,J.D.Size-dependent spontaneous alloying of Au-Ag nanoparticles.J.Am.Chem.Soc.2002,124(40),11989-11996.
    [37]Ghodbane,O.;Roue,L.;Be1anger,D.Study of the electroless deposition of Pd on Cu-modified graphite electrodes by metal exchange reaction.Chem.Mater.2008,20(10),3495-3504.
    [38]Wang,Y.X.;Balbuena,P.B.Design of Oxygen reduction bimetallic catalysts:Ab-Initio-Derived thermodynamic guidelines.J.Phys.Chem.B 2005,109(40),18902-18906.
    [39]Wakabayashi,N.;Takeichi,M.;Itagaki,M.;Uchida,H.;Watanabe,M.Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode.J.Electroanal.Chem.2005,574,339-346.
    [40]Shao,M.;Liu,P.;Adzic,R.R.Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes.J.Am.Chem.Soc.2006,128,7408-7409.
    [41]Parthasarathy,A.;Dave,B.;Srinivasan,S.;Appleby,J.The Platinum microelectrode/nafion interface:An electrochemical impedance spectroscopic analysis of Oxygen reduction kinetics and nation characteristics.J.Eiectrochem.Soc.1992,139,1634-1641.
    [42]Wang,J.X.;Markovic,N.M.;Adzic,R.R.Kinetic analysis of Oxygen reduction on Pt(111) in acid solutions:Intrinsic kinetic parameters and anion adsorption effects.J.Phys.Chem.B.2004,108(13),4127-4133.
    [43]Stamenkovic,V.;Schmidt,T.J.;Ross,P.N.;Markovic,N.M.Surface composition effects in electrocatalysis:Kinetics of Oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces,J.Phys.Chem.B 2002,106(46),11970-11979.
    [44]Zhang,J.;Mo,Y.;Vukmirovic,M.B.;Klie,R.;Sasaki,K.;Adzic,R.R.Platinum monolayer electrocatalysts for O_2 reduction:Pt monolayer on Pd(111)and on Carbon-supported Pd nanoparticles,J.Phys.Chem.B 2004,108(30),10955-10964.
    [45]Shao,M.H.;Huang,T.;Liu,P.;Zhang,J.;Sasaki,K.;Vukmirovic,M.B.;Adzic R.R.Palladium monolayer and palladium alloy electrocatalysts for Oxygen reduction.Langmuir 2006,22,10409-10415.
    [46](a) Song,C.Fuel processing for low-temperature and high-temperature fuel cells:Challenges,and opportunities for sustainable development in the 21st century.Catal.Today 2002,77,17-49.
    (b) Winter,M.;Brodd,R.What are batteries,fuel cells,and supercapacitors.Chem.Rev.2004,104,4245-4269.
    (c) Li,Q.;He,R.;Jensen,J.O.;Bjerrum,N.J.Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃.Chem.Mater.2003,15,4896-4915.
    (d)Barbir,F.PEM Fuel Cells;Elsevier:Burlington,MA,2005.
    (e)Gasteiger,H.A.;Kocha,S.S.;Sompalli,B.;Wagner,F.T.Activity benchmarks and requirements for Pt,Pt-alloy,and non-Pt oxygen reduction catalysts for PEMFCs.Appl.Catal.B 2005,56,9-35.
    [47]Casado-Rivera,E.;Volpe,D.J.;Alden,L.;Lind,C.;Downie,C.;Vazquez-Alvarez,T.;Angelo,A.C.D.;DiSalvo,F.J.;Abruna,H.D.Electrocatalytic activity of ordered intermetallic phases for fuel cell applications.J.Am.Chem.Soc.2004,126,4043-4049.
    [48]Knudsen,J.;Nilekar,A.U.;Vang,R.T.;Schnadt,J.;Kunkes,E.L.;Dumesic,J.A.;Mavrikakis,M.;Besenbacher,F.A Cu/Pt near-surface alloy for water-gas shift catalysis,J.Am.Chem.Soc.2007,129,6485-6490.
    [49]Abel,M.;Robach,Y.;Porte,L.Stress induced surface structures and reactivity of thin layer Pd/Cu(110) deposits.Surf.Sci.2002,498,244-256.
    [50]Koh,S.;Strasser,P.Electrocatalysis on bimetallic surfaces:Modifying catalytic reactivity for Oxygen reduction by voltammetric surface dealloying.J.Am.Chem.Soc.2007,129,12624-12625.
    [51]Nilekar,A.U.;Xu,Y.;Zhang,J.;Vukmirovic,M.B.;Sasaki,K.;Adzic,R.R.;Mavrikakis,M.Bimetallic and ternary alloys for improved Oxygen reduction catalysis.Top.Catal.2007,46,276-284.
    [52]Stamenkovic,V.R.;Mun,B.S.;Mayrhofer,K.J.J.;Ross,P.N.;Markovic,N.M.Effect of surface composition on electronic structure,stability,and electrocatalytic properties of Pt-transition metal alloys:Pt-skin versus Pt-skeleton surfaces.J.Am.Chem.Soc.2006,128,8813-8819.
    [1]Bell,A.T.The impact of nanoscience on heterogeneous catalysis.Science 2003,299,1688-1691.
    [2]Rolison,D.R.Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity.Science 2003,299,1698-1701.
    [3]Pino,L.;Recupero,V.;Beninati,S.;Shulda,A.K.;Hegde,M.S.;Bera,P.Synthesis gas production from natural gas on supported Pt catalysts.Appl.Catal.A 2002,225,63-75,
    [4]Choi,W.C.;Woo,S.I.;Jeon,M.K.;Sohn,J.M.;Kim,M.R.;Jeon,H.J.Platinum nanoclusters studded in the microporous nanowalls of ordered mesoporous carbon. Adv.Mater.2005,17,446-451.
    [5]Yuan,J.;Wang,K.;Xia,X.Highly ordered platinum-nanotubule arrays for amperometric glucose sensing.Adv.Funct.Mater.2005,15,803-809.
    [6]Zhong L.Wang,Janet M.Petroski,Travis C.Green,and Mostafa A.El-Sayed.Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals,J.Phys.Chem.B 1998,10202),6146-6151.
    [7]Liang,H.P.;Zhang,H.M.;Hu,J.S.;Guo,Y.G;Wan,L.J.;Bai,C.L.Pt hollow nanospheres:facile synthesis and enhanced electrocatalysts.Angew.Chem.Int.Ed.2004,43,1540-1453.
    [8]Bock,C.;Paquet,C.;Couillard,M.;Botton,G.A.;MacDougall,B.R.Size-selected synthesis of PtRu nano-catalysts:reaction and size control mechanism,J.Am.Chem.Soc.2004,126,8028-8037.
    [9]Steigerwalt,E.S.;Deluga,G.A.;Lukehart,C.M.Pt-Ru/Carbon fiber nanocomposites:Synthesis,characterization,and performance as anode catalysts,J.Phys.Chem.B 2002,106,760-766.
    [10]Gasteiger,H.A.;Markovic N.;Ross,P.N.;Cairns,J.E.CO Electrooxidation on well-characterized Pt-Ru alloys,J.Phys.Chem.1994,98,617-625.
    [11]Stamenkovic,V.R.;Mun,B.S.;Mayrhofer,K.J.J.;Ross,P.N.;Markovic,N.M.Effect of surface composition on electronic structure,stability,and electrocatalytic properties of Pt-transition metal alloys:Pt-skin versus Pt-skeleton surfaces,J.Am.Chem.Soc.2006,128,8813-8819.
    [12]Sun,S.;Murray,C.B.;Weller,D.;Folks,L.;Moser,A.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal supedattices.Science 2000,287,1987-1992.
    [13]Chen,M.S.;Kumar,D.;Yi,C.W.;Goodman,D.W.The promotional effect of gold in catalysis by palladium-gold.Science 2005,310,291-293.
    [14]Zhang,H.;Zelmon,D.E.;Deng,L.;Liu,H.-K.;Teo,B.K.Optical limiting behavior of nanosized polyicosahedral gold-silver clusters based on third-order nonlinear optical effects,J.Am.Chem.Soc.2001,123,11300-11301.
    [15]Haruta,M.;Kobayashi,T.;Sano,H.;Yamada,N.Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃.Chem.Lett.1987,16,405-408.
    [16]Allred,A.L.J.Inorg.Nucl.Chem.1961,17,215.
    [17]Lou,Y.B.;Maye,M.M.;Han,L.;Luo,J.;Zhong,C.J.Gold-platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation.Chem.Commun.2001,473-474.
    [18]Zhou,S.H.;Jackson,G.S.;Eichhorn,B.AuPt alloy nanoparticles for CO-tolerant hydrogen activation:architectural effects in Au-Pt bimetallic nanocatalysts.Aav.Funct.Mater.2007,17,3099-3104.
    [19]Zhong,C.J.;Maye,M M.Core-shell assembled nanoparticles as catalysts.Adv.Mater.2001,13,1507-1511.
    [20]Habas,S.E.;Lee,H.;Radmilovic,V.;Somorjai,G.A.;Yang,P.Shaping binary metal nanocrystals through epitaxial seeded growth.Nature Mater.2007,6,692-697.
    [21]Sanedrin,R.G;Georganopoulou,D.G.;Park,S.;Mirkin,C.A.Seed-mediated growth of bimetallic prisms.Adv.Mater.2005,17,1027-1031.
    [22]Lang,H.;Maldonado,S.;Stevenson,K.J.;Chandler,B.D.Synthesis and characterization of dendfimer templated supported bimetallic Pt-Au nanoparticles,J.Am.Chem.Soc.2004,126,12949-12956.
    [23]Wu,M.L.;Chen,D.H.;Huang,T.C.Preparation of Au/Pt bimetallic nanoparticles in water-in-oil microemulsions.Chem.Mater.2001,13,599-606.
    [24]Armadi,I.S;Wang,Z.L.;Green,T.C.;Henglein,A.;El-Sayed,M.A.Fuel cell technology:concise module introducing students to electrocatalysis.Science 1996,272,1924-1925.
    [25]Xu,J.b.;Zhao,T.S.;Liang,Z.X.;Zhu,L.D.Facile Preparation of AuPt Alloy Nanoparticles from Organometallic Complex Precursor.Chem.Mater.2008,20,1688-1690.
    [26] Xu, C. X.; Su, J. X.; Xu, X. X.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007,129, 42-43.
    [27] Liu, Z.; Searson, P. C. Single nanoporous gold nanowire sensors. J. Phys. Chem. B 2006,110,4318-4322.
    [28] Qian, L. H.; Yan, X. Q.; Fujita, T.; Inoue, A.; Chen, M. W. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements. Appl. Phys. Lett. 2007, 90, 153120(1-3).
    [29] Sieradzki, K.; Newman, R. C. Stress-corrosion cracking J. Phys. Chem. Solids, 1987, 48, 1101-1113.
    [30] Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M; Hamza, A. V.; Maier, S. A. Improving surface-enhanced Raman scattering effect using gold-coated hierarchical polystyrene bead substrates modified with postgrowth microwave treatment. Adv. Mater. 2008,20, 1211-1217
    [31] (a) Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647-1650.
    (b) Andreeva, D. Low temperature water gas shift over gold catalysts. Gold Bull. 2002, 35, 82-88.
    [32]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, I; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision A.I; Gaussian, Inc.: Pittsburgh, PA, 2004.
    [33] Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A., Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Modern Phys 1992, 64, 1045-1097
    [34] (a) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
    (b) Lee, C.; Yang, W.; Parry, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.
    (c) Hay, P. J.; Wadt, W. R. Ab initio effective core potential for molecular calculation. J. Chem. Phys. 1985, 82, 270-283.
    [35] Hay, P. J.; Wadt, W. R. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985,82, 299-310.
    [36] Fukui, K. A formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161-4163.
    [37] Abe, H.; Matsumoto, F.;. Alden, L. R.; Warren, S. C.; Abruna, H. D.; DiSalvo, F. J. Electrocatalytic performance of fuel oxidation by Pt_3Ti nanoparticles. J. Am. Chem. Soc. 2008,130, 5452-5458
    [38] Pugh, D. V; Dursun, A.; Corcoran, S. G. Formation of nanoporous platinum by selective dissolution of Cu from Cu 0.75 Pt 0.25. J. Mater. Res. 2003,18, 216-221.
    [39] Pugh, D.V.; Dursun, A.; Corcoran, S. G. Electrochemical and morphological characterization of Pt-Cu dealloying. J. Electrochem. Soc. 2005, 152(11), B455-B459.
    [40] Erlebacher, J. An atomistic description of dealloying - Porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 2004, 151, 140 , C614-C626.
    [41]Snyder,J.;Asanithi,P.;Dalton,A.B.;Erlebacher,J.Stabilized nanoporous metals by dealloying ternary alloy precursors.Adv.Mater.2005,20,4883-4886.
    [42]Ruban,A.V.;Skriver,H.L.;Nφrskov,J.K.Surface segregation energies in transition-metal alloys.Phys.Rev.B 1999,59,15990-16000.
    [43]Basil,Z.;Pick,S.Surf.Sci._Angle resolved X-ray photoelectron spectroscopy study of Au deposited on Pt and Re surfaces.Surf.Sci.2004,566-568,832-836.
    [44]Ponec,V.,Bond,G.C.Catalysis by Metals and Alloy,Eds.;Elsevier:Amsterdam,1995.
    [45]Mariscal,M.M.;Dassie,S.A.;Leiva,E.P.M.Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions,J.Chem.Phys.2005,23,184505(1-6).
    [46]Sun,S.;Murray,C.B.;Weller,D.;L.Folks,A.Moser.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices.Science 2000,287,1989-1992.
    [47]Son,S.U.;Jang,Y.;Park,J.;Na,H.B.;Park,H.M.;Yun,H.J.;Lee,J.;Hyeon,T.Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions.J.Am.Chem.Soc.2004,126,5026-5027.
    [48]Schmidt,T.J.;Gasteiger,H.A.;Behm,R.J.Rotating disk electrode measurements on the CO tolerance of a high-surface area Pt/Vulcan carbon fuel cell catalyst.J.Electrochem.Soc.1999,146,1296-1304.
    [49]Long,J.W.;Stroud,R.M.;Swider-Lyons,K.E.;Rolison,D.R.How to make electrocatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys.J.Phys.Chem.B 2000,104,9772-9776.
    [50]Chen,Z.W.;Waje,M.;Li,W.Z.;Yan,Y.S.Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions.Angew.Chem.Int.Ed.2007,46,4060-4063.
    [51]Kusmierczyk,K;Lukaszewski,M.;Rogulski,Z.;Siwek,H.;Kotowski,J.; Czerwinski, A. Electrochemical behavior of Pt-Au alloys. Polish J. Chem. 2002, 76(4), 607-618.
    [52] Mooller, H.; Pistoriu, P. C.; The electrochemistry of gold-platinum alloys. J. Electroanal. Chem. 2004,570, 243-255.
    [53] Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220-222.
    [54] Zhou, S. H.; McIlwrath, K.; Jackson, G.; Eichhorn, B. Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. J. Am. Chem. Soc. 2006,128, 1780-1781.
    [55] Zeng, J. H.; Yang, J.; Lee, J. Y.; Zhou, W. J. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core. J. Phys. Chem. B, 2006, 110, 24606-24611.
    
    [56] Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 2002, 47, 3663-3674.
    [57] Du, B. C.; Tong, Y.Y. A coverage-dependent study of Pt spontaneously deposited onto Au and Ru surfaces: Direct experimental evidence of the ensemble effect for methanol electro-oxidation on Pt. J. Phys. Chem. B 2005,109, 17775-17780.
    [58] Chen, Y. X.; Miki, A.; Ye, S.; Sakai, H.; Osawa. M. Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J. Am. Chem. Soc. 2003, 125, 3680-3681.
    [59] Huang, J.; Liu, Z.; He, C.; Gan, L. M. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell. J. Phys. Chem. B 2005,109, 16644-16649.
    
    [60] Hoogers, G. Fuel Cell Technology Handbook; CRC Press: Boca Raton, FL, 2003.
    [61] Yen, C. H.; Shimizu, K.; Lin, Y. Y.; Bailey, F.; Cheng, I. F.; Wai, C. M. Chemical fluid deposition of Pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application. Energy & Fuels 2007, 21, 2268-2271.
    [62] Gu, Y. J.; Wong, W. T. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation.Langmuir 2006,22,11447-11452.
    [63]Borkowska,Z.;Tymosiak-Zielinska,A.Nowakowski,R.High catalytic activity of chemically activated gold electrodes towards electro-oxidation of methanol.Electrochim.Acta 2004,49,2613-2621.
    [64]Park,K.W.;Sung,Y.E.Catalytic activity of platinum on ruthenium electrodes with modified(electro) chemical states.J.Phys.Chem.B 2005,109,13585-13589.
    [65]Watanabe,M.;Motoo,S.Electrocatalysis by ad-atoms part Ⅱ.Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms.J.Electroanal.Chem.1975,60,267.
    [66]Liu,Z.;Lee,J.Y.;Chen,W.;Han,M.;Gan,L.M.Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles.Langmuir 2004,20,181-187.
    [67]Chen,Y.X.;Miki,A.;Ye,S.;Sakai,H.Osawa,M.Formate,an active Intermediate for direct oxidation of methanol on Pt electrode,J.Am.Chem.Soc.2003,125,3680-3681
    [68]Iwasita,T.;Nart,F.C.;Vielstich,W.;Bunsenges.B.Phys.Chem.1990,94,1021.
    [69]Iwasita,T.;Hoster,H.;John-Anacker,A.;Lin,W.F.;Vielstich,W.Methanol oxidation on PtRu electrodes.Influence of surface structure and Pt-Ru atom distribution.Langmuir 2000,16,522-529.
    [70]Koper,M.T.M.;Lukkien,J.J.;Jansen,A.P.J.;van Santen,R.A.Lattice gas model for CO electrooxidation on Pt-Ru bimetallic surfaces,J.Phys.Chem.B 1999,103,5522-5529.
    [71]Shubina,T.E.;Koper,M.T.M.Lattice gas model for CO electrooxidation on Pt-Ru bimetallic surfaces,J.Phys.Chem.B 1999,26,5522-5529.
    [72]Okamoto,H.;Kon,W.;Mukouyama,Y.Five current peaks in voltammograms for oxidations of formic acid,formaldehyde,and methanol on platinum.J.Phys.Chem.B 2005,109,15659.
    [73]Kim,J.;Jung,C.;Rhee,C.K.;Lim,T.H.Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111).Langmuir 2007,23,10831-10836.
    [1]Bond,G.C.;Thompson,D.T.Catal.Rev.Sci.Eng.1999,41,319-388.
    [2]Stephen,A.;Hashmi,K.Gold Bulletin 2004,37,51-65.
    [3]Haruta,M.Catal.Today 1997,36,153-166.
    [4]Haruta,M.;Kobayashi,T.;Sano,H.;Yamada,N.Chem.Lett.1987,16,405-408.
    [5]Valden,M.;Lai,X.;Goodman,D.W.Science 1995,281,1647-1650.
    [6]Remediakis,I.N.;Lopez,N.;Norskov,J.K.Angew.Chem.Int.Ed.2005,44,1824-1826.
    [7]Comotti,M.;Li,W.C.;Spliethoff,B.;Sch(u丨¨)th,F.J.Am.Chem.Soc.2006,128,917-924.
    [8]Wallace,W.T.;Whetten,R.L.J.Am.Chem.Soc.2002,124,7499-7505.
    [9]Arrii,S.;Morfin,F.;Renouprez,A.J.;Rousset,J.L.J.Am.Chem.Soc.2004,126,1199-1205.
    [10]Newman,R.C.;Sieradzld,K.Science 1994,263,1708-1709.
    [11]Erlebacher,J.;Aziz,M.J.;Karma,A.;Dimitrov,N.;Sieradzki,K.Nature 2001,410,450-453.
    [12]Ding,Y.;Kim,Y.J.;Erlebacher,J.Adv.Mater.2004,16,1897-1900.
    [13]Ding,Y.;Erlebacher,J.J.Am.Chem.Soc.2003,125,7772-7773.
    [14]Ding,Y.;Chen,M.W.;Erlebacher,J.J.Am.Chem.Soc.2004,126,6876-6877.
    [15]Comotti,M.;Pina,C.D.;Matarrese,R.;Rossi,M.Angew.Chem.Int.Ed.2004,43,5812-5815.
    [16]Lopez,N.;Norskov,J.K.J.Am.Chem.Soc.2002,124,11262-11263.
    [17]Fu,L.;Wu,N.Q.;Yang,J.H.;Qu,F.;Johnson,D;Kung,C.;Kung,H.H.;Dravid,V.P.J.Phys.Chem.B 2005,109,3704-3706.
    [18]Boyen,H.G.;Kastle,G.;Weig,F.;Koslowski,B.;Dietrich,C.;Ziemann,P.;Spatz,J.P.;Riethmuller,S.;Hartmann,C.;Moller,M.;Schmid,G.;Garnier,M.G.;Oelhafen,P.Science 2002,297,1533-1536.
    [1] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16 (1987) 405.
    [2] T. S. Kim, J. D. Stiehl, C. T. Reeves, R. J. Meyer, C. B. Mullins, J. Am. Chem. Soc. 125(2003)2018.
    [3] N. Lopez, T. V. W. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J. K. Norskov, J. Catal. 223 (2004) 232.
    [4] L. M. Molina, B. Hammer, Phys. Rev. Lett. 90 (2003) 206102.
    [5] M. Valden, X. Lai, D. W. Goodman, Science 281 (1998) 1647.
    [6] M. Mavrikakis, P. Stoltze, J. K. Norskov, Catal. Lett. 64 (2000) 101.
    [7] L. Giordano, J. Goniakowski, G. Pacchioni, Phys. Rev. B 64 (2001) 075417.
    [8] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 2003 (301) 935.
    [9] M. S. Chen, D. W. Goodman, Science 306 (2004) 252.
    [10] D. C. Meier, D. W. Goodman, J. Am. Chem. Soc. 126 (2004) 1892.
    [11] N. Weiher, E. Bus, L. Delannoy, C. Louis, D. E. Ramaker, J. T. Miller, J. A. van Bokhoven, J. Catal. 240 (2006) 100.
    [12] G. J. Hutchings, M. S. Hall, A. F. Carley, P. Landon, B. E. Solsona, C. J. Kiely, A. Herzing, M. Makkee, J. A. Moulijn, A. Overweg, J. C. Fierro-Gonzalez, J. Guzman, B. C. Gates, J. Catal. 242 (2006) 71.
    [13] J. Guzman, B. C. Gates, J. Am. Chem. Soc. 126 (2004) 2672.
    [14] Z. Yan, S. Chinta, A. A. Mohamed, J. P. Fackler, D. W. Goodman, J. Am. Chem. Soc. 127(2005)1604.
    [15] B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307 (2005) 403.
    [16] L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Woste, U. Heiz, H. Hakkinen, U. Landman, J. Am. Chem. Soc. 125 (2003) 10437.
    [17] A. I. Kozlov, A. P. Kozlova, K. Asakura,Y. Matsui, T. Kogure, T. Shido, Y. Iwasawa, J. Catal. 196 (2000) 56.
    [18] M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, R. J. Behm, J. Catal. 197(2001)113.
    [19] E. D. Park, J. S. Lee, J. Catal. 186 (1999) 1.
    [20] F. Boccuzzi, A. Chiorino, M, Manzoli, P. Lu, T. Akita, S. Ichikawa, M. Haruta, J. Catal. 202 (2001) 256.
    [21] J. H. Yang, J. D. Henao, M. C. Raphulu, Y. M. Wang, T. Caputo, A. J. Groszek, M. C. Kung, M. S. Scurrell, J. T. Miller, H. H. Kung, J. Phys. Chem. B 109 (2005) 10319.
    [22] M. Comotti, W. C. Li, B. Spliethoff, F. Schuth, J. Am. Chem. Soc. 128 (2006) 917.
    [23] S. Arrii, F. Morfin, A. J. Renouprez, J. L. Rousset, J. Am. Chem. Soc. 126 (2004) 1199.
    [24] G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, Catal. Lett. 44 (1997) 83.
    [25] V. Schwartz, D. R. Mullins, W. F. Yan, B. Chen, S. Dai, S. H. Overbury, J. Phys. Chem. B 108 (2004) 15782.
    [26] S. Tsubota, T. Nakamura, K. Tanaka, M. Haruta, Catal. Lett. 56 (1998) 131.
    [27] M. A. Sanchez-Castillo, C. Couto, W. B. Kim, J. A. Dumesic, Angew. Chem. Int. Ed. 43(2004)1140.
    [28] V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, M. Baumer, Angew. Chem. Int. Ed. 45 (2006) 8241.
    [29] C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, J. Am. Chem. Soc. 129 (2007) 42.
    [30] Y. Ding, Y. J. Kim, J. Erlebacher, Adv. Mater. 16 (2004) 1897.
    [31] Y. Ding, J. Erlebacher, J. Am. Chem. Soc. 125 (2003) 7772.
    [32] Y. Ding, M. W. Chen, J. Erlebacher, J. Am. Chem. Soc. 126 (2004) 6876.
    [33] S. H. Overbuy, V. Schwartz, D. R. Mullins, W. F. Yan, S. Dai, J. Catal. 241 (2006) 56.
    [34] R. C. Newman, K. Sieradzki, Science 263 (1994) 1708.
    [35] J. Erlebacher, M. J. Aziz, A Karma, N. Dimitrov, K. Sieradzki, Nature 410 (2001) 450.
    [36] G. C. Bond, D. T. Thompson, Gold Bull. 33 (2) (2000) 41.
    [37] R. J. Davis, Science 301 (2003) 926.
    [38] C. K. Costello, M. C. Kung, H.-S. Oh, Y. Wang, H. H. Kung, Appl. Catal. A 232 (2002) 159.
    [39] J. A. van Bokhoven, C. Louis, J. T. Miller, M.Tromp, O. V. Safonova, P. Glatzel, Angew. Chem. Int. Ed. 45 (2006) 4651.
    [40] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, J. Catal. 144(1993)175.
    [41] F. Boccuzzi, A. Chiorino, M. Manzoli, Surf. Sci. 454-456 (2000) 942.
    [42] F. Boccuzzi, G. Cerrato, F. Pinna, G. Strukul, J. Phys. Chem. B 102 (1998) 5733.
    [43] N. Weiher, A. M. Beesley, N. Tsapatsaris, L. Delannoy, C. Louis, J. A. van Bokhoven, S. L. M. Schroeder, J. Am. Chem. Soc. 129 (2007) 2240.
    [44] J. D. Stiehl, T. S. Kim, S. M. McClure, C. B. Mullins, J. Am. Chem. Soc. 126 (2004) 1606.
    [45] G. McElhiney, J. Pritchard, Surf. Sci. 60 (1976) 397.
    [46] J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder, K. Christmann, Surf. Sci. 536 (2003) 206. [47] S. Derrouiche, P. Gravejat, D. Bianchi, J. Am. Chem. Soc. 126 (2004) 13010.
    [1]Y.G.Guo,J.S.Hu,H.M.Zhang,H.P.Liang,L.J.Wan,C.L.Bai,Adv.Mater.2005,17,746.
    [2]J.Park,J.Cheon,J.Am.Chem.Soc.2001,123,5743.
    [3]S.E.Habas,H.Lee,V.Radmilovic,G.A.Somorjai,P.Yang,Nature Mater.2007,6,692.
    [4]Y.G.Sun,B.Mayers,Y.N.Xia,Adv.Mater 2003,15,641.
    [5]M.S.Chen,D.Kumar,C.W.Yi,D.W.Goodman,Science 2005,310,291.
    [6]K.Koczkur,Q.F.Yi,A.C.Chen,Adv.Mater 2007,19,2648.
    [7]S.Zhou,K.McIlwrath,G.Jackson,B.Eichhorn,J.Am.Chem.Soc.2006,128,1780.
    [8]C.J.Zhong,M.M.Maye,Adv.Mater 2001,13,1507.
    [9]C.Burda,X.Chen,R.Narayanan,M.El-Sayed,Chem.Rev.2005,105,1025.
    [10]Y.G.Sun,Y.N.Xia,J.Am.Chem.Soc.2004,126,3892.
    [11]H.P.Liang,H.M.Zhang,J.S.Hu,Y.G.Guo,L.J.Wan,C.L.Bai,Angew.Chem.Int.Ed.2004,43,1540.
    [12]H.P.Liang,N.S.Lawrence,L.J.Wan,L.Jiang,W.G,Song,T.G.J.Jones,J.Phys.Chem.C 2005,112,338.
    [13]Y.Ding,Y.J.Kim,J.Erlebacher,Adv.Mater.2004,16,1897.
    [14]Y.Ding,A.Mathur,M.W.Chen,J.Erlebacher,Angew.Chem.Int.Ed.2005,44,4002.
    [15]C.X.Xu,J.X.Su,X.H.Xu,P.P.Liu,H.J.Zhao,F.Tian,Y.Ding,J.Am.Chem.Soc.2007,129,42.
    [16]J.Biener,G.W.Nyce,A.M.Hodge,M.M.Biener,A.V.Hamza,S.A.Maier,Adv.Mater 2005,20,1211.
    [17]J.R.Hayes,A.M.Hodge,J.Biener,A.V.Hamza,K.Sieradzki,J.Mater.Res.2006,21,2611.
    [18]M.Raney,Ind.Eng.Chem.1940,32,1199.
    [19]Standard Potentials in Aqueous Solution;A.J.Bard,R.Parsons,J.Jordan(Eds);Marcel Dekker:New York,1955;Chapters 11,12.
    [20]T.Shibata,B.A.Bunker,Z.Y.Zhang,D.Meisel,C.F.Vardeman,J.D.Gezelte,J.Am.Chem.Soc.2002,124,11989.
    [21]S.Koh,P.Strasser,J.Am.Chem.Soc.2007,129,12624.
    [22]P.Mani,R.Srivastava,P.Strasser,J.Phys.Chem.C 2008,112,2770.
    [23]F.Su,J.Zeng,X.Bao,Y.Yu,J.Y.Lee,X.S.Zhao,Chem.Mater.2005,17,3960.
    [24]Y.X.Chen,A.Miki,S.Ye,H.Sakai,M.Osawa,J.Am.Chem.Soc.2003,125,3680.
    [25]W.F.Lin,J.T.Wang,R.F.Savinell,J.Electrochem.Soc.1997,144,1917.
    [26]C.H.Yen,K.Shimizu,Y.Y.Lin,F.Bailey,I.F.Cheng,C.M.Wai,Energy &Fuels 2007,21,2268.
    [27]Y.Gu,W.Wong,Langmuir 2006,22,11447.
    [28]F.Maillard,E.R.Savinova,U.Stimming,J.Electroanal.Chem.2007,599,221.
    [29]V.R.Stamenkovic,B.S.Mun,K.J.J.Mayrhofer,P.N.Ross,N.M.Markovic,J.Am.Chem.Soc.2006,128,8813.
    [30]J.Knudsen,A.U.Nilekar,R.T.Vang,J.Schnadt,E.L.Kunkes,J.A.Dumesic,M.Mavrikakis,F.Besenbacher,J.Am.Chem.Soc.2007,129,6485.
    [31]S.H.Zhou,B.Varughese,B.Eichhorn,G.Jackson,K.McIlwrath,Angew.Chem.Int.Ed.2005,44,4539.
    [1]Tarasevich,M.R.;Sadkowski,A.;Yeager,E In Comprehensive Treatise of Electrochemistry;Conway,B.E.,Bockris,J.O.M.,Yeager,E.,Khan,S.U.M.,White,R.E.,Eds.;Plenum Press:New York,1983;Vol.7,p 301.
    [2]Markovic,N.M.;R.oss,P.N.Electrochim.Acta 2000,45,4101-4115.
    [3]Joo,S.H.;Choi,S.J.;Oh,I.;Kwak,J.;Liu,Z.;Terasaki,O.;Ryoo,R.Nature 2001,41,169-172.
    [4]Yuasa,M.;Yamaguchi,A.;Itsuki,H.;Tanaka,K.;Yamamoto,M.;Oyaizu,K.Chem.Mater.2005,17,4278-4281.
    [5]Liu,Z.;Xing,Y.;Chen,C.;Zhao,L.;Suib,S.L.Chem.Mater.2008,20,2069-2071.
    [6]Shao,M.;Sasaki,K.;Adzic.R.R.;J.Am.Chem.Soc.2006,128,3526-3527.
    [7]Fernandez,J.L.;Walsh,D.A.;Bard,A.J.J.Am.Chem.Soc.2005,127,357-365.
    [8]Savadogo,O.;Lee,K.;Oishi,K.;Mitsushimas,S.;Kamiya,N.;Ota,K.I.Electrochem.Commun.2004,6,105-109.
    [9]Sarkar,A.;Murugan,A.V.;Manthiram,A.J.Phys.Chem.C 2008,112,12037-12043.
    [10]Adzic,R.R.In DOE Hydrogen and Fuel Cell Review Meeting;Philadelphia,PA,2004.
    [11]Wang,X.;Kariuki,N.;Vaughey,J.T.;Goodpaster,J.;Kumar,R.;Myers,D.J.J.Electrochem.Soc.2008,155,B602.
    [12]Kim,S.W.;Kim,M.;Lee,W.Y.;Hyeon,T.J.Am.Chem.Soc.2002,124,7642-7643.
    [13]Lim,B.;Xiong,Y.J.;Xia,Y.N.;Angew.Chem.Int.Ed.2007,46,9279-9282
    [14]Sun,Y.G.;Mayers,B.T.;Xia,Y.N.Adv.Mater.2003,15,641-646.
    [15]Xiong,Y.J.;Wiley,B.J.;Chen,J.Y.;Li,Z.Y.;Yin,Y.D.;Xia,Y.N.Angew.Chem.Int.Ed.2005,44,7913-7917.
    [16]Sun,Y.G.;Wiley,B.Li,Z.Y.;Xia,Y.N.;J.Am.Chem.Soc.2004,126,9399-9406.
    [17]Liang,H.P.;Zhang,H.M.;Hu,J.S.;Guo,Y.G;Wan,L.J.;Bai,C.L.Angew.Chem.Int.Ed.2004,43,1540-1543.
    [18]Liang,H.P.;Lawrence,N.S.;Wan,L.J.;Jiang,L.;Song,W.G.;Jones,T.G J.J.Phys.Chem.C 2005,112,338-344.
    [19]Zhang,J.;Qiu,C.;Ma,H.;Liu,X.J.Phys.Chem.C 2008,112,13970-13975.
    [20]Ge,J.;Xing,W.;Xue,X.;Liu,C.;Lu,T.;Liao,J.J.Phys.Chem.C 2007,111,17305-17310.
    [21]Chen,Z.;Waje,M.;Li,W.;Yan,Y.Angew.Chem.Int.Ed.2007,46,4060-4063.
    [22]Ding,Y.;Chen,M.W.;Erlebacher,J.J.Am.Chem.Soc.2004,126,6876-6877.
    [23]Xu,C.;Wang,L.;Wang,R.;Wang,K.;Zhang,Y.;Tian,F.;Ding,Y.Adv.Mater.2008,2009,21,DOI:10.1002/adma.200702700.
    [24]Erlebacher,J.;Aziz,M.J.;Karma,A.;Dimitrov,N.;Sieradzki,K.Nature 2001,410,450-453.
    [25]Hayes,J.R.;Hodge,A.M.;Biener J.;Hamza,A.V.;Sieradzki,K.J.Mater.Res.2006,21,2611-2616.
    [26]Raney,M.;Ind.Eng.Chem.1940,32,1199-1203;
    [27]Ding,Y.;Mathur,A.;Chen,M.W.;Erlebacher,J.Angew.Chem.Int.Ed.2005,44,4002-4006.
    [28]Shao,M.H.;Huang,T.;Liu,P.;Zhang,J.;Sasaki,K.;Vukmirovic,M.B.;Adzic R.R.Langmuir 2006,22,10409-10415.
    [29]Shibata,T.;Bunker,B.A.;Zhang,Z.Y.;Meisel,D.;Vardeman,C.F.;Gezelter,J.D.J.Am.Chem.Soc.2002,124,11989-11996.
    [30]Ghodbane,O.;Roue,L.;Belanger,D.Chem.Mater.2008,20,3495-3504.
    [31]Wilson.O.M.;Knecht,M.R.;Garcia-Martinez,J.C.;Crooks,R.M.J.Am.Chem.Soc.2006,128,4510-4511.
    [32]Solsona,B.E.;Edwards,J.K.;Landon,P.;Carley,A.F.;Herzing,A.;Kiely,C.J.;Hutchings,G J.Chem.Mater.2006,18,2689-2695
    [33]Gallon,B.J.;Kojima,R.W.;Kaner,R.B.;Diaconescu,P.L.Angew.Chem.Int.Ed.2007,46,7251-7254.
    [34]Yu,J.;Ding,Y.;Xu,C.;Inoue,A.;Sakurai,T.;Chen,M.Chem.Mater.2008,20,4548-4550
    [35]Xiao,L.;Zhuang,L.;Liu,Y.;Lu,J.;Abru(?)a,H.D.J.Am.Chem.Soc.2009,131,602-608.
    [36]Raghuveer,V.;Manthiram,A.;Bard,A.J.J.Phys.Chem.B 2005,109,22909-22912.
    [37]Stamenkovic,V.;Schmidt,T.J.;Ross,P.N.;Markovic,N.M.J.Phys.Chem.B 2002,106,11970-11979.
    [38]Zhang,J.;Mo,Y.;Vukmirovic,M.B.;Klie,R.;Sasaki,K.;Adzic,R.R.J.Phys.Chem.B 2004,108,10955-10964.
    [39]Wang,J.X.;Markovic,N.M.;Adzic,R.R.J.Phys.Chem.B 2004,108,4127-4033.
    [40]Li,H.Q.;Xin,Q.;Li,W.Z.;Zhou,Z.H.;Jiang,L.H.;Yang,S.H.;Sun,G.Q.Chem.Commun.2004,2776-2777.
    [41]Knudsen,J.;Nilekar,A.U.;Vang,R.T.;Schnadt,J.;Kunkes,E.L.;Du mesic,J.A.;Mavrikakis,M.;Besenbacher,F.J.Am.Chem.Soc.2007,129,6485-6490.
    [42]Abel,M.;Robach,Y.;Porte,L.Surf.Sci.2002,498,244-256.
    [43]Nilekar,A.U.;Xu,Y.;Zhang,J.;Vukmirovic,M.B.;Sasaki,K.;Adzic,R.R.;Mavrikakis,M.Top.Catal.2007,46,276-284.
    [44]Stamenkovic,V.R.;Mun,B.S.;K.Mayrhofer,J.J.;Ross,P.N.;Markovic,N.M.J.Am.Chem.Soc.2006,128,8813-8819.
    [45]Koh,S.;Strasser,P.J.Am.Chem.Soc.2007,129,12624-12625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700