用户名: 密码: 验证码:
新型纳米复合物的制备及其在抗精神病药物和蛋白质分子识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于修饰电极技术和分子印迹技术对某些抗精神病类药物和蛋白质的识别检测进行了较为详细的探究。论文分两个部分展开,一部分主要围绕药物的电化学识别研究;另一部分主要围绕蛋白质的分子识别研究。
     抗精神病药物是一类在临床上有着广泛应用的药物,随着人类对精神疾病的治疗,兴奋剂检测和毒品分析等问题的持续关注,与此息息相关的该类药物的研究已经引起了科研人员的浓厚兴趣。研究该类药物的分析手段多种多样,其中电化学方法因其具有简单、灵敏、响应快、成本低等优点,在药物的分析中发挥了很大的作用。在此基础上,我们采用性能优良的聚合膜修饰电极,同时利用Pt纳米颗粒和碳纳米管良好的导电性和优异的电催化能力来降低这些药物的氧化还原过电位,以增强响应信号,提高检测的灵敏度。并希望能将所建立的分析方法实际推广到相关毒品分析和兴奋剂检测中,因此该部分论文具有重大的理论和实际意义。
     论文的后半部分围绕分子印迹展开,对抗精神病药物和乙酰化蛋白质分子识别进行了探讨。我们知道,传统的印迹制备方法所得到的印迹微球粒径范围分布大,外形不规则且产率低而使分子印迹技术的大范围应用受到约束。所以具有核壳结构的分子印迹微球因其规则的外形,大的专一性的比表面积,强烈的吸附能力以及可以控制的粒径而引起了我们的兴趣。如果在微球型印迹膜中再包覆有磁响应的无机粒子,然后借助于便利的外部磁场作为分离手段,那么磁性印迹微球就可以发挥其强大的识别能力,其应用前景不可估量。
     论文的具体内容从以下几章展开:
     第一章,明确了该课题的理论和实际意义。对抗精神病药物和蛋白分子识别的研究背景,化学修饰电极技术以及分子印迹技术进行了简述,提出采用化学修饰电极通过电化学方法和印迹磁球来研究该类药物的设想。随后,着重介绍了拟采用的聚合膜修饰电极、金属纳米颗粒和碳纳米管修饰电极。最后,提出了本论文的实验思路。
     第二章,研究了苯肾上腺素在聚氨基苯磺酸修饰玻碳电极上的电化学行为和电极反应机理。研究结果发现,在pH=5.0的0.05 M HAc-NaAc缓沖溶液中,苯肾上腺素在该修饰电极上于+0.89V(vs.SCE)左右产生灵敏的阳极峰,基于此峰的定量分析方法被建立起来。在最优化条件下,该药物的阳极峰电流与浓度在1×10~(-7) M~1.5×10~(-5)M范围内呈线性关系,检测限为1×10~(-8) M。修饰电极显示出了许多优良的性质,如易再生性、高度的稳定性、良好的重现性和选择性。该方法成功用于药物制剂中苯肾上腺素含量的测定,通过与国标UV方法相对照,证实该方法是可信赖的。同时,采用电化学方法对该修饰电极进行了表征。
     第三章,通过电聚合氨基苯磺酸在碳纳米管预沉积的玻碳电极表面,制得了复合膜修饰电极,即poly-ABSA/SWNTs/GCE。SWNTs为聚合膜的固定提供了3D的网状传导结构。扫描电镜和电化学阻抗手段表征了电极表面。实验结果显示该复合膜修饰电极对三氟拉嗪TFP的电化学氧化有着很好的电催化活性。TFP可以被有效的富集在电极表面并在电位+0.72 V处产生一灵敏的氧化峰。在选定的优化条件下,TFP的氧化峰电流和它的浓度在1×10~(-7)M~1.0×10~(-5) M和1×10~(-5)M~1.0×10~(-4)M范围内呈正比关系,且检测限为1×10~(-9) M。该法被成功应用到实际样品的检测之中,取得了满意的结果。比较于SWNTs或poly-ABSA分别修饰的玻碳电极,该复合膜修饰电极显示了更好的电催化活性。
     第四章,合成了一种具有3D结构的聚氨基苯磺酸/Pt纳米颗粒修饰的玻碳电极,即poly-ABSA/Pt/GCE。研究了氯米帕明在该修饰玻碳电极上的电化学行为和电极反应机理。氯米帕明在该复合膜修饰电极上于电位+0.80 V处产生了一个灵敏的氧化峰。实验结果表明该传感器在伏安响应方面有了极大的改善:拓宽了线性范围并降低了检测限。氯米帕明氧化峰的电流和它的浓度在1×10~(_7)M~1.0×10~(-6)M和1×10~(-6) M~1.0×10~(-5)M范围内呈正比关系,且检测限为1×10~(-9)M。成功将其用于实际样品的检测,取得了满意的结果。实验中还采用了多种手段对该复合膜进行表征。
     第五章,利用磁性氧化铁纳米颗粒和硅烷合成了新颖的具有超顺磁性的印迹微球用于苯肾上腺素的识别和分离。该印迹微球具有典型的核壳结构,其中核的直径为350 nm(扫描电镜显示每一个核是由成百上千个Fe_3O_4纳米粒子组成),外部硅壳SiO_2的厚度约为70 nm。石英晶体微天平和电化学等手段被用于检测印迹微球的亲和性及选择性。实验结果表明该磁性印迹微球对模板分子有着较高的灵敏度,较短的响应时间,较宽的线性检测范围以及较低的检测限。此外,控制实验的研究结果表明非印迹微球对模板分子的响应极其微弱。印迹微球对苯肾上腺素的这种专一性识别可能是对应于模板分子和印迹孔穴之间的形状匹配以及孔穴内部官能团的相互作用。
     第六章,利用磁性核壳结构的硅球对乙酰化蛋白的识别进行了初步的探索。提出了如下的实验思路:通过接着羰基试剂对硅壳表面进行修饰,然后将其与乙酰化蛋白孵化作用后,通过外部磁场提取,利用质谱技术进行蛋白分子的识别检测。
     第七章,对全文进行了总结,客观地评价了所取得的研究成果,同时指出了研究中存在的一些不足,并提出了后续工作的目标和研究路线。
This thesis is divided into two parts:one is electrochemical recognition of antipsychotic drugs;the other is recognition of acetylating protein based on magnetic core-shell microspheres.We provide the detailed routine for preparation of nanocompound polymers and analytes in determination process.
     Antipsychotic drugs are widely used in clinical treatments.In the past years, increasing attentions have been to the treatments of psychiatric disorders,stimulants determination and drugs analysis.Accordingly,antipsychotic drugs relevant to the focus above have attracted enormous interest of researchers.Many analytical methods have been developed to study them.Among these methods,owing to some advantages such as simplicity,sensitivity,rapid response,low-cost,electrochemical methods play an important role in investigating antipsychotic drugs.The object of this thesis is to study the electrochemical behaviors and mechanisms of them and establish more sensitive,simpler and accurate quantitative methods by means of chemically modified electrodes.The new methods are expected to apply in the practical stimulants determination and drugs analysis.In addition,we also presented a novel and simple approach to create hydrophilic and uniform magnetic core-shell imprinting microspheres(MCSIMs) for the template recognition.MCSIMs combined the biocompatible silica shells as the recognition interface and immobilization matrix with magnetic microspheres as separation tool.Because of a high magnetic responsivity to magnetic fields and surface pores formed onto the silica shells,the prepared MCSIMs could be used to rebind analytes with the help of an applied magnetic field.
     In chapter 1,we pointed out the importance of this thesis,described briefly the classification of antipsychotic drugs,proteins recognition,chemically modified electrode and molecularly imprinting technique.We suggested studying them by using chemically modified electrodes.Then,the electropolymer modified electrodes,Pt nanoparticles and carbon nanotubes(CNTs) were discussed in detail.Thirdly, magnetic core-shell imprinting microspheres were introduced to recognize analytes. Finally,the research scheme of this thesis was proposed.
     In chapter 2,the electrochemical behaviors and mechanisms of phenylephrine at poly-aminobenzene sulfonic acid(ABSA) modified glassy carbon electrode were studied.It was found that phenylephrine generated an irreversible anodic peak at about +0.89V(vs.SCE) in 0.05M HAc-NaAc(pH=5.0) buffer solution at the modified electrode.Sensitive and quantitative measurement for phenylephrine based on the anodic peaks was established under the optimum conditions.The anodic peak current was linear to phenylephrine concentrations from 1×10~(-7)M to 1.5×10~(-5)M,the detection limits obtained was 1×10~(-8)M.The modified electrode exhibited some excellent characteristics including easy regeneration,high stability,good reproducibility and selectivity.The method proposed was successfully applied to the determination of phenylephrine in drug injections and proved to be reliable compared with ultraviolet spectrophotometry(UV).The modified electrode was characterized by electrochemical methods.
     In chapter 3,a poly-ABSA/SWNTs composite-modified electrode was fabricated by electropolymerizing ABSA on the surface of glassy carbon electrode modified with single-wall carbon nanotubes(SWNTs).SWNTs provide a 3D porous and conductive network for the polymer immobilization.The nanocomposite film was characterized by scanning electron microscope(SEM) and electrochemical impedance spectroscopy (EIS).The results indicated that this composite-modified electrode had strong electrocatalytic activity toward the oxidation of trifluoperazine(TFP).TFP could effectively accumulate on the modified electrode and generate a sensitive anodic peak at 0.72V(versus SCE) in pH 6.1 phosphate buffer solution.Under the selected conditions,the anodic peak current of TFP was linear with its concentration within the range from 1.0×10~(-7) to 1.0×10~(-5)M and 1.0×10~(-5) to 1.0×10~(-4)M,and the detection limit was 1.0×10~(-9)M(S/N=3).This method was successfully applied to the detection of trifluoperazine in drug samples and the recovery was satisfactory.In comparison with the SWNTs/GCE or poly-ABSA/GCE prepared in the similar way,this composite-modified electrode exhibited better catalytic activity.
     In chapter 4,clomipramine,an important tricylic antidepressant drug with low redox activity,was effectively electrocatalyzed on poly-ABSA/Pt nano-clusters modified glassy carbon electrode(i.e.poly-ABSA/Pt/GCE) and generated a sensitive anodic peak at about 0.80V(vs.SCE) in pH 8.1 PBS.ABSA was electropolymerized on the surface of Pt matrix pre-electrodeposited on GCE.Pt microparticles provide a 3D and conductive structure for the polymer immobilization.The resulting sensor exhibited a considerable enhancement in voltammetric response characteristics: extending the linear range and lowering the detection limit.The anodic peak current was linear to clomipramine concentration over two concentration intervals,viz, 1.0×10~(-7)~4.0×10~(-6)M and 4.0×10~(-6)~4.0×10~(-5)M,with the detection limit of 1.0×10~(-9) M.This method was successfully applied to the detection of clomipramine in drug tablets and proved to be reliable compared with UV.The poly-ABSA/Pt composite film surface features,A.C.impedance and other electrochemical characteristics were also studied in detail.
     In chapter 5,novel superparamagnetic core-shell imprinting microspheres (MCSIMs) were synthesized using magnetite microspheres with 350 nm diameter and 70nm thicknesses silica gel to form core-shell Fe_3O_4/SiO_2 composite for template phenylephrine(Phen) recognition and high efficient separation.Compared to the previous imprinting recognition,the main advantage of this strategy lies in two aspects:one is the high stability and monodispersity of MCSIMs structure,the other is the use of superparamagnetic Fe_3O_4/SiO_2 microspheres as immobilization matrix and separation tool,thus greatly simplifying time-consuming washing steps.The affinity and selectivity of the MCSIMs were monitored by QCM and electrochemistry measurements.Imprinting microshpheres have a remarkable affinity to Phen over that of structurally related molecules,including DA,EP,Phe and Tyr.The relative binding selectivity for different analytes estimated from amperometric signals was Phen:DA:EP=40:5:1.The MCSIMs sensor showed a high sensitivity(400μA mM~(-1)), short response time(reaching 98%within 10s),and broad linear response range from 1μM to 0.1mM and low detection limit(0.1μM).Additionally,the results of control experiments showed that only negligible signal was obtained for non-imprinting microspheres.This could be reasonably attributed to the unique surface pores,charges and especially the nature of the functional groups inside MCSIMs cavities.
     In chapter 6,recognition of acetylating protein based on magnetic core-shell microspheres was explored.We provide the detailed routine for preparation of microcompounds and determination of analytes.Firstly,carbonyl group agent was introduced on the surface of magnetic silica shell.Secondly,functional magnetic silica microspheres was hatched with acetylating protein and separated with the help of magnetic field.Finally,the compounds of magnetic microspheres and acetylating proteins are detemined by MALDI-TOF-MS.
     In chapter 7,we summarized and gave objective comments on the results obtained.Meanwhile,the problems and shortcomings of this thesis were pointed out. Finally,we proposed the objects and schemes of further research.
引文
[1]唐迪生,毛娟虹。临床实用药物及其药理基础[M]。上海:复旦大学出版社,2004:1-58,643-657。
    [2]柏宁,岳长红,孙福川。近年来中国抑郁症高发的社会因素分析[J]。医学与哲学(人文社会医学版)。2007,28(3):26-27。
    [3]王刚,郑汭,谭玉燕,孙小康,周海燕,叶晓来,王瑛,王增,孙伯民,陈生弟。帕金森病疾病经济负担及相关因素的调查研究[J]。中华神经科杂志,2006,39(5):336-337。
    [4]段鸿莺。几种兴奋剂的分子光谱检测新方法研究[D]。武汉大学分析化学专业硕士学位论文,2004,1-2。
    [5]李文增,马灿玲。珍爱生命,拒绝毒品[J]。生物学教学,2006,31(11):72-73。
    [6]唐迪生,毛娟虹。临床实用药物及其药理基础[M]。上海:复旦大学出版社,2004:4-5,38,648。
    [7]陈亚娜。沙利度安临床应用进展[J]。临床医学,2002,22(10):56-56。
    [8]牟君,谢鹏,杨泽松,杨德兰,吕发金,李勇,罗天友。初发抑郁症患者丘脑质子核磁共振波谱分析[J]。中国神经精神疾病杂志,2007,33(4):229-232。
    [9]田华,田有勇,孙圣刚。帕金森病基因治疗研究现状[J]。临床内科杂志,2007,24(6):375-378。
    [10]Nagaraja P,Dinesh N D,Gowda N M M,Rangappa K S.A simple spectrophotometric determination of some phenothiazine drugs in pharmaceutical samples[J].Anal Sci,2000,16(11):1127-1131.
    [11]Belal F,Ibrahim F,Hassan S M,ALY F A.Spectrofluormetric determination of some pharmaceutically important thioxanthane derivatives[J].Anal Chim Acta,1991,255(1):103-106.
    [12]Marques K L,Santos J L M,Lima J L F C.Multicommutated flow system for the chemiluminometric determination of clomipramine in pharmaceutical preparations[J].Anal Chim Acta,2004,518(1-2):31-36.
    [13]Shingbal D M,Sariyotish S,Shivananda B G.Colorimetric quantitation of fluphenazine hydrochloride and its formulations[J].Ind Drugs,1989,26(9):523-524.
    [14]Basavaiah K,Krishnamurthy G.Titrimetric micro determination of some phenazine neuroleptics with potassium hexacyanoferrate(Ⅲ)[J].Talanta,1998, 47 (1): 59-66.
    
    [15] Sokoliess T, Menyes U, Roth U, Jira T. Separation of cis- and trans-isomers of thioxanthene and dibenz[b, e]oxepin derivatives on calixarene- and resorcinarene-bonded high-performance liquid chromatography stationary phases [J]. J Chromatogr A, 2002, 948 (1-2): 309-319.
    
    [16] Javaid J I, Dekirmenjian H, Liskevych V, Lin R-L, Davis J M. Fluphenazine determination in human plasma by a sensitive gas-chromatographic method using nitrogen detector [J]. J Chromator Sci, 1981,19 (9): 439-443.
    
    [17] Jin W R, Xu Q, Li W. Determination of clozapine by capillary zone electrophoresis following end-column amperometric detection with simplified capillary/electrode alignment [J]. Electrophoresis, 2000, 21 (7): 1415-1420.
    
    [18] Polasek M, Dolejsova J, Karlicek R. Flow-injection spectrophotometric determination of phenothiazines using analyte oxidation in manganese dioxide-packed reactors [J]. Pharmazie, 1998, 53 (3): 168-172.
    
    [19] Blankert B, Dominguez O, El Ayyas W, Arcos J, Kauffmann J M. Horseradish peroxidase electrode for the analysis of clozapine [J]. Anal Lett, 2004, 37 (5): 903-913.
    
    [20] Moore K A, Werner C, Zannelli R M, Levine B, Smith M L. Screening postmortem blood and tissues for nine cases of drugs of abuse automated microplate immunoassay [J]. Forensic Sci Int, 1999, 106(2): 93-102.
    
    [21] Hammam E, Tawfik A, Ghoneim M M. Adsorptive stripping voltammetric quantification of the antipsychotic drug clozapine in bulk form, pharmaceutical formulation and human serum at a mercury electrode [J]. J Pharm Biomed Anal, 2004,36(1): 149-156.
    
    [22] Bishop E, Hussein W. Electroanalytical studies of phenothiazine neuroleptics at gold and platinum electrodes [J]. Analyst, 1984, 109 (3): 229-234.
    
    [23] Huang F, Qu S, Zhang S, Liu B H, Kong J L. Sensitive detection of clozapine using a gold electrode modified with 16-mercaptohexadecanoic acid self-assembled monolayer [J]. Talanta, 2007, 72(2): 457-462.
    
    [24] Huang F, Qu S, Zhang S, Liu B H, Kong J L. Sensitive determination of fluphenazine at a dodecanethiol self-assembled monolayer modified gold electrode, and its electrocatalysis to phenylephrine [J]. Microchimica Acta, 2007, 159(1-2): 157-163.
    
    [25] Woychik R P, Klebig M L, Justice M J, Magnuson T R, Avrer E D. Functional genomics in the post-genome era[J].Mutation research,1998,400(1-2):3-14.
    [26]庄金秋,杨丽梅,贾杏林,中国生物工程杂志[J],2005,204-209.
    [27]Pandey A,Mann M.Proteomics to study genes and genomes[J].Nature,2000,405(6788):837-846.
    [28]朝龙,陈枢青,刘子贻,生物化学与分子生物学实验技术[M],浙江大学出版社,1999
    [29]Collings P J,Gibbs E J,Starr T E,Vafek O,Yee C,Pomerance L A,Pasternack R F.Resonance light scattering and its application in determining the size,shape,and aggregation number for supramolecular assemblies of chromophores[J].J Phys Chem B,1999,103(40):8474-8481.
    [30]Chen Y,Kim SC,Zhao YM.High-throughput identification of in-gel digested proteins by rapid,isocratic HPLC/MS/MS[J].Anal Chem,2005,77(24):8179-8184.
    [31]Lecchi P,Abramson F P,Size exclusion chromatography-chemical reaction interface mass spectrometry:"A perfect match"[J].Anal Chem,1999,71(14):2951-2955.
    [32]Premstaller A,Oberacher H,Walcher W,Timperio A M,Zolla L,Chervet J P,Cavusoglu N,Dorsselaer A V,Huber C G.High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies[J].Anal Chem,2001,73(11),2390-2396.
    [33]Ratge D,Wisser H,Urinary protein profiling by high-performance gel -permeation chromatography[J].J Chromatogr,1982,230(1):47-56.
    [34]Ahmed A,Ibrahim H,Pastore F,Lloyd D K.Relationship between retention and effective selector concentration in affinity capillary electrophoresis and high-performance liquid chromatography[J].Anal Chem,1996,68(18):3270-3273.
    [35]Cecil R,Weitzman P D J,Electroreduction of disulphide bonds of insulin+other proteins[J].Biochem,1964,93(1):1-11.
    [36]李宁,许红韬,蛋白质组研究的现状与展望。生物技术通讯,2000,11(4):281。
    [37]Yuan J L,Matsumoto K.A new tetradentate beta-diketonate-Europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoasaay [J].Anal Chem,1998,70(3):596-601.
    [38]徐宜为,免疫检测技术,科学出版社,北京,1991,1-45
    [39]野中勉,表面,1987,25,283.
    [40]董绍俊,车广礼,谢远武,化学修饰电极[M]。北京:科学出版社,1995.
    [41]Rechnitz R A.Biosensors into the 1990s[J].Electroanalysis,1991,3(2):73-76.
    [42]康信煌,杨琳,麦智彬,蔡沛祥,碳纳米管修饰玻碳电极方波伏安法对乙酰氨基酚的测定,中山大学学报(自然科学版)[J]。2007,46(4):55-58.
    [43]邹明珠,胡枢,分析化学,1992,20,588.
    [44]Volkov A,Tourillon G,Lacaze P C,Eubois J E.Electrochemical polymerization of aromatic amines IR,XPS nd PMT study of thin film formation on a Pt electrode[J].J Electroanal Chem,1980,115:279-291.
    [45]Bishop E,Hussein W,Electroanalytical study of tricyclic antidepressants[J].Analyst,1984,109(1):73-80.
    [46]Inzelt G,Pineri M,Schultze J W,Vorotyntsev M A.Electron and proton conducting polymers:recent developments and prospects[J].Electrochim Acta,2000,45(15-16):2403-2421.
    [47]董绍俊,车广礼,谢远武。化学修饰电极[M]。北京:科学出版社,2003:52-114,304,347。
    [48]Ajayan P M.Nanotubes from carbon[J].Chem Rev,1999,99(7):1787-1789.
    [49]Piletsky S A,Terpetschnig E,Andersson H S et al.Application of non-specific fluorescent dyes for monitoring enantio-selective ligand binding to molecularly imprinted polymers[J].Fresenius J.Anal.Chem.,1999,364:S 12-516.
    [50]Balasubramanian K,Burghard M.Chemically functionalized carbon nanotubes [J].Small,2005,1(2):180-192
    [51]Merkoci A.Carbon nanotubes in analytical sciences[J].Microchim Acta,2006,152(3-4):157-174.
    [52]Hirsch A.Functionalization of single-walled carbon nanotubes[J].Angew Chem Int Ed,2002,41(11):1853-1859.
    [53]Trojanowicz M.Analytical applications of carbon nanotubes:a review[J].Trends Anal Chem,2006,25(5):480-489.
    [54]汪尔康主编。生命分析化学[M]。北京:科学出版社,2006:274-279。
    [55]Weng X X,Bi H Y,Liu B H,Kong J L.On-chip chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in a microchannel[J].Electrophoresis,2006,27(15):3129-3135.
    [56]林丽,曹旭妮,张文,周宇艳,李金花,金利通。碳纳米管修饰电极用于 高校液相色谱对全血中巯基化合物的测定[J]。分析化学,2003,31(3):261-265。
    [57]Cassagneau T,Fendler J H.Preparation and layer-by-layer self-assembly of silver nanoparticles capped by graphite oxide nanosheets[J].J Phys Chem B,1999,103(11):1789-1793.
    [58]Tang Z,Liu S,Wang Z,Dong S,Wang E.Electrochemical synthesis of polyaniline nanoparticles[J].Electrochem Commun,2000,2(1):32-35.
    [59]Prabhu S V,Baldwin R P.Constant potential amperometric detection of carbohydrates at a copper-based chemically modified electrode[J].Anal Chem,1989,61(8):852-856.
    [60]Kost K M,Bartak D E,Kazee B,Kuwana Y.Electrodeposition of palladium,iridium,ruthenium,and platinum in poly(4-vinylpyridine) films for electrocatalysis[J].Anal Chem,1990,62(2):151-155.
    [61]Hao E,Sun Y P,Yang B,Zhang X,Liu J M,Shen J C.Synthesis and photophysical properties of ZnS colloidal particles doped with silver[J].J Colloid Interface Sci,204(2):369-373.
    [62]Stonehuerner J G,Zhao J,Odaly J P,Crumuliss A L,Henkens R W.Comparison of colloidal gold electrode fabrication methods - the preparation of a horseradish - peroxidase enzyme electrode[J].Biosensors & Bioelectronics,1992,7(6):421-428.
    [63]Lin X Q,Li Y X.A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode [J].Biosensors & Bioelectronics,2006,22:253-259.
    [64]Pauling L J.A Thoery of the structure and process of pormation antibodies[J].J Am Chem Soc,1940,62(3):2643-2657.
    [65]Dickey F H,The preparation of specific adsorbents[J].Proc.Natl.Acad.Sci.USA,1949,35(5)227-229.
    [66]Wulff G,Grobe Binsler R,Vesper W,Sarhan A.Enzyme analogue built polymer [J].J Macromol Chem,1977,178(10):2817-2825.
    [67]Vlatakis G,Andersson L I,Muller R,Mosbach K.Drug assay using antibody mimics made by molecular imprinting[J].Nature,1993,361(6413):645-647.
    [68]Fischer L,Muller R,Ekberg B,Mosbach K.Direct enantioseparation of adrenergic blockers using a chiral stationary phase prepared by molecular imprinting[J].J Am Chem Soc,1991,113(24):9358-9361.
    [69]Lemer R A,Benkovic S J,Schultz P G.At the crossroads of chemistry and immunology:catalytic antibodies[J].Science,1991,252:659667.
    [70]Muldoon M T,Stanker L H.Molecularly imprinted solid phase extraction of atrazine from beef liver extracts[J].Anal them,1997,69(5):803-808.
    [71]Kriz D,Ramstrom O,Svensson A,Mosbach K.Introducing biomimetic sensors based on molecularly imprinted polymers as recognition elements[J].Anal Chem,1995,67(13):2142-2144.
    [72]彭友元。分子印迹技术的原理与应用进展[J]。泉州师范学院学报(自然科学版)。2007,25(4):50-55。
    [73]Wulff G,Sarhan A,Zabrocki K.Enzyme analogue built polymers and their use for the resolution of racemates[J].Tetrahedron Lett,1973 44:4329-4332.
    [74]Zhou Y X,Yu B,Levon K.Potentiometric sensing of chiral amino acids[J].Chem Mater,2003,15(14):2774-2779.
    [75]Zhou Y X,Yu B,Shiu E,Levon K.Potentiometric sensing of chemical warfare agents:Surface imprinted polymer integrated with an indium tin oxide electrode [J].Anal them,2004,76(10):2689-2693.
    [76]Andersson L I,Mosbach K.Enantiomeric resolution on molecularly imprinted polymer sprepared with noncovalent and non-ionic interactions[J].JChromatogr.,1990,654:31-49.
    [77]Piletsky S A,Parhometz Y P,Lavryk N V,Panasyuk T L,Elskaya A V.Sensors for low-weight organic-molecules based on molecular imprinting thchnique[J].Sensors & Actuators B,1994,19(1-3):629-631.
    [78]Wulff G.In polymeric reagents and catalysts,W.T.Ford,Ed.,ACS Symposium Series 308,Americn Chemicl Society:Washington DC,1986:186-190 )
    [79]Ficher L,Muller R,Ekber B,Mosbach K.Direct enantioseparation of adrenergic blockers using a chiral stationary phase prepared by molecular imprinting[J].J Am Chem Soc,1991,113:9358-9360.
    [80]Nicholls L A.Thermo dynamic considerations for the design of and ligand recognition by molecularly imprinted polymers[J].Chem Lett,1995,11:1035-1036.
    [81]Whitcombe M J,Rodriguez M E,Villar P,Vulfson E N.A new method for the introduction of recognition site functionality into polymerspre-pared by molecular imprinting:synthesis and characterization of polymeric receptors for cholesterol[J].J Am Chem Soc,1995,117(27):7105-7111.
    [82] Ramstrom O, Ye L, Krook M, Mosbach K. Screening of a combinatorial steroid library using molecularly imprinted polymers [J]. Anal Commum, 1998, 35 (1): 9-11.
    
    [83] Dickey F H. Specific adsorption [J]. J Phys Chem, 1955, 59 (8): 695-707.
    [84] Kresge C, Leonowicz M, Roth W, Vartuli C, Beck J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992,359,710-712.
    [85] Maeda, M. Reprint from the symposium on recognition with imprinted polymers held during the ACS National Meeting in San Francisco on April 13-17, 1997, Washington ACS Symposium Series 703, American Chemical Society, 300-313
    [86] Chang H T, Yeung E S. Determination of catecholamines in single adrenal medullary cells by capillary electrophoresis and laserinduced native fluorescence [J]. Anal Chem, 1995, 67 (6): 1079-1083.
    [87] Fireman-Shoresh S, Avnir D, Marx S. General method for chiral imprinting of sol-gel thin films exhibiting enantioselectivity [J]. Chem Mater, 2003, 15 (19): 3607-3613.
    [88] Ling T R, Syua Y Z, Tasi Y C, Choub T C, Liu C C. Size-selective recognition of catecholamines by molecular imprinting on silica-alumina gel [J]. Biosensors & Bioelectronics, 2005, 21: 901-907.
    [89] Pang X S, Cheng G X, Lu S L, Tang E J. Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin [J]. Anal Bioanal Chem, 2006, 384: 225-230.
    [90] Shiomi T, Tsunoda T, Kawai A, Chiku H, Mizukami F, Sakaguchi K. Synthesis of protein-silica hybrid hollow particles through the combination of protein catalysts and sonochemical treatment [J]. Chem Commun, 2005, 42: 5325-5327
    [91] Perez J M, O'Loughin T, Simeone F J, Weissleder R, Josephson L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents [J]. J Am Chem Soc, 2002, 124: 2856-2857.
    [92] Louie A Y, Huber M M, Ahrens E T, Rothbacher U, Moats R, Jacobs R E, Fraser S E, Meade T. In vivo visualization of gene expression using magnetic resonance imaging [J]. J Nat Biotechnol, 2000, 18: 321-325.
    [93] Deng Y H, Deng C H, Yang D, Wang C C, Fu S K, Zhang X M. Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes [J]. Chem Commun, 2005, 44: 5548-5550.
    [94] Deng Y H, Wang C C, Shen X Z, Yang W L, An L, Gao H, Fu S K, Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells [J]. Chem Eur J, 2005,11:6006-6013.
    [95] Mayers B T, Gates B D, Sun Y G, Yin Y D, Lu Y, Xia Y. Physical chemistry of interfaces and nanomaterials. Conference on physical chemistry of interfaces and nanomaterials, Washington, 2002, 4807: 123-130.
    [96] Lu S L, Cheng G X, Pang X S. Preparation of molecularly imprinted Fe3O4/P(St-DVB) composite beads with magnetic susceptibility and their characteristics of molecular recognition for amino acid [J]. J Appl Poly Sci, 2003, 89: 3790-3796.
    [97] Lu S L, Cheng G X, Pang X S. Protein-imprinted soft-wet gel composite microspheres with magnetic susceptibility, II Characteristics [J]. J Applied Polymer Science, 2006, 99: 2401-2407.
    [98] Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants [J]. Langmuir, 2001,17: 2900-2906.
    [99] Wu W, DeCoster M A, Daniel B M, Chen J F, Yu M H, Cruntu D, O'Connor C J, Zhou W L. One-step synthesis of magnetic hollow silica and their application for nanomedicine [J]. J Appl Phys, 2006, 99: 08H104.
    [100] Levy L, Sahoo Y, Kim K S, Bergey E L, Prasad P N. Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications [J]. Chem Mater, 2002,14: 3715-3721.
    
    [101] Margel S, Beitler U. Polyacrolein-type Microsphere [ P]. USP, 1998, 783, 336.
    [102] Xu X Q, Deng C H, Gao M X, Yu W J, Yang P Y, Zhang X M. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and irect determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry [J]. Adv Mater, 2006,18: 3289-3293.
    [103] Ozcan A A, Say R, Denizli A, Ersoz A. L-histidine imprinted synthetic receptor for biochromatography applications [J]. Anal Chem, 2006, 78 (20): 7253-7258.
    [104] Yang H H, Zhang S Q, Tan F, Zhang Z X, Wang X R. Surface molecularly imprinted nanowires for biorecognition [J]. J Am Chem Soc, 2005, 127 (5): 1378-1379.
    [105] Yang H H, Zhang S Q, Yang W, Chen X L, Zhang Z X, Xu J G, Wang X R. Molecularly imprinted sol-gel nanotubes membrane for biochemical separations [J] J Am Chem Soc, 2004,126 (13): 4054-4055.
    [106] Wang H Y, Kobayashi T, Fujii N. Molecular imprint membrane sprepared by the phase in version precipitation technique [J]. Langmuir, 1996,12: 4850-4856.
    [107] Jainamma K, Shea K J. Imprinted polymer mem-branes for the selective transport of targeted neutral molecules [J]. J Am Chem Soc, 1996, 118: 8154-8155.
    [108] Schmidt H, Haupt K. Molecularly imprinted polymer films with binding properties enhanced by the reaction - induced phaseseparation of a sacrificial polymeric porogen [J]. Chem Mater, 2005,17: 1007-1016.
    [109] Matsui J, Goji S, Murashima T, etal. Molecular imprinting under molecular crowding conditions: an aid to the synthesis of a high capacity polymeric sorbent for triazineherbicides [J]. Anal Chem, 2007, 79: 1749-1757.
    [110] Wang S, Xu Z X, Fang G Z, Duan Z J, Zhang Y, Chen S. Synthesis and characterization of a molecularly imprinted silica gel sorbent for the on-line determination of trace SudanIinchilli powder through high-performance liquid chromatography [J]. J Agric Food Chem, 2007, 55 (10): 3869-3876.
    [111] Turiel E, Tadeo J L, Martin-Esteban A. Molecularly imprinted polymeric fibers for solid-phase micro extraction [J]. Anal Chem, 2007, 79: 3099-3104.
    [112] Sellergren B. Imprinted dispersion polymers: a new class of easily accessible affinity stationary phases [J]. J Chromatogr, 1994, 673: 133-141.
    [113] Matsui J, Okada M, Tsuruoka M, Takeuchi T. Solid-phase extraction of atriazine herbicide using a molecularly imprinted synthetic receptor [J]. Anal Commun, 1997, 34 (3): 85-87.
    [114] Greene N T, Shimizu K D, Colorimetric molecularly imprinted polymer sensor array using dye displacement [J]. J Am Chem Soc, 2005,127: 5695-5700.
    [115] Guardia L, Badia R, Diaz-GarciaA M E. Molecularly imprinted sol-gels for nafcillin determination in milk-based products [J]. J Agric Food Chem, 2007, 55: 566-570.
    [116] Andersson L I, Muller R, Vlatakis G, Mosbach K. Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine [J]. ProcNatl Acad Sci USA,1995, 92 (11): 4788-4792.
    [1] Ohnuki Y, Matsuda H, Ohsaka T, Oyama N. Permselectivity of films prepared by electrochemical oxidation of phenol and amino-aromatic compounds [J]. Electroanal Chem, 1983, 158 (1): 55-67.
    
    [2] Volkov A, Tourillon G, Lacaze P C, Dubois J E. Electrochemical polymeriztion of aromatic-amines IR, XPS and PMT study of thin-film formation on a Pt electrode [J]. J Electroanal Chem, 1980, 115 (2): 279-291.
    [3] Lane R F, Blaha C D. Detection of catecholamines in brain-tissue -surface-modified electrodes enabling invivo investigations of dopamine function [J]. Langmuir, 1990, 6 (1): 56-65.
    [4] Ewing A G, Dayton M A, Wightman R M. Pulse voltammetry with microvoltammetric electrodes [J]. Anal Chem, 1981, 53 (12): 1842-1847.
    [5] Mattson J S, Jones T T, Infrared spectrophotometric observations of adsorption of fibrinogen from solution at optically transparent carbon-film electrode surface [J]. Anal Chem, 1976,48 (14): 2164-2167.
    [6] Huang F, Qu S, Zhang S, Liu B H, Kong J L. Sensitive determination of fluphenazine at dodecanethiol self-assembled monolayer modified gold electrode and its electrocatalysis to phenylephrine [J]. Microchim Acta, 2007, 159 (1-2): 157-163.
    [7] Peng T Z, Yang Z P, Li H P. Adsorptive preconcentration for voltammetric measurements of trace levels of chlorprothixene [J]. Analyst, 1991, 116 (7): 727-730.
    [8] Beyene N W, Staden J F V. Sequential injection spectrophotometric determination of phenylephrine hydrochloride in pharmaceutical preparations [J]. Talanta, 2004, 63 (3): 599-604.
    [9] Misiuk W. Extractive spectrophotometric determination of chlorprothixene hydrochloride [J]. Anal Lett, 2000,134 (1-2): 23-25.
    [10] Nepote A J, Ozden A C. Simultaneous spectrofluormetric determination of oxatomide and phenylephrine in the presence of a large excess of paracetamol [J]. Anal Chim Acta, 2001, 439 (1): 87-94.
    
    [11] Belal F, Ibrahim F, Hassan S M, Aly F A. Spectrofluormetric determination of some pharmaceutically important thioxanthane derivatives [J]. Anal Chim Acta, 1991,255(1): 103-106.
    [12]Gumbhir K,Mason W D.High-performance liquid chromatographic determination of phenylephrine and its conjugates in human plasma using solid-phase extraction and electrochemical detection[J].J Pharm Biomed Anal,1996,14(5):623-630.
    [13]Sokoliess T,Menyes U,Roth U,Jira T.Separation of cis- and trans-isomers of thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarene-bonded high-performance liquid chromatography stationary phases [J].J Chromatogr A,2002,948(1-2):309-319.
    [14]Gomez M R,Olsina R A,Martinez L D,Silva M F.Simultaneous determination of dextromethorphan,diphenhydramine and phenylephrine in expectorant and decongestant syrups by capillary electrophoresis[J].J Pharm Biomed Anal,2002,30(3):791-799.
    [15]Sokoliess T,Gronau M,Menyes U,Roth U,Jira T.Separation of(Z)- and (E)-isomers of thioxanthene and dibenz[b,e]oxepin derivatives with calixarenes and resorcinarenes as additives in nonaqueous capillary electrophoresis[J].Electrophoresis,2003,24(10):1648-1657.
    [16]Shoukry A F,El-Sheikh R,Issa Y M,Zareh M.Potentiometric sensor for phenylephrine based on phenylephrine-tetraphenylborate lipophilic salt[J].Microchim Acta,1989,99(1-2):101-108.
    [17]Hopkala H,Drozd J,Zareba J S.Chlorprothixene ion- selective membrane electrodes developments and application in pharmaceutical analysis[J].Pharmazie,1997,52(4):307-309.
    [18]Perlado J C,Zapardiel A,Bermejo E,Perez J A,Hernandez L.Determination of phenylephrine with a modified carbon paste electrode[J].Anal Chim Acta,1995,305(1-3):83-90.
    [19]Zhu Y,Zhang Z L,Zhao W,Pang D W.Voltammetric behavior and determination of phenylephrine at a glassy carbon electrode modified with multi-wall carbon nanotubes[J].Sens Actuators B,2006,119(1):308-314.
    [20]Xu F,Gao M N,Wang L,Shi G Y,Zhang W,Jin L T,Jin J.Sensitive determination of dopamine on poly(aminobenzoic acid) modified electrode and the application toward an experimental Parkinsonian animal model[J].Talanta,2001,55(2):329-336.
    [21]夏玉宇。化学实验室手册[M]。北京:化学工业出版社,2004:121。
    [22]Zhang Y Z,Jin G Y,Wang Y L,Yang Z S.Determination of dopamine in the presence of ascorbic acid using poly(acridine red) modified glassy carbon electrode[J].Sensors,2003,3(10):443-450.
    [23]Hawley M D,Tatawawadi S V,Piekarsk S,Adams R N.Electrochemical studies of oxidation pathways of catecholamines[J].J Am them Soc,1967,89(2):447-&.
    [24]Laviron E.General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J].J Electroanal Chem,1979,101(1):19-28.
    [25]Bard A J,Faulkner L R.Electrochemical Methods:Fundamentals and Applications[M].New York:John Wiley& Sons,1980:200.
    [26]Brett C M A,Thiemann C.Conducting polymers from aminobenzoic acids and aminobenzenesulphonic acids:influence of pH on electrochemical behavior[J].J Electroanal Chem,2002,(538-539):215-222.
    [27]Jin G Y,Zhang Y Z,Cheng W X.Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid[J].Sens Actuators B,2006,107(2):528-534.
    [28]Zeng B Z,Yang Y X,Zhao F Q.Voltammetric determination of epinephrine with a 3-mercaptopropionic acid self-assembled monolayer modified gold electrode [Jl.Electroanalvsis,2003,15(12):1054-1059.
    [29]武汉大学主编。分析化学[M]。北京:高等教育出版社,2000:322。
    [30]中国药典委员会。中国药典[M]。北京:化学工业出版社,2005:469,775。
    [1] Holroyd S, Seward R L. Psychotropic drugs in acute & therapeutics [J]. Clin Pharmacol Ther, 1999, 66(3): 323-325.
    
    [2] Basavaiah K, Krishnamurthy G. Extractive spectrophotometric determination of some phenothiazine derivatives in pharmaceutical preparations [J]. Talanta, 1998, 46(4): 665-670.
    [3] Wang R Y, Lu X N, Xin H J, Wu M J. Separation of phenothiazines in aqueous and non-aqueous capillary electrophoresis [J]. Chromatographa, 2000, 51(1-2): 29-36.
    [4] Basavaiah K, Krishnamurthy G. Titrimetric micro determination of some phenothiazine neuroleptics with potassium hexacyanoferrate(III) [J]. Talanta, 1998, 47(1): 59-66.
    [5] Perezruiz T, Martinezlozano C, Tomas V, Decardona C S. Flow-injection fluorometric-determination of trimeprazine and trifluoperazine in pharmaceutical preparations [J]. Talanta, 1993, 40 (9): 1361-1365.
    [6] Abdel-Moety E M, Al-Rashood K A, Rauf A, Khattab N A. Photo stability -indicating HPLC method for determination of trifluoperazine in bulk form and pharmaceutical formulations [J]. J Pharm Biomed Anal, 1996, 14: 1639.
    [7] Peng T Z, Yang Z P, Lu R S. Stripping voltammetric Determination of perphenazine and some antipsychotic drugs at carbon paste electrodes [J]. Acta Pharmaceutica Sinica (Ch), 1990, 25: 277-283.
    [8] Jarbawi T B, Heineman W R. Proconcentration of tranquilizers by adsorpyion / extraction at a wax-impregeated graphite electrodes [J]. Anal Chim Acta, 1986, 186:11-19.
    [9] Chalin M F, Buche C. Enzyme technology [M], Cambridge University Press, Cambridge, UK, 1990.
    [10] Armstrong F A, Heering H A, Hirst J. Reactions of complex metalloproteins studied by protein-film voltammetry [J]. Chem Soc Rev, 1997, 26 (3): 169-179.
    
    [11] Rusling J F. Controlling electrochemical catalysis with surfactant microstructures [J]. Acc Chem Res, 1991, 24 (3): 75-81.
    
    [12] Rusling J F, Nassar A E F. Enhanced electron-transfer for myoglobin in surfactant films on electrodes [J]. J Am Chem Soc, 1993,115 (25): 11891-11897.
    [13] Yang J, Hu N F. Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes [J]. Bioelectrochem Bioenerg, 1999, 48 (1): 117-127.
    [14] Britto P J, Santhanam K S V, Ajayan P M. Carbon nanotube electrode for oxidation of dopamine [J]. Bioelectrochem Bioenerg, 1996,41 (1): 121-125.
    [15] Zhang H M, Wang X B, Wan L J, Liu Y Q, Bai C L. Electrochemical behavior of multi-wall carbon nanotubes and electrocatalysis of toluene-filled nanotube film on gold electrode [J]. Electrochim Acta, 2004,49 (5): 715-719.
    [16] Liu C Y, Bard A J, Wudl F. Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors [J]. Solid State Lett, 1999, 2 (11): 577-578.
    [17] Davis J J, Coles R J, Hill H A 0. Protein electrochemistry at carbon nanotube electrodes [J]. J Electroanal Chem, 1997, 440 (1-2): 279-282.
    [18] Britto P J, Santhanam K S V, Alonso V, Rubio A, Ajayan P M. Improved charge transfer at carbon nanotube electrodes [J]. Adv Mater, 1999, 11 (2): 154-157.
    [19] Wu F H, Zhao G C, Wei X W. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode [J]. Electrochem Commun, 2002, 4 (9): 690-694.
    [20] Zhao Y D, Zhang W D, Chen H, Luo Q M. Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection [J]. Sens Actuators B: Chem, 2003, 92 (3): 279-285.
    [21] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C. Individual single-wall carbon nanotubes as quantum wires [J]. Nature, 1997, 386 (6624): 474-477.
    [22] Ohnuki Y, Ohsaka T, Matsuda H, Oyama N. Perm selectivity of films prepared by electrochemical oxidation of phenol and aminoaromatic compounds [J]. J Electroanal Chem, 1983, 158: 55-67.
    [23] Volkov A, Tourillon G, Lacaze P C, Dubois J E. Electrochemical polymerization of aromatic amines. IR, XPS and PMT study of thin film formation on a Pt electrode [J]. J Electroanal Chem, 1980, 115: 279-291.
    [24] Lane R F, Blaha C D. Etection of catecholamines inbrain - tissue - surface -modified electrodes enabling invivo investigations of dopamine function [J]. Langmuir, 1990, 6(1): 56-65.
    [25] Ewing A G, Dayton M A, Wightman R M. Pulse voltammetry with microvoltammetric electrodes [J]. Anal Chem, 1981, 53 (12): 1842-1847.
    [26] Mattson J S, Jones T T. Infrared spectrophotometric observations of the adsorption of fibrinogen from solution at optically transparent carbon film electrode surfaces [J]. Anal Chem, 1976, 48 (14): 2164-2166.
    [27] Jin G Y, Zhang Y Z, Cheng W X. Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid [J]. Sens Actuators B: Chem, 2005,107 (2): 528-534.
    [28] Xu F, Gao M N, Wang L, Shi G Y, Zhang W, Jin L T, Jin J. Sensitive determination of dopamine on poly(aminobenzoic acid) modified electrode and the application toward an experimental Parkinsonian animal model [J]. Talanta, 2001, 55 (2): 329-336.
    [29] Wang G, Xu J J, Chen H Y. Interfacing cytochrome c to electrodes with a DNA - carbon nanotube composite film [J]. Electrochem Commun, 2002, 4 (6): 506-509.
    [30] Zhao G C, Zhang L, Wei X W, Yang Z S. Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis [J]. Electrochem Commun, 2003, 5 (9): 825-829.
    [31] The Pharmacopoeia Committee of P.R.China. Pharmacopoeia of People's Republic of China, (Part II), [M]. Beijing: Chemical Industry Press, 2005, 461.
    [1] Lima J L F C, Prior J A V, Reis B F, Santos J L M, Zagatto E A G. Automated spectrophotometric determination of clomipramine on a multicommutated flow system [J]. Anal Chim Acta, 2002,467 (1-2): 75-81.
    
    [2] Marques K L, Santos J L M, Lima J L F C. Multicommutated flow system for the chemiluminometric determination of clomipramine in pharmaceutical preparations [J]. Anal Chim Acta, 2004, 518 (1-2): 31-36.
    [3] Nevado J J B, Llerena M J V, Salcedo A M C, Nuevo E A. Assay validation for three antidepressants in pharmaceutical formulations: Practical approach using capillary gas chromatography [J]. J Pharmaceut Biomed, 2005, 38 (1): 52-59.
    [4] Kou H S, Chen C C, Huang Y H, Ko W K, Wu H L, Wu S M. Method for simultaneous determination of eight cyclic antidepressants by cyclodextrin-modified capillary zone [J]. Anal Chim Acta, 2004, 525 (1): 23-30.
    [5] Mohamed F A, Mohamed H A, Hussein S A, Ahmed S A A. Validated spectrofluorimetric method for determination of some psychoactive drugs [J]. J Pharmaceut Biomed, 2005, 39 (1-2): 139-146.
    [6] Bioship E, Hussein W. Electroanalytical study of tricyclic antidepressants [J]. Analyst, 1984,109: 73-80.
    [7] Ivandini T A, Sarada B V, Terashima C, Rao T N, Tryk D A, Ishiguro H, Kubota Y, Fujishima A. Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes [J]. J Electroanal Chem,2002, 521 (1-2): 117-126.
    [8] Ortuno J A, Hernandez J, Pedreno C S. Ion-selective electrode for the determination of some multidrug resistance reversers [J]. Sens Actuators B, 2006, 119(1): 282-287.
    [9] El-Deab M S, Ohsaka T. Electrocatalysis by nanoparticles: oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes [J]. J Electroanal Chem, 2003,553:107-115.
    [10] Morris C S, Anderson M L, Stroud R M, Merzbacher C I, Rolison D R. Silica sol as a nanoglue: flexible synthesis of composite aerogels [J]. Science, 1999, 284: 622-624.
    
    [11] Tong Y, Rice A, Wieckowski A, Oldfield E. A detailed NMR-based model for CO on Pt catalysts in an electrochemical environment: shifts, relaxation, back-bonding, and the fermi-level local density of states [J]. J Am Chem Soc, 2000,122:1123-1129.
    [12] Wang S, Yin Y, Lin X. Cooperative effect of nano-Pt and Fe(III) in the eletrocatalytic oxidation of nitrite [J]. Electrochem Commun, 2004, 6: 259-262.
    [13] Lin X Q, Li Y X. Sensitive determination of estrogens with a Pt nano-clusters /multi-walled carbon nanotubes modified glassy carbon electrode [J]. Biosens and Bioelectron, 2006, 22: 253-259.
    [14] Ohnuki Y, Ohsaka T, Matsuda H, Oyama N. Permselectivity of films prepared by electrochemical oxidation of phenol and amino - aromatic compounds [J]. J Electroanal Chem, 1983,158 (1-2): 55-67.
    [15] Volkov A, Tourillon G, Lacaze P C, Dubois J E. Electrochemical polymerization of aromatic amines IR, XPS and PMT study of thin film formation on a Pt electrode [J]. J Electroanal Chem, 1980,115 : 279-291.
    [16] Lane R F, Blaha C D. Detection of catecholamines in brain - tissue - surface - modified electrodes enabling invivo investigations of dopamine function [J]. Langmuir, 1990, 6(1): 56-65.
    [17] Ewing A G, Dayton M A, Wightman R M. Pulse voltammetry with micromoltammetric electrodes [J]. Anal Chem, 1981, 53: 1842-1847.
    [18] Mattson J S, Jones T T. Infrared spectrophotometric observations of the adsorption of fibrinogen from solution at optically transparent carbon film electrode surfaces [J]. Anal Chem, 1976, 48: 2164-2166.
    [19] Wang S, Lin X. Electrodeposition of Pt-Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor [J]. Electrochim Acta, 2004, 50: 2887-2891.
    [20] Xian Y, Zhang W, Xue J, Ying X, Jin L, Jin J. Measurement of nitric oxide released in the rat heart with an amperometric microsensor [J]. Analyst, 2000, 125:1435-1439.
    [21] Schmid G. Large clusters and colloids: Metals in the embryonic state [J]. Chem Rev, 1992, 92: 1709-1727.
    [22] Wang G, Xu J J, Chen H Y. Interfacing cytochrome c to electrodes with a DNA - carbon nanotube composite film [J]. Electrochem Commun, 2002, 4 (6): 506-509.
    [23] Toledo R A De, Santos M C, Honorio K M, Silva A B F Da, Gavalheiro E G T, Mazo L H. Use of graphite polyurethane composite electrode for imipramine oxidationmechanism proposal and electroanalytical determination [J]. Anal Lett, 2005, 39 (3): 507-520.
    [24] Khodari M, Mansour H, El-Din H S. Precontration and determination of the tricyclic antidepressant drug-imipramine at modified carbon paste electrode [J]. Anal Lett, 1997, 30 (10): 1909-1921.
    [25] Ferancova A, Korgova E, Miko R, Labuda J. Determination of tricyclic antidepressants using a carbon paste electrode modified with β-cyclodextrin [J]. J Electroanal Chem, 2000, 492 (1): 74-77.
    [26] Chinese Pharmacopoeia Commission, Chinese Pharmacopoeia, 1st edn. Chemical Industry Press, Beijing, 2005, 576.
    [1] Wulff G, Heide B, Helfmeier G Enzyme-analogue built polymers, 24: on the distance accuracy of functional groups in polymers and silicas introduced by a template approach [J]. Reactive Polymers, Ion Exchangers, Sorbents, 1986, 6: 299-310.
    
    [2] Anon. Molecular imprints make a mark [J], Science, 1994, 263 (5151): 1221-1222.
    [3] Hishiya T, Shibata M, Kakazu M, Asanuma H, Komiyama M. Molecularly imprinted cyclodextrins as selective receptors for steroids [J], Macromolecules, 1999, 32 (7): 2265-2269.
    [4] Kempe M, Glad M, Mosbach K, An approach towards surface imprinting using the enzyme ribonuclease A biorecognition and affinity technology [J]. J Molecular Recognition, 1995, 8 (1-2): 35-38.
    [5] Wulff G Enzyme-like catalysis by molecularly imprinted polymers [J]. Chem Rev, 2002,102:1-27.
    [6] Vlatakis G, Andersson L I, Muller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting [J]. Nature, 1993, 361: 645-647.
    [7] Zimmerman S C, Lemcoff N G Synthetic hosts via molecular imprinting - are universal synthetic antibodies realistically possible? [J]. Chem Commun, 2004, 7: 5-14.
    [8] Batra D, Shea K J. Combinatorial methods in molecular imprinting [J]. Curr Opin Chem Biol, 2003, 7: 434-442.
    [9] Ling T R, Syu Y Z, Tasi Y C, Chou T C, Liu C C. Size-selective recognition of catecholamines by molecular imprinting on silica-alumina gel [J]. Biosens Bioelectron, 2005, 21: 901-907.
    [10] Zimmerman S C, Wendland M S, Rakow N A, Zharov I, Suslick K S. Synthetic hosts by monomolecular imprinting inside dendrimers [J]. Nature, 2002, 418: 399-403.
    
    [11] Ye L, Ramstrom O, Mosbach K. Molecularly imprinted polymeric adsorbents for byproduct removal [J]. Anal Chem, 1998, 70 (14): 2789-2795.
    
    [12] Booker K, Bowyer M C, Holdsworth C I, McCluskey. Efficient preparation and improved sensitivity of molecularly imprinted polymers using room temperature ionic liquids [J]. Chem Commun, 2006,16: 1730-1732.
    [13] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors [J]. Chem Rev, 2000, 100: 2495-2540.
    [14] Piletsky S A, Matuschewski H, Schedler U, Wilpert A, Piletska E V, Thiele T A, Ulbricht M. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water [J]. Macromolecules, 2000, 33: 3092-3098.
    [15] Perez N, Whitcombe M J, Vulfson E N. Molecularly imprinted nanoparticles prepared by core-shell emulsion polymerization [J]. J Appl Polym Sci, 2000, 77: 1851-1859.
    [16] Shiomi T, Matsui M, Mizukami F, Sakaguchi K. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes [J]. Biomaterials, 2005, 26:5564-5571.
    [17] Katz A, Davis M E. Molecular imprinting of bulk, microporous silica [J]. Nature, 2000,403:286-289.
    [18] Sasaki D Y, Alam T M. Solid-state P-31 NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels [J]. Chem Mater, 2000, 12: 1400-1407.
    [19] Zimmerman S C, Wendland M S, Rakow N A, Zharov I, Suslick K S. Synthetic hosts by monomolecular imprinting inside dendrimers [J]. Nature, 2002, 399-403.
    [20] Matsui J, Akamatsu K, Nishiguchi S, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N. Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material [J]. Anal Chem, 2004, 76: 1310-1315.
    [21] Li Z, Ding J F, Day M, Tao Y. Molecularly imprinted polymeric nanospheres by diblock copolymer self-assembly [J]. Macromolecules, 2006, 39: 2629-2636.
    [22] Ko D Y, Lee H J, Jeong B. Surface-imprinted, thermosensitive, core-shell nanosphere for molecular recognition [J]. Macromol rapid commun, 2006, 27: 1367-1372.
    [23] Fireman-Shoresh S, Avnir D, Marx S. General method for chiral imprinting of sol-gel thin films exhibiting enantioselectivity [J]. Chem Mater, 2003, 15: 3607-3613.
    [24] Perez J M, O'Loughin T, Simeone F J, Weissleder R, Josephson L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nano switch allowing screening of DNA-cleaving agents [J]. J Am Chem Soc, 2002, 124: 2856-2857.
    [25] Louie A Y, Huber M M, Ahrens E T, Rothbacher U, Moats R, Jacobs R E, Fraser S E, Meade T. In vivo visualization of gene expression using magnetic resonance imaging [J]. J Nat Biotechnol, 2000, 18: 321-325.
    [26] Deng Y H, Deng C H, Yang D, Wang C C, Fu S K, Zhang X M. Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes [J]. Chem Commun, 2005, 44: 5548-5550.
    [27] Deng Y H, Wang C C, Shen X Z, Yang W L, An L, Gao H, Fu S K. Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells [J]. Chem Eur J, 2005, 11:6006-6013.
    [28] Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants [J]. Langmuir, 2001, 17: 2900-2906.
    [29] Wu W, DeCoster M A, Daniel B M, Chen J F, Yu M H, Cruntu D, O'Connor C J, Zhou W L. One-step synthesis of magnetic hollow silica and their application for nanomedicine [J]. J Appl Phys, 2006, 99: 08H104.
    [30] Levy L, Sahoo Y, Kim K S, Bergey E J, Prasad P N. Nanochemistry: Synthesis and characterization of multifunctional nanoclinics for biological applications [J]. Chem Mater, 2002, 14: 3715-3721.
    [31] Davies M J, Smethurst D E, Howard K M, Todd M, Higgins L M. Improved manufacture and application of an agarose magnetizable solid-phase support [J]. J Appl Biochem Biotechnol, 1997, 68: 95-112.
    [32] Jeong U, Teng X W, Yang H, Xia Y H. Superparamagnetic colloids: Controlled synthesis and niche applications [J]. Adv Mater, 2007, 19: 33-60.
    [33] Margel S, Beitler U. Polyacrolein-type Microsphere [ P]. USP, 1998, 783, 336.
    [34] Xu X Q, Deng C H, Gao M X, Yu W J, Yang P Y, Zhang X M. Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry [J]. Adv Mater, 2006,18: 3289-3293.
    [35] Deng H, Li X L, Peng Q, Wang X, Chen J P, Li Y D. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew Chem Int Ed, 2005, 44 (18): 2782-2785.
    [36] Sauerbrey G. Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung [J]. Z Phys, 1959, 155 (2): 206-222.
    [37] Zhang Y Z, Cheng W X, Li S P, Li N. Direct electron transfer of hemoglobin on DDAB/SWNTs film modified Au electrode and its interaction with tAxol [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2006, 286 (1-3): 33-38.
    [38] Wang C Y, Zhu G M, Chen Z Y, Lin Z G. The preparation of magnetite Fe3O4 and its morphology control by a novel arc-electrodeposition method [J]. Mater Res Bull, 2002, 37 (15): 2525-2529.
    [39] Carter S R, Rimmer S. Surface molecularly imprinted polymer core-shell particles [J]. Adv Funct Mater, 2004, 14 (6): 553-561.
    [40] Makote R, Collinson M M. Dopamine recognition in templated silicate films [J]. Chem Commun, 1998, 3: 425-426.
    [41] Li Z, Day M, Ding J F, Faid K. Synthesis and characterization of functional methacrylate copolymers and their application in molecular imprinting [J]. Macromolecules, 2005, 38 (7): 2620-2625.
    [1]张礼和,王梅祥。化学生物学进展[M]。北京:化学工业出版社,2005:45-57。
    [2]夏其昌,曾嵘。蛋白质化学与蛋白质组学[M]。北京:科学出版社,2005:57,233,532-540。
    [3]Krebs E G.Historical perpectives on protein phosphorylation and a classification system for protein kinases[J].Philos Trans R Soc Lond B Biol Sci,1983,302:3-11.
    [4]Mclachlin D T,Chait B T.Analysis of phosphorylated proteins and peptides by mass spectrometry[J].Curr Opin Chem Biol,2001,5:591-602.
    [5]Cao P,Stults J T.Mapping the phosphorylation sites of proteins using on-line immobilized metal affinity chromatography/capillary electrophoresis/electrospray ionization multiple stage tandem mass spectrometry[J].Rapid Commun Mass Spectrom,2000,14:1600-1606.
    [6]Yip T T,Hutchens.Mapping and sequence-specific identification of phosphopetides in unfractionated protein digest mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J].FEBS Lett,1992,308:149-153.
    [7]Apweiler R,Hermjakob H,Sharon N.On the frequency of protein glycosylation,as deduced from analysis of the SWISS-PROT database[J].Buicgun Biophys Acta,1999,1473:4-8.
    [8]Wells L,Vosseller K,Hart G W.Glycosylation of nucleocytoplasmic proteins:signal transduction and O-GlaNAc[J].Science,2001,291(5512):2376-2378.
    [9]Hirabayashi J,Kasai K.Separation technologies for glycomics[J].J Chromatogr B Analyt Technol Biomed Life Sci,2002,771(1-2):67-87.
    [10]Anumula K R,Du P.Characterization of carbohydrates using highly fluorescent 2-aminobenzolc acid tag following gel electrophoresis of glycoproteins[J].Anal Biochem,1999,275:236-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700