用户名: 密码: 验证码:
功能氧化物纳米材料的液相合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物纳米材料在催化、光电、气敏、磁性以及锂电池等领域有着广泛的应用前景。发展新的合成方法,探索其生长机制,从而获得具有特定尺寸、形貌、维度、单分散性等的纳米材料,对于深入系统地研究纳米材料与性能的关系,并进一步实现纳米材料的组装,构建功能纳米结构体系,最终使纳米材料进入应用领域具有重要意义。本论文就功能氧化物纳米材料的液相调控合成与其相关性质进行了研究,对纳米材料的形成机制、材料尺寸形貌等与性能之间的关系进行了有益探索。
     发展了水热合成钒氧化物单晶纳米带的新方法,在对不同价态钒氧化物晶体结构差异进行了系统分析后,通过设计合理的化学反应,实现了对五氧化二钒、二氧化钒单晶纳米带的控制合成,验证了层状结构与纳米带形成的相关性。基于五氧化二钒晶体本身的层状结构特点和纳米带的特殊性,设计制备了具有较高选择性和稳定性的气敏传感器。另外,对于VO2(B)纳米带的电磁学性质的研究为其在纳米器件上的潜在应用提供了实验依据。
     设计了水-油界面溶剂热反应体系,合成了稀土离子掺杂的荧光LaVO4单分散胶体纳米晶,并进一步将此方法发展为稀土钒酸盐胶体纳米晶的通用合成方法。基于单分散LaVO4纳米晶良好的成膜性以及下转换荧光性质,将其应用于染料敏化太阳能电池中,明显地提高电池了的性能。以具有特定形貌和晶面的LaVO4纳米晶为载体,单分散Au溶胶为活性Au,设计制备了新型催化剂。建立了表面活性剂辅助的水热及溶剂热合成方法,通过选用合适的表面活性剂及控制单体浓度,获得了一系列不同晶形及形貌的BiVO4微/纳米晶,研究了晶体结构与生长行为的相关性。通过对水热体系pH值的调控成功制备了具有特殊形貌、取向的KNbOx纳米结构,并研究了KNbO3合成中的溶剂效应。
     采用水热法制备了多种形貌确定的Fe2O3纳米晶,对其催化性能的研究结果显示催化活性不仅与催化剂粒子的大小有关,而且与其晶面有密切联系。采用溶剂热法合成了单分散TiO2纳米晶,并进一步采用微乳体系将具有疏水表面的TiO2纳米晶组装成具有亲水表面的胶体球。此胶体球高温退火可形成介孔材料,具有优异的催化性能。此方法为单分散纳米晶的进一步应用打下了基础。
Metal oxide nanomaterials have exhibited promising applications in catalysis, sensing, optics, magnetism and batteries. Preparation of nanomaterials with well-defined size, morphology, dimensionality and diversity through novel synthesis approaches and investigations of their formation mechanism should be a key precondition to reveal the relations between the structures and properties, assemble the nanocrystals into superstructures and pave the way to the real applications. In this dissertation, valuable explorations have been carried out on new solution-based manipulated synthetic strategies for functional metal oxide nanostructures along with their formation mechanisms and novel properties, emphasizing on the relationship between crystal symmetry and morphology manipulation as well as the connection between properties and size/morphology of nanomaterials.
     A rational low-temperature hydrothermal synthetic way has been developed to selectively prepare vanadium oxide nanobelts with different valent status. The formation mechanism is investigated in details and believed to be closely related to their layered structure. A highly selective and stable ethanol sensor was designed based on the intrinsical layered structure of vanadium pentoxides and the advantages of nanobelts. The investigation on the electrical transport and magnetic properties of vanadium dioxide nanobelts shows their potential applications in nanodevices.
     A synthesis and self-assembly approach assisted with oleic acid molecules is developed to fabricate luminescent Ln3+ doped LaVO4 nanocrystals (NCs) and rare earth vanadates. A transparent luminescent film of uniform nanocrystals, which could absorb UV light and down-convert it to visible light, prepared by coating approach could greatly improve the cell performance when applied in dye-sensitized solar cells. Catalytically active gold catalysts have been designed via monodispersed gold colloids on LaVO4 nanocrystals with controlled size as more well-defined nanocatalysts. The use of rare earth vanadates as supports for active gold catalysts opens up new routes in the research work for high performance catalysts.
     Bismuth vanadate micro/nanocrystals with different morphologies were synthesized by surfactant assisted hydrothermal/solvothermal methods. The studies on the crystal growth reveal the relationship between the crystal structures and the morphology. Low dimensional potassium niobate nanostructures with different compositions were achieved by simply controlling pH value of the hydrothermal system. It was found that the solvent plays an important role in the phase control of the KNbO3 nanocrystals.
     Study on the catalysis properties of iron oxide nanocrystals with different size and morphology showed that the catalytical activities were influenced not only by the size and BET of the materials, but also by the crystal planes due to the facts that the reactivity, coming from different active sites on certain reactions, varies with crystal planes. Redispersible TiO2 nanocrystals with hydrophobic surface were prepared by controlled solvothermal reactions, followed by a newly developed microemulsion-based method to assemble the nanocrystals to colloidal spheres with hydrophilic surface. Mesoporous spheres, which are expected to show excellent properties in applications such as catalysis, could then be achieved by annealing of colloidal spheres.
引文
[1] 张立德, 牟季美. 纳米材料和纳米结构. 科学出版社. 2001.
    [2] Louie S G. Thermodynamics - Nanoparticles behaving oddly. Nature, 1996, 384 (6610):612-613.
    [3] Bethell D, Schiffrin D J. Supramolecular chemistry - Nanotechnology and nucleotides. Nature, 1996, 382 (6592):581-581.
    [4] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34 (4):257-264.
    [5] Somorjai G A. The surface science of heterogeneous catalysis. Vol. XXV. 1981.
    [6] 薛宽宏, 包建春. 纳米化学. 化学工业出版社. 2006.
    [7] Zhou J, Xu N S, Deng S Z, et al. Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties. Adv. Mater., 2003, 15 (21):1835-1840.
    [8] Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421 (6920):241-245.
    [9] Zapien J A, Jiang Y, Meng X M, et al. Room-temperature single nanoribbon lasers. Appl. Phys. Lett., 2004, 84 (7):1189-1191.
    [10] Urban J J, Spanier J E, Lian O Y, et al. Single-crystalline barium titanate nanowires. Adv. Mater., 2003, 15 (5):423-426.
    [11] Huang Y, Lieber C M. Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem., 2004, 76 (12):2051-2068.
    [12] Mann D, Javey A, Kong J, et al. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett., 2003, 3 (11):1541-1544.
    [13] Rao C N R, Cheetham A K. Science and technology of nanomaterials: current status and future prospects. J. Mater. Chem., 2001, 11 (12):2887-2894.
    [14] Rao C N R, Kulkarni G U, Thomas P J, et al. Size-dependent chemistry: Properties of nanocrystals. Chem.-Eur. J., 2002, 8 (1):29-35.
    [15] Patzke G R, Krumeich F, Nesper R. Oxidic nanotubes and nanorods - Anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed., 2002, 41 (14):2446-2461.
    [16] Sadanadan B, Savage T, Bhattacharya S, et al. Synthesis and thermoelectric power of nitrogen-doped carbon nanotubes. J. Nanosci. Nanotechnol., 2003, 3 (1-2):99-103.
    [17] Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409 (6816):66-69.
    [18] Huang Y, Duan X F, Wei Q Q, et al. Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001, 291 (5504):630-633.
    [19] Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291 (5505):851-853.
    [20] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292 (5523):1897-1899.
    [21] Jiang X C, Herricks T, Xia Y N. Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization. Adv. Mater., 2003, 15 (14):1205.
    [22] Bozovic D, Bockrath M, Hafner J H, et al. Electronic properties of mechanically induced kinks in single-walled carbon nanotubes. Appl. Phys. Lett., 2001, 78 (23):3693-3695.
    [23] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283 (5401):512-514.
    [24] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295 (5564):2425-2427.
    [25] Patrissi C J, Martin C R. Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide. J. Electrochem. Soc., 1999, 146 (9):3176-3180.
    [26] Law M, Kind H, Messer B, et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem.Int. Ed., 2002, 41 (13):2405-2408.
    [27] Zhou K B, Wang X, Sun X M, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal., 2005, 229 (1):206-212.
    [28] Murray C B, Kagan C R, Bawendi M G. Self-Organization of CdSe Nanocrystallites into 3-Dimensional Quantum-Dot Superlattices. Science, 1995, 270 (5240):1335-1338.
    [29] Black C T, Murray C B, Sandstrom R L, et al. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science, 2000, 290 (5494):1131-1134.
    [30] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287 (5460):1989-1992.
    [31] Zhang Y W, Sun X, Si R, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc., 2005, 127 (10):3260-3261.
    [32] Vaucher S, Li M, Mann S. Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew. Chem. Int. Ed., 2000, 39 (10):1793.
    [33] Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 1999, 402 (6760):393-395.
    [34] Potdar H S, Deshpande S B, Date S K. Chemical coprecipitation of mixed (Ba+Ti) oxalates precursor leading to BaTiO3 powders. Mater. Chem. Phys., 1999, 58 (2):121-127.
    [35] Rogach A L, Kornowski A, Gao M Y, et al. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phy. Chem. B, 1999, 103 (16):3065-3069.
    [36] Mews A, Kadavanich A V, Banin U, et al. Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells. Phys. Rev. B, 1996, 53 (20):13242-13245.
    [37] 罗蕾. 加工原子的技术:纳米技术. 江西科学技术出版社. 2002.
    [38] Li Y D, Wang J W, Deng Z X, et al. Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc., 2001, 123 (40):9904-9905.
    [39] Li Y D, Li X L, Deng Z X, et al. From surfactant-inorganic mesostructures to tungsten nanowires. Angew. Chem. Int. Ed., 2001, 41 (2):333.
    [40] Li X L, Liu J F, Li Y D. Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg. Chem., 2003, 42 (3):921-924.
    [41] Wang X, Li Y D. Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc., 2002, 124 (12):2880-2881.
    [42] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Ed., 2002, 41 (24):4790-4793.
    [43] Wang X, Sun X M, Yu D P, et al. Rare earth compound nanotubes. Adv. Mater., 2003, 15 (17):1442-1445.
    [44] Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. J. Eur., 2003, 9 (10):2229-2238.
    [45] Wang C, Deng Z X, Li Y D. The synthesis of nanocrystalline anatase and rutile titania in mixed organic media. Inorg. Chem., 2001, 40 (20):5210-5214.
    [46] Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed., 2003, 42 (26):3027-3030.
    [47] Sun X M, Li Y D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed., 2004, 43 (29):3827-3831.
    [48] Wang X, Li Y D. Fullerene-like rare-earth nanoparticles. Angew. Chem. Int. Ed., 2003, 42 (30):3497-3500.
    [49] Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437 (7055):121-124.
    [50] Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005, 105 (4):1025-1102.
    [51] 仲维卓, 华素坤. 晶体生长形态学. 科学出版社. 1999.
    [52] Hong B H, Bae S C, Lee C W, et al. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science, 2001, 294 (5541):348-351.
    [53] Puntes V F, Krishnan K M, Alivisatos A P. Colloidal nanocrystal shape and size control: The case of cobalt. Science, 2001, 291 (5511):2115-2117.
    [54] Peng X G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater., 2003, 15 (5):459-463.
    [55] Li W, Dahn J R, Wainwright D S. Rechargeable Lithium Batteries with Aqueous-Electrolytes. Science, 1994, 264 (5162):1115-1118.
    [56] Tsang C, Manthiram A. Synthesis of nanocrystalline VO2 and its electrochemical behavior in lithium batteries. J. Electrochem. Soc., 1997, 144 (2):520-524.
    [57] Livage J. Vanadium Pentoxide Gels. Chem. Mater., 1991, 3 (4):578-593.
    [58] Livage J. Synthesis of polyoxovanadates via "chimie douce". Coord. Chem. Rev., 1998, 178-180:999-1018.
    [59] Pinna N, Wild U, Urban J, et al. Divanadium pentoxide nanorods. Adv. Mater., 2003, 15 (4):329-331.
    [60] Raible I, Burghard M, Schlecht U, et al. V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines. Sensors and Actuators B, 2005, 106 (2):730-735.
    [61] Talledo A, Granqvist C G. Electrochromic Vanadium-Pentoxide-Based Films - Structural, Electrochemical, and Optical-Properties. J. Appl. Phys., 1995, 77 (9):4655-4666.
    [62] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metaloxides as negative electrode materials for lithium-ion batteries. Nature, 2000, 407 (6803):496-499.
    [63] Commeinhes X, Davidson P, Bourgaux C, et al. Orientation of liquid-crystalline suspensions of vanadium pentoxide ribbons by a magnetic field. Adv. Mater., 1997, 9 (11):900.
    [64] Krumeich F, Muhr H J, Niederberger M, et al. Morphology and topochemical reactions of novel vanadium oxide nanotubes. J. Am. Chem. Soc., 1999, 121 (36):8324-8331.
    [65] Niederberger M, Muhr H J, Krumeich F, et al. Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem. Mater., 2000, 12 (7):1995-2000.
    [66] Muster J, Kim G T, Krstic V, et al. Electrical transport through individual vanadium pentoxide nanowires. Adv. Mater., 2000, 12 (6):420.
    [67] Wang P, Zakeeruddin S M, Moser J E, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater., 2003, 2 (6):402-407.
    [68] Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett., 2002, 81 (10):1869-1871.
    [69] Muster J, Kim G T, Krstic V, et al. Electrical transport through individual vanadium pentoxide nanowires. Adv. Mater., 2000, 12 (6):420.
    [70] Yao T, Oka Y, Yamamoto N. Layered Structures of Vanadium Pentoxide Gels. Mater. Res. Bull., 1992, 27 (6):669-675.
    [71] Bailey J K, Pozarnsky G A, Mecartney M L. The Direct Observation of Structural Development During Vanadium Pentoxide Gelation. J. Mater. Res., 1992, 7 (9):2530-2537.
    [72] Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors. Catal. Surv. Asia, 2003, 7 (1):63-75.
    [73] Reti F, Kiss G, Perczel I V. Subjective overview on oxide semiconductor gas sensors. Sens. Mater., 2004, 16 (2):53-69.
    [74] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291 (5510):1947-1949.
    [75] Yang P D, Yan H Q, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater., 2002, 12 (5):323-331.
    [76] Zhang T S, Hing P, Li Y, et al. Selective detection of ethanol vapor and hydrogen using Cd-doped SnO2-based sensors. Sens. Actuator B, 1999, 60 (2-3):208-215.
    [77] Micocci G, Serra A, Tepore A, et al. Properties of vanadium oxide thin films for ethanol sensor. J. Vac. Sci. Technol. A, 1997, 15 (1):34-38.
    [78] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed., 2004, 43 (5):597-601.
    [79] Masui T, Yamamoto M, Sakata T, et al. Synthesis of BN-coated CeO2 fine powder as a new UV blocking material. J. Mater. Chem., 2000, 10 (2):353-357.
    [80] Schlecht U, Guse B, Raible I, et al. A direct synthetic approach to vanadium pentoxide nanofibres modified with silver nanoparticles. Chem. Comm., 2004, (19):2184-2185.
    [81] Yu J H, Choi G M. Electrical and CO gas sensing properties of ZnO-SnO2 composites. Sens. Actuators B, 1998, 52 (3):251-256.
    [82] Costello B, Ewen R J, Guernion N, et al. Highly sensitive mixed oxide sensors for the detection of ethanol. Sens. Actuators B, 2002, 87 (1):207-210.
    [83] Kong X H, Li Y D. High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sens. Actuators B, 2005, 105 (2):449-453.
    [84] Liang Y X, Chen Y J, Wang T H. Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl. Phys. Lett., 2004, 85 (4):666-668.
    [85] Shimizu Y, Egashira M. Basic aspects and challenges of semiconductor gas sensors. Mrs Bulletin, 1999, 24 (6):18-24.
    [86] Theobald F, Cabala R, Bernard J. Structural Elucidation of VO2(B). J. Solid State Chem., 1976, 17 (4):431-438.
    [87] Kannan A M, Manthiram A. Synthesis and electrochemical evaluation of high capacity nanostructured VO2 cathodes. Solid State Ion., 2003, 159 (3-4):265-271.
    [88] Leroux C, Nihoul G, Van Tendeloo G. From VO2(B) to VO2(R): Theoretical structures of VO2 polymorphs and in situ electron microscopy. Phys. Rev. B, 1998, 57 (9):5111-5121.
    [89] Liu J F, Wang X, Peng Q, et al. Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv. Mater., 2005, 17 (6):764-767.
    [90] Liu J F, Wang X, Peng Q, et al. Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides. Sens. Actuators B, 2006, 115 (1):481-487.
    [91] Liu J F, Li Q H, Wang T H, et al. Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem. Int. Ed., 2004, 43 (38):5048-5052.
    [92] Fang Z M, Hong Q, Zhou Z H, et al. Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catal. Lett., 1999, 61 (1-2):39-44.
    [93] Martinez-Huerta M V, Coronado J M, Fernandez-Garcia M, et al. Nature of the vanadia-ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. J. Catal., 2004, 225 (1):240-248.
    [94] Terada Y, Shimamura K, Kochurikhin V V, et al. Growth and optical properties of ErVO4 and LuVO4 single crystals. J. Cryst. Growth, 1996, 167 (1-2):369-372.
    [95] Fields R A, Birnbaum M, Fincher C L. Highly Efficient Nd-YVO4 Diode-Laser End-Pumped Laser. Appl. Phys. Lett., 1987, 51 (23):1885-1886.
    [96] Oconnor J R. Unusual Crystal-Field Energy Levels and Efficient Laser Properties of YVO4 - Nd. Appl. Phys. Lett., 1966, 9 (11):407-409.
    [97] Gambino J R, Guare C J. Yttrium and Rare Earth Vanadates. Nature, 1963, 198 (488):1084.
    [98] Huignard A, Gacoin T, Boilot J P. Synthesis and luminescence properties of colloidal YVO4 : Eu phosphors. Chem. Mater., 2000, 12 (4):1090-1094.
    [99] Stouwdam J W, Raudsepp M, van Veggel F. Colloidal nanoparticles of Ln3+-doped LaVO4: Energy transfer to visible- and near-infrared-emitting lanthanide ions. Langmuir, 2005, 21 (15):7003-7008.
    [100] Jia C J, Sun L D, You L P, et al. Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals. J. Phys. Chem. B, 2005, 109 (8):3284-3290.
    [101] Heer S, Lehmann O, Haase M, et al. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed., 2003, 42 (27):3179-3182.
    [102] Jia C J, Sun L D, Luo F, et al. Structural transformation induced improved luminescent properties for LaVO4 : Eu nanocrystals. Appl. Phys. Lett., 2004, 84 (26):5305-5307.
    [103] Zeng J H, Su J, Li Z H, et al. Synthesis and upconversion luminescence of hexagonal-phase NaYF4 : Yb, Er3+, phosphors of controlled size and morphology. Adv. Mater., 2005, 17 (17):2119-2123.
    [104] Yan R X, Li Y D. Down/Up conversion in Ln3+-doped YF3 nanocrystals. Adv. Funct. Mater., 2005, 15 (5):763-770.
    [105] Meldrum F C, Wade V J, Nimmo D L, et al. Synthesis of Inorganic Nanophase Materials in Supramolecular Protein Cages. Nature, 1991, 349 (6311):684-687.
    [106] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415 (6872):617-620.
    [107] Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277 (5330):1232-1237.
    [108] Yang P D, Sirbuly D J, Law M, et al. Optical routing and sensing with nanowire assemblies. Proc. Natl. Acad. Sci. U. S. A., 2005, 102 (22):7800-7805.
    [109] Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385 (6615):420-423.
    [110] Shenton W, Pum D, Sleytr U B, et al. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature, 1997, 389 (6651):585-587.
    [111] Romero H E, Drndic M. Coulomb blockade and hopping conduction in PbSe quantum dots. Phys. Rev. Lett., 2005, 95 (15).
    [112] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nat. Mater., 2005, 4 (6):455-459.
    [113] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271 (5251):933-937.
    [114] Lehn J M. Comprehensive supramolecular chemistry. Oxford, UK: Elsevier. 1996.
    [115] Whitesides G M, Grzybowski B. Self-assembly at all scales. Science, 2002, 295 (5564):2418-2421.
    [116] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford, UK. 2001.
    [117] Bowden N, Terfort A, Carbeck J, et al. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science, 1997, 276 (5310):233-235.
    [118] Allinger N L. Conformational-Analysis .130. MM2 - Hydrocarbon Force-Field Utilizing V1 and V2 Torsional Terms. J. Am. Chem. Soc., 1977, 99 (25):8127-8134.
    [119] Computations were mainly carried out using Gaussian2003 and a few instances using SYBYL 6.6 molecular modeling software. Frisch, M. J. et. al Gaussian 03, revision B.2; Gaussian, Inc.: Pittsburgh, PA, 2003. (http://www.gaussian.com/); SYBYL Molecular Modeling System, Version 6.6; Tripos, Inc.: St. Louis, MO (http://www.tripos.com/).
    [120] Soderlind F, Pedersen H, Petoral R M, et al. Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J. Colloid Interface Sci., 2005, 288 (1):140-148.
    [121] Thistlethwaite P J, Hook M S. Diffuse reflectance fourier transform infrared study of the adsorption of oleate/oleic acid onto titania. Langmuir, 2000, 16 (11):4993-4998.
    [122] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404 (6773):59-61.
    [123] Sun X M, Li Y D. Cylindrical silver nanowires: Preparation, structure, and optical properties. Adv. Mater., 2005, 17 (21):2626.
    [124] Chakoumakos B C, Abraham M M, Boatner L A. Crystal-Structure Refinements of Zircon-Type MVO4 (M=Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu). J. Solid. State. Chem., 1994, 109 (1):197-202.
    [125] Jackman R J, Brittain S T, Adams A, et al. Design and fabrication of topologically complex, three-dimensional microstructures. Science, 1998, 280 (5372):2089-2091.
    [126] Breen T L, Tien J, Oliver S R J, et al. Design and self-assembly of open, regular, 3D mesostructures. Science, 1999, 284 (5416):948-951.
    [127] Huignard A, Buissette V, Laurent G, et al. Synthesis and characterizations of YVO4 : Eu colloids. Chem. Mater., 2002, 14 (5):2264-2269.
    [128] Zhao F, Yuan M, Zhang W, et al. Monodisperse lanthanide oxysulfide nanocrystals. J. Am. Chem. Soc., 2006, 128 (36):11758-11759.
    [129] Wang H Z, Uehara M, Nakamura H, et al. Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route. Adv. Mater., 2005, 17 (20):2506.
    [130] Heer S, Kompe K, Gudel H U, et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater., 2004, 16 (23-24):2102.
    [131] Brixner L H, Abramson E. On Luminescent Properties of Rare Earth Vanadates. J. Electrochem. Soc., 1965, 112 (1):70.
    [132] Krasovec U O, Orel B, Surca A, et al. Structural and spectroelectrochemical investigations of tetragonal CeVO4 and Ce/V-oxide sol-gel derived ion-storage films. Solid State Ion., 1999, 118 (3-4):195-214.
    [133] Wang H, Meng Y Q, Yan H. Rapid synthesis of nanocrystalline CeVO4 by microwave irradiation. Inorg. Chem. Commun., 2004, 7 (4):553-555.
    [134] Xu H Y, Wang H, Jin T N, et al. Rapid fabrication of luminescent Eu : YVO4 films by microwave-assisted chemical solution deposition. Nanotechnology, 2005, 16 (1):65-69.
    [135] Wu X C, Tao Y R, Dong L, et al. Preparation of single-crystalline NdVO4 nanorods, and their emissions in the ultraviolet and blue under ultraviolet excitation. J. Phys. Chem. B, 2005, 109 (23):11544-11547.
    [136] Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4 : Ln (Ln = Eu, Sm, Dy). J. Phys. Chem. B, 1998, 102 (50):10129-10135.
    [137] Huignard A, Buissette V, Franville A C, et al. Emission processes in YVO4 : Eu nanoparticles. J. Phys. Chem. B, 2003, 107 (28):6754-6759.
    [138] Oregan B, Gratzel M. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 1991, 353 (6346):737-740.
    [139] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes. J. Am. Chem. Soc., 1993, 115 (14):6382-6390.
    [140] Gratzel M. Photoelectrochemical cells. Nature, 2001, 414 (6861):338-344.
    [141] Luo F, Jia C J, Song W, et al. Chelating ligand-mediated crystal growth of cerium orthovanadate. Cryst. Growth Des., 2005, 5 (1):137-142.
    [142] Park N G, Kang M G, Kim K M, et al. Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO2 and TiO2 cores. Langmuir, 2004, 20 (10):4246-4253.
    [143] Coakley K M, McGehee M D. Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl. Phys. Lett., 2003, 83 (16):3380-3382.
    [144] Nazeeruddin M K, Pechy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc., 2001, 123 (8):1613-1624.
    [145] Kopidakis N, Neale N R, Zhu K, et al. Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells. Appl. Phys. Lett., 2005, 87 (20).
    [146] Wang H, Oey C C, Djurisic A B, et al. Titania bicontinuous network structures for solar cell applications. Appl. Phys. Lett., 2005, 87 (2).
    [147] Baxter J B, Aydil E S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett., 2005, 86 (5).
    [148] Hinsch A, Kroon J M, Kern R, et al. Long-term stability of dye-sensitised solar cells. Prog. Photovoltaics, 2001, 9 (6):425-438.
    [149] Kubo W, Kambe S, Nakade S, et al. Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J. Phys. Chem. B, 2003, 107 (18):4374-4381.
    [150] Sapp S A, Elliott C M, Contado C, et al. Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc., 2002, 124 (37):11215-11222.
    [151] Kay A, Gratzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mat., 2002, 14 (7):2930-2935.
    [152] Wang Z S, Li F Y, Huang C H, et al. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J. Phys. Chem. B, 2000, 104 (41):9676-9682.
    [153] Date M, Okumura M, Tsubota S, et al. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew. Chem.-Int. Edit., 2004, 43 (16):2129-2132.
    [154] Zhang X, Wang H, Xu B Q. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J. Phys. Chem. B, 2005, 109 (19):9678-9683.
    [155] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc., 1978, 100:170.
    [156] Chen M S, Goodman D W. The structure of catalytically active gold on titania. Science, 2004, 306 (5694):252-255.
    [157] Yan W F, Mahurin S M, Pan Z W, et al. Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals. J. Am. Chem. Soc., 2005, 127 (30):10480-10481.
    [158] Yoon B, Hakkinen H, Landman U, et al. Charging effects on bonding and catalyzed oxidation of CO on Au-8 clusters on MgO. Science, 2005, 307 (5708):403-407.
    [159] Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281 (5383):1647-1650.
    [160] Carrettin S, Concepcion P, Corma A, et al. Nanocrystalline CeO2 increases the activity of an for CO oxidation by two orders of magnitude. Angew. Chem.-Int. Edit., 2004, 43 (19):2538-2540.
    [161] Xu R, Wang X, Wang D S, et al. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. J. Catal., 2006, 237 (2):426-430.
    [162] Schlogl R, Abd Hamid S B. Nanocatalysis: Mature science revisited or something really new? Angew. Chem.-Int. Edit., 2004, 43 (13):1628-1637.
    [163] Choudary B M, Mulukutla R S, Klabunde K J. Benzylation of aromatic compounds with different crystallites of MgO. J. Am. Chem. Soc., 2003, 125 (8):2020-2021.
    [164] Chrzanowski W, Wieckowski A. Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis. Langmuir, 1998, 14 (8):1967-1970.
    [165] Wolf A, Schuth F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal. A-Gen., 2002, 226 (1-2):1-13.
    [166] Comotti M, Li W C, Spliethoff B, et al. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc., 2006, 128 (3):917-924.
    [167] Grunwaldt J D, Kiener C, Wogerbauer C, et al. Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids. J. Catal., 1999, 181 (2):223-232.
    [168] Liu J F, Li Y D. Synthesis and Self-Assembly of Luminescent Ln3+-Doped LaVO4 Uniform Nanocrystals. Adv. Mater., 2007, 19:1118.
    [169] Liu J F, Li Y D. General Synthesis of Colloidal Rare Earth Orthovanadates Nanocrystals. J. Mater. Chem., 2007, 17:1797.
    [170] Liu J F, Yao Q H, Li Y D. Effects of downconversion luminescent film in dye-sensitized solar cells. 2006, 88 (17):173119.
    [171] Liu J F, Chen W, Zhou K B, et al. Size effects of Au/LnVO4 (Ln=La and Ce) catalyst for CO oxidation. Submitted.
    [172] Kohtani S, Koshiko M, Kudo A, et al. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B, 2003, 46 (3):573-586.
    [173] Sayama K, Nomura A, Zou Z G, et al. Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem. Comm., 2003, (23):2908-2909.
    [174] Limmer S J, Cao G Z. Sol-gel electrophoretic deposition for the growth of oxide nanorods. Adv. Mater., 2003, 15 (5):427-431.
    [175] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater., 2001, 13 (12):4624-4628.
    [176] Kudo A, Ueda K, Kato H, et al. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett., 1998, 53 (3-4):229-230.
    [177] Song W X, Zhao X H. Thermochromatic Characteristics of BiVO4. Journal of Qingdao Institute of Chemical Technology, 1996, 17 (2):172.
    [178] Bhattacharya A K, Mallick K K, Hartridge A. Phase transition in BiVO4. Mater. Lett., 1997, 30 (1):7-13.
    [179] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc., 1999, 121 (49):11459-11467.
    [180] Liu J B, Wang H, Wang S, et al. Hydrothermal preparation of BiVO4 powders. Mater. Sci. Engineering B, 2003, 104 (1-2):36-39.
    [181] 张青莲. 无机化学丛书. 科学出版社. 1990.
    [182] Yun W S, Urban J J, Gu Q, et al. Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe Microscopy. Nano. Lett., 2002, 2 (5):447-450.
    [183] Urban J J, Yun W S, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc., 2002, 124 (7):1186-1187.
    [184] B. Samuneva, Kvalchev St. V. Dimitrov. Structure and optical-properties of niobium silicate-glasses. J. Non-Cryst. Solids 1991, 129:54.
    [185] Gunter P. Holography, coherent-light amplification and optical-phase conjugationwith photorefractive materials. Phys. Rep., 1982, 93:199.
    [186] M.K. Chun, L. Goldberg, J.F. Weller. 2nd-harmonic generation at 421-nm using injection-locked GAAIAS Laser array and KNbO3. Appl. Phys. Lett., 1988, 53:1170.
    [187] A. Kudo, A. Tanaka, K. Domen, et al. Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst. J. Catal., 1988, 111:67
    [188] Domen K, Kudo A, Shibata M, et al. Novel Photocatalysts, Ion-Exchanged K4Nb6O17, with a Layer Structure. J. Chem. Soc. Chem. Commun., 1986, (23):1706-1707.
    [189] Sato T, Yamamoto Y, Fujishiro Y, et al. Intercalation of iron oxide in layered H2Ti4O9 and H4Nb6O17: Visible-light induced photocatalytic properties. J. Chem. Soc., 1996, 92 (24):5089-5092.
    [190] Yamaguchi Y, Yui T, Takagi S, et al. Intercalation of metalloporphyrin-surfactant complex into layered niobate and the photochemical injection of electrons to niobate. Chem. Lett., 2001, (7):644-645.
    [191] Saupe G B, Waraksa C C, Kim H N, et al. Nanoscale tubules formed by exfoliation of potassium hexaniobate. Chem. Mater., 2000, 12 (6):1556-1562.
    [192] Lu C-H, Lo S-Y, Wang Y-L. Glycothermal preparation of potassium niobate ceramic particles under supercritical conditions. Mater. Lett., 2002, 55:121-125.
    [193] de Andrade J S, Pinheiro A G, Vasconcelos I F, et al. Raman and infrared spectra of KNbO3 in niobate glass-ceramics. J. Phys. Cond Mater., 1999, 11 (22):4451-4460.
    [194] Y.I. Kim, S.J. Atherton, E.S. Brigham, et al. Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J. Phys. Chem., 1993, 97:11.
    [195] Liu J F, Qin S S, Li Y D. Synthesis of bismuth vanadates nanocrystals and the photocatalysis properties on its morphology. Submitted.
    [196] Liu J F, Li X L, Li Y D. Novel synthesis of polymorphous nanocrystalline KNbO3 by a low temperature solution method. J. Nanosci. Nanotechnol., 2002, 2 (6):617-619.
    [197] Liu J F, Li X L, Li Y D. Synthesis and characterization of nanocrystalline niobates. J. Cryst. Growth, 2003, 247 (3-4):419-424.
    [198] Bell A T. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299 (5613):1688-1691.
    [199] Rolison D R. Catalytic nanoarchitectures - The importance of nothing and the unimportance of periodicity. Science, 2003, 299 (5613):1698-1701.
    [200] Maiti A, Rodriguez J A, Law M, et al. SnO2 nanoribbons as NO2 sensors: Insights from first principles calculations. Nano Lett., 2003, 3 (8):1025-1028.
    [201] Somorjai G A, Borodko Y G. Research in nanosciences - Great opportunity for catalysis science. Catal. Lett., 2001, 76 (1-2):1-5.
    [202] Terribile D, Trovarelli A, de Leitenburg C, et al. Unusual oxygen storage/redox behavior of high-surface-area ceria prepared by a surfactant-assisted route. Chem. Mater., 1997, 9 (12):2676.
    [203] Pacchioni G. Oxygen vacancy: The invisible agent on oxide surfaces. 2003, 4 (10):1041-1047.
    [204] Stoimenov P K, Zaikovski V, Klabunde K J. Novel halogen and interhalogen adducts of nanoscale magnesium oxide. 2003, 125 (42):12907-12913.
    [205] Ding Y, Wang Z L. Structure analysis of nanowires and nanobelts by transmission electron microscopy. 2004, 108 (33):12280-12291.
    [206] Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett., 2005, 34 (1):8-13.
    [207] Paunesku T, Rajh T, Wiederrecht G, et al. Biology of TiO2-oligonucleotide nanocomposites. Nat. Mater., 2003, 2 (5):343-346.
    [208] Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297 (5590):2243-2245.
    [209] Zhao W, Chen C C, Li X Z, et al. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: Influence of platinum as a functional co-catalyst. J. Phys. Chem. B, 2002, 106 (19):5022-5028.
    [210] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293 (5528):269-271.
    [211] Bechinger C, Ferrer S, Zaban A, et al. Photoelectrochromic windows and displays. Nature, 1996, 383 (6601):608-610.
    [212] Tian Z R R, Voigt J A, Liu J, et al. Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc., 2003, 125 (41):12384-12385.
    [213] Trentler T J, Denler T E, Bertone J F, et al. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc., 1999, 121 (7):1613-1614.
    [214] Jun Y W, Casula M F, Sim J H, et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc., 2003, 125 (51):15981-15985.
    [215] Cozzoli P D, Kornowski A, Weller H. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc., 2003, 125 (47):14539-14548.
    [216] Niederberger M, Bartl M H, Stucky G D. Benzyl alcohol and titanium tetrachloride - A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mat., 2002, 14 (10):4364-4370.
    [217] Arnal P, Corriu R J P, Leclercq D, et al. A solution chemistry study of nonhydrolytic sol-gel routes to titania. Chem. Mat., 1997, 9 (3):694-698.
    [218] Vioux A. Nonhydrolytic sol-gel routes to oxides. Chem. Mat., 1997, 9 (11):2292-2299.
    [219] Si S F, Li C H, Wang X, et al. Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des., 2005, 5 (2):391-393.
    [220] Zhang Y, Li Y D. Synthesis and characterization of monodisperse doped ZnS nanospheres with enhanced thermal stability. J. Phys. Chem. B, 2004, 108 (46):17805-17811.
    [221] Gratzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovoltaics, 2000, 8 (1):171-185.
    [222] Barbe C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc., 1997, 80 (12):3157-3171.
    [223] Zukalova M, Zukal A, Kavan L, et al. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett., 2005, 5 (9):1789-1792.
    [224] Dresselhaus M S, Lin Y M, Rabin O, et al. Nanowires and nanotubes. Mater. Sci., 2003, 23 (1-2):129-140.
    [225] Liu J F, Zhou K B, Xu R, et al. Catalytic activity with different crystallites of hematite. Submitted.
    [226] Liu J F, Li Y D. Remarkable activity of Au catalysts on titanium oxide microporous spheres. in preparation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700