用户名: 密码: 验证码:
氮化铟一维纳/微米结构的可控制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在Ⅲ族氮化物半导体中,InN具有优异的电子输运性质,在高频厘米和毫米波器件应用上具有独特的优势,这些特性引起人们对InN的极大兴趣。同时,近两年来的研究表明InN的带隙宽度大约在0.7eV,远低于早期的研究结果(1.9eV左右),目前这仍是人们争议的焦点之一。由于纳米半导体材料与相应的体材料相比,在光学性质、电学性质和光电转换方面都有显著的不同,因此,开展一维InN纳米结构的工作对理论研究和潜在的器件应用都具有重要意义。
     本论文“氮化铟一维纳/微米结构的可控制备和表征”主要包括以下几方面工作:
     第一,采用化学气相沉积工艺,分别以In_2O_3为In源、NH_3为N源原位合成直径均匀、结晶性很好、生长方向统一的纤锌矿结构InN纳米线,在此基础上通过调节生长参数,进而制备出纳米带和微米管结构。纳米结构产量高,从反应物到产物的转化率高,成份纯净。微米管为六边形截面的螺旋型结构,同时具有左手、右手螺旋,螺旋角分布宽。在系列实验和详细的形貌观察的基础上,对纳米线、纳米带和微米管的生长机理进行分析,发现InN基于自身演变从一种结构向另一结构变化的独特现象;
     第二,采用Raman、光致发光、光吸收、PPMS、热重等分析手段研究了InN纳米/微米结构的光学、电学、热学等性质。观察到四个InN Raman散射的特征模以及它们的温度依赖现象。观察到InN纳米结构精细发光谱,并初步探讨了各荧光峰的起因。光吸收研究发现中心在0.2eV附近的吸收峰和Tauc光吸收边因产物的生长时间延长而规律性移动,该现象还与产物成分、几何结构相关。由于InN纳米线中高的自由载流子浓度,而导致材料表现出金属导电行为。TG与DSC分析表明InN纳米结构的起始分解温度和氧化温度分别为576和390℃;
     第三,在低真空条件下对各种InN结构进行了热氧化处理,对InN纳米结构的氧化过程进行了研究,并获得In_2O_3/InN复合纳米结构。通过控制氧化处理,实现了六方纤锌矿型InN纳米/微米结构向体心立方结构In_2O_3的直接转化,并维持了反应物的原始几何形貌,且反应温度较低。为In_2O_3纳米/微米结构的合成提供了一条新途径。
Particular interests have been arisen in InN semiconductor, owing to its superior electronic transport characteristics to other Ill-nitride semiconductors that suggests there may be distinct advantages offered by using InN in high frequency centimeter and millimeter wave devices. In addition, studies in the last few years demonstrated a band-gap energy around 0.7 eV for InN, which is much smaller than the previous reports (-1.9 eV). Thus, the band-gap energy of InN is still under debate. Furthermore, nanostructured materials are appealing and fascinating in optical, electrical and optoelectronic conversion properties, different from their bulk counterparts. Therefore, the study of one-dimensional InN nanostructures is of benefit to fundamental theoretic research and to potential device applications.
     The dissertation "Controllable Preparation and Characterization of One-Dimensional Nano/Microstructures of Indium Nitride" essentially involves following investigations:
     Firstly, wurtzite InN nanowires with uniform diameters, good crystallinity and homogeneous growth direction were synthesized by using In_2O_3 powers and NH3 as indium and nitrogen sources respectively via a conventional chemical vapor deposition process. Adjustments of reaction parameters led to the growth of nanobelts and microtubes. The as-prepared nanostructured products manifested high purity, high yield and high conversion ratio from In_2O_3 to InN. The InN microtubes are hexagonal in cross section and exhibit helical structure with both right-handed and left-handed helicities and a wide distribution of helical angles. Based on series of comparative experiments and detailed morphology imaging, the growth mechanisms of InN nanowires, nanobelts and microtubes were discussed and a unique phenomenon was revealed that InN changes from one nanostructure to another via self-evolution.
     Secondly, we have studied the optical, electrical and thermodynamic properties of InN nano/microstructures by using Raman, photoluminescence, optical absorption, PPMS and thermogravimetry measurements. Four characteristic modes of InN Raman scattering were observed and their temperature dependences were investigated. Fine structures in the luminescence spectra of InN nanostrutures were obtained and the emission band relating to the structures were discussed tentatively. In the optical absorption spectra, both the peak centered at about 0.2 eV and Tauc absorption edge shift systematically as the function of reaction time of the products, which is related to the composition and geometrical shape of the as-prepared products. Due to the high carrier concentration, a single InN nanowire exhibits electrical transport property characteristic of metals. TG and DSC analyses revealed that InN nanostructures began to decompose at 576°C and to be oxidized at 390°C, respectively.
     Thirdly, thermal oxidation of InN nano/microstructures has been performed under a low vacuum. The oxidation process of InN nanowires was investigated and InO_3/InN composite nanostructure was obtained. By the controlled oxidation treatment, InN nano/microstructures in wurtzite were converted directly into bcc In_2O_3 counterparts preserving the original geometrical shape of InN nano/microstructures, which demonstrates a novel approach to the preparation of In_2O_3 nano/microstructures with peculiar geometry.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001:2-22,490-521.
    [2]解思深.纳米科技发展调研报告汇编.科学技术部基础研究司,2002:15-59.
    [3]张立德,解思深.纳米材料和纳米结构-国家重大基础研究项目新进展.北京:化学工业出版社,2005:1-10.
    [4]M.L.Cohen,Nanotubes,Nanoscience,and Nanotechnology Mater.Sci.Eng.C15(2001)1-11.
    [5]Y.Xia,P.Yang,Y.Sun,Y.Wu,B.Mayers,B.Gates,Y.Yin,F.Kim,H.Yan,One-dimensional nanostructures:synthesis,characterization,and applications Adv.Mater.15(2003)353-389.
    [6]S.Iijima,Helical microtubules of graphic carbon Nature 354(1991)56-58.
    [7]C.N.R.Rao,F.L.Deepak,Gautam Gundiah,A.Govindaraj,Inorganic nanowires Progress in Solid State Chem.31(2003)5-147.
    [8]C.A.Ross,M.Hwang,M.Shima,Henry I.Smith,M.Farhoud,T.A.Savas,W.Schwarzacher,J.Parrochon,W.Escoffier,H.Neal Bertram,F.B.Humphrey,M.Redjdal Magnetic properties of arrays of electrodeposited nanowires J.Magn.Magn.Mater.249(2002)200-207.
    [9]M.Kroll,W.J.Blau,D.Grandjean,R.E.Benfield,F.Luis,P.M.Paulus,L.J.de Jongh Magnetic properties of ferromagnetic nanowires embedded in nanoporous alumina membranes J.Magn.Magn.Mater.249(2002)241-245.
    [10]Z.F.Ren,Z.P.Huang,J.W.Xu,J.H.Wang,P.Bush,M.P.Siegal,P.N.Provencio Synthesis of large arrays of well-aligned carbon nanotubes on glass Science 282(1998)1105-1107.
    [11]S.S.Fan,M.G.Chapline,N.R.Franklin,T.W.Tombler,A.M.Cassell,H.Dai Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties Science 283(1999)512-514.
    [12]C.J.Lee,T.J.Lee,S.C.Lyu,Y.Zhang,H.Ruh,H.J.Lee,Field emission from well-aligned zinc oxide nanowires grown at low temperature Appl.Phys.Lett.81(2002)3648-3650.
    [13]M.Ajayan,O.Stephan,C.Colliex,D.Trauth,Align carbon nanotube arrays foimed by cutting a polymer resin-nanotube composite Science 265(1994)1212-1214.
    [14]E.W.Wong,P.E.Sheehan,C.M.Lieber,Nanobeam mechanics:Elasticity,strength,and toughness of nanorods and nanotubes Science 265(1997)1971-1975.
    [15]M.H.Huang,S.Mao,H.Feick,H.Q.Yan,Y.Y.Wu,H.Kind,E.Weber,R.Russo,P.D.Yang,Room-temperature ultraviolet nanowire nanolasers Science 292(2001)1897-1899.
    [16]H.Q.Yan,J.Johnson,M.Law,R.R.He,K.Knutsen,J.R.McKinney,J.Pham,R.Saykally,P.D.Yang,ZnO nanoribbon microcavity lasers Adv.Mater.15(2003)1907-1911.
    [17]H.Q.Yan,J.Johnson,M.Law,R.R.He,K.Knutsen,J.R.McKinney,J.Pham,R.Saykally,P.D.Yang,ZnO nanoribbon microcavity lasers Adv.Mater.15(2003)2052-2052.
    [18]Y.Cui,Q.Q.Wei,H.K.Park,C.M.Lieber,Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species Science 293(2001)1289-1292.
    [19]X.T.Zhou,J.Q.Hu,C.P.Li,D.D.D.Ma,C.S.Lee,S.T.Lee,Silicon nanowires as chemical sensors Chem.Phys.Lett.369(2003)220-224.
    [20]R.H.Baughman,C.X.Cui,A.A.Zakhidov,Z.lqbal,J.N.Barisci,G.M.Spinks,G.G.Wallace,A.Mazzoldi,D.De Rossi,A.G.Rinzler,O.Jaschinski,S.Roth,M.Kertesz,Carbon nanotube actuators Science 284(1999)1340-1344.
    [21]J.Fraysse,A.I.Minett,O.Jaschinski,G.S.Duesberg,S.Roth,Carbon nanotubes acting like actuators Carbon 40(2002)1735-1739.
    [22]J.S.Lee,D.S.W.park,a.K.Nallani,G.S.Lee,J.B.Lee,Sub-micron metallic electrothermal actuators J.Micromechanics Microengineering 15(2005)322-327.
    [23]J.L.Costa-Kramer,N.Garcya,H.Olin,Conductance quantization histograms of gold nanowires at 4 K Phys.Rev.B 55(1997)12910-12913.
    [24]H.Mehrez,S.Ciraci,Conductance of ferromagnetic nanowires Phys.Rev.B 58(1998)9674-9676.
    [25]F.Elhoussine,S,M.Tempfli,A.Encinas,L.Piraux,Conductance quantization in magnetic nanowires electrodeposited in nanopores Appl.Phys.Lett.81(2002)1681-1683.
    [26]N.Kobayashi,M.Brandbyge,M.Tsukada,First-principles study of electron transport through monatomic Al and Na wires Phys.Rev.B 62(2000)8430-8437.
    [27]V.V.Flambaum,M.Y.Kuchiev,Possible mechanism of the fractional-conductance quantization in a one-dimensional constriction Phys.Rev.B 61(2000)R7869-R7872.
    [28]A.Y.Alekseev,V.V.Cheianov,Nonuniversal conductance quantization in high-quality quantum wires Phys.Rev.B 57(1998)R6834-R6837.
    [29]J.Lee,S.Eggert,H.Kim,S.J.Kahng,H.Shinohara,Y.Kuk,Real space imaging of one-dimensional standing waves:Direct evidence for a Luttinger liquid Phys.Rev.Lett.93(2004)166403-166406.
    [30]J.Gonzalez,J.V.Alvarez,Phase diagram of carbon nanotube ropes Phys.Rev.B 70(2004)045410-1-045410-16.
    [31]L.Perfetti,S.Mitrovic,G.Margaritondo,M.Grioni,L.Forro,L.Degiorgi,H.Hochst,Mobile small polarons and the Peierls transition in the quasi-one-dimensional conductor K0.3MoO3Phys.Rev.B 66(2002)075107-1-075107-8.
    [32]M.Remskar,Inorganic nanotubes Adv.Mater.16(2004)1497-1504.
    [33]Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of semiconducting oxides Science 291(2001)1947-1949.
    [34]F.A.Pounce,D.P.Bour,Nitride-based semiconductors for blue and green light-emitting devices Nature 386(1997)351-359.
    [35]A.B.Djurisic,Y.Chan,E.H.Li,Progress in the room-temperature optical functions of semiconductors Mater.Sci.Eng.R 38(2002)237-293.
    [36]A.Shah,P.Torres,R.Tschamer,N.Wyrsch,H.Keppner,Photovoltaic Technology:The Case for Thin-Film Solar Ceils Science 285(1999)692-698.
    [37]蒋荣华,肖顺,李艳.氮化物半导体的研究进展半导体技术 25(2000)16-20.
    [38]A.D.Berry,R.J.Tonucci,M.Fatemi,Fabrication of GaAs and InAs wires in nanochannel glass Appl.Phys.Lett.69(1996)2846-2848.
    [39]X.Duan,J.Wang,C.M.Lieber,Synthesis and optical properties of gallium arsenide nanowires Appl.Phys.Lett.76(2000)1116-1118.
    [40]V.N.Tondare,C.Balasubramanian,S.V.Shende,D.S.Joag,V.P.Godbole,S.V.Bhoraskar Field emission from open ended aluminum nitride nanotubes Appl.Phys.Lett.80(2002)4813-4815.
    [41]Y.Zhang,J.Liu,R.He,Q.Zhang,X.Zhang,J.Zhu,Synthesis of aluminum nitride nanowires from carbon nanotubes Chem.Mater.13(2001)3899-3905.
    [42]L.Yin,Y.Bando,Y.Zhu,M.Li,D.Golberg,Growth and field emission of hierarchical single-crystalline wurtzite AIN nanoarchitectures Adv.Mater.17(2005)110-114.
    [43]Q.Wu,Z.Hu,X.Wang,Y.Chen,Y.Lu.Synthesis and optical characterization of aluminum nitride nanobelts J.Phys.Chem.B 107(2003)9726-9729.
    [44]W.Han,S.Fan,Q.Li,Y.Hu,Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction Science 277(1997)1287-1289.
    [45] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. Choi, P. Yang, Single-crystal gallium nitride nanotubes Nature 422(2003)599-602.
     [46] S. Y. Bae, H. W. Seo, J. Park, H. Yang, J. C. Park, S. Y. Lee, Single-crystalline gallium nitride nanobelts Appl. Phys. Lett. 81(2002)126-128.
    [47] C. Chen, C. Yeh, Large-scale synthesis of crystalline gallium nitride nanowires Adv. Mater. 12(2000)738-781.
    [48] B. Onderka, J. Unland, R. Schmid-fetzer, Thermodynamics and phase stability in the In-N system J. Mater. Res. 17(2002)3065-3083.
    [49] A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, Indium nitride: A review on growth, characterization and properties J. Appl. Phys. 94(2003)2779-2808.
    [50] C. B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. Mackenzie, E. S. Lambers, J. C. Zolper, High temperature surface degradation on III-V nitrides J. Vac. Sci. Technol. B 14(1996)3523-3531.
    [51] S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Low-temperature, catalyzed growth of indium nitride fibers from azido-indium precursors Angew. Chem. Int. Ed. 39(2000)1470-1472.
    [52] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, Y. F. Chen, Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates Appl. Phys. Lett. 81(2002)22-24.
    [53] B. Gil, Group III nitride semiconductor compounds: Physics and applications Oxford University, New York, 1998:1-18.
    [54] J. Wu, W. Walukiewicz, Band gaps of InN and group III nitride alloys Superlattices and Microstructures 34(2003)63-75.
    
    [55] W. Walukiewicz, S. X. Lia, J. Wu, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Optical properties and electronic structure of InN and In-rich group III-nitride alloys J. Cryst.Growth 269(2004)119-127.
    [56] T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, M. Kameshima Recent progress of nitride-based light emitting devices Phys. Status Solidi (a) 200 (2003)52- 57.
    [57] M. Razeghi, A. Yasan, R. McClintock, K. Mayes, D. Shiell, S. R. Darvish, P. Kung Review of III-nitride optoelectronic materials for light emission and detection Phys. Status Solidi (c) (2004)S141-S148.
    [58] N. Shibata, T. Uemura, H. Yamaguchi, T. Yasukawa, Fabrication of LED based on III—V nitride and its applications Phys.Status. Solidi. (a) 200(2003)58-61.
    [59] S. N. Mohammad, A. A. Salvador, H. Morkoc, Emerging gallium nitride based devices Proceedings of The IEEE 83(1995)1306-1355.
    [60] R. Juza, H. Hahn, Z. Anorg. Alleg. Chem. 239(1938)282
    [61] http://www.ioffe.ru/SVA/NSM/Semicond/InN.
    [62] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stuzmann, R. A. Fisher, A. Miehr, A. Bergmaier, G. Dollinger, Thermal stability and desposition of Group III nitrides prepared by metal organic chemical vapor deposition J. Vac. Sci. Technol. B 14(1996)3532-3542.
    [63] O. Ambacher, Growth and applications of Group III-nitrides J. Phys. D: Appl. Phys. 31 (1998) 2653-2710.
    [64] H. J. Hovel, J. J. Cuomo, Electrical and optical properties of rf-sputtered GaN and InN Appl. Phys. Lett. 20(1972)71-73.
    [65] T. L. Tansley, C. P. Foley, optical bad gap of indium nitride A. J. Appl. Lett. 59(1986)3241-3244.
    [66] T. L. Tansley, C. P. Foley, Infrared absorption in indium nitride A. Appl. Lett. 60(1986)2092-2095.
    [67] T. Yodo, H. Yona, H. Ando, D. Nosei, Y. Harada, Strong band edge luminescence from InN films grown on Si substrates by electron cyclotron resonance-assisted molecular beam epitaxy Appl. Phys. Lett. 80(2002)968-990.
    [68] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmu¨ller, H. Harima, A. V. Mudry, J. Aderhold, O. Semchinova, J. Graul Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap Phys. Status Solidi (b) 229(2002)R1-R3.
    [69] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Unusual properties of the fundamental band gap of InN Appl. Phys. Lett.80(2002)3967-3969.
    [70] T. Matsuoka, Progress in nitride semiconductors from GaN to InN—MOVPE growth and characteristics Superlattices Microstructures 37(2005)19-32.
    [71] J. W. Trainor, K. Rose, J. Electron. Mater. 3 (1974) 821-828.
    [72] K. Osamura, S. Naka, Y. Murakami Preparation and optical properties of Ga_(1-x)In_xN thin films J. Appl. Phys. 46(1975)3432-3437.
    [73] N. Puychevrier, M. Menoret, Synthesis of III—V semiconductor nitrides by reactive cathodic sputtering Thin Solid Films 36(1976)141-145.
    
    [74] L. A. Marasina, I. G. Pichugin, M. Tlaczala, Krist. Technol. 12 (1977)541.
    [75] T. L. Tansley, C. P. Foley, Electron. Lett. 20(1984)1066-1068.
    [76] A. Wakahara, A. Yoshida, Heteroepitaxial growth of InN by microwave-excited metalorganic vapor phase epitaxy Appl. Phys. Lett. 54, (1989)709-711.
    [77] A. Yamamoto, Y. Murakami, K. Koide, M. Adachi, A. Hashimoto Growth temperature dependences of MOVPE InN on sapphire substrates Phys. Status Solidi (b) 228(2001)5-8.
    [78] J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger , L. Liszkay, P. Sperr, H. Lu, W. J. Schaff, nfluence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy Appl. Phys. Lett. 84(2004)1486-1488.
    [79] T. Yodo, T. Nakamura, T. Kouyama, Y. Harada, Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy Phys. Status Solidi (c) 2(2005)2305-2308.
    [80] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, S. Ohoy. Physical properties of InNwith the band gap energy of 1.1 eV J Cryst. Growth 227-228 (2001)481-485.
    [81] K. S. A. Butcher, T. L. Tansley, InN, last development and a review of the band-gap controversy Superlattices and Microstructures 38(2005)1-37.
    [82] M. Lee, H. Lin, Y. Pan, C. Shu, J. Ou, W. Chen, W. Chen, Raman and x-ray studies of InN films grown by metalorganic vapor phase epitaxy Appl. Phys. Lett. 73(1998)2606-2608.
    [83] D. A. Neumayer, J. G. Ekerdt, Growth of group III nitrides. A review of precursors and techniques Chem. Mater. 8(1996)9-25.
    [84] J. S. Dyck, K. Kash, C. C. Hayman, A. A. Argoitia, M. T. Grossner, J. C. Angus, W. L. Zhou, Synthesis of bulk polycrystalline indium nitride at subatmospheric pressures J. Mater. Res. 14(1999)2411-2417.
    [85] B. Maleyre, S. Ruffenach, O. Briot, A. van der Lee, Lattice parameters of relaxed wurtzite indium nitride powder obtained by MOCVD Superlattices and Microstructures 36(2004)527-535.
    [86] D. W. Jenkins, J. D. Dow Electronic structures and doping of InN, In_xGa_(1-x)N, and In_xAl_(1-x)N Phys. Rev. B 39(1989)3317-3329.
    [87] T. L. Tansley, R. J. Egan, Point-defect energies in the nitride of aluminum, gallium, and indium Phys. Rev. B 45(1992)10942-10950.
    [88] A. Yamamoto, K. Kasashima, K. Sugita, M. Yasuda, C. Kuroda, A. Hashimoto MOVPE growth of InN under high NH3 decomposition rate conditions Phys. Status Solidi (c) 2(2005)2285-2288.
    [89] T. V. Shubina, S. V. Ivanov, V. N. Jmerik, D. D. Solnyshkov, V. A. Vekshin, P. S. Kop'ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, K. Shimono, A. Kasic, B. Monemar, Mie resonances, infrared emission, and the band gap of InN Phys. Rev. Lett. 92(2004)117407-1-117407-3.
    [90] J. C. Ho, P. Specht, Q. Yang, X. Xu, D. Hao, E. R. Weber, Effects of stoichiometry on electrical, optical, and structural properties of indium nitride J. Appl. Phys. 98(2005)093712-1-093712-5.
    [91] M. Yoshimoto, H. Yamamoto, W. Huang, H.i Harima, J. Saraie, A. Chayahara, Yuji Horino Widening of optical bandgap of polycrystalline InN with a few percent incorporation of oxygen Appl. Phys. Lett. 83(2003)3480-3482.
    [92] X. Xu, P. Specht, R. Armitage, J. C. Ho, E. R. Weber, C. Kisielowski, Characterization of oxide precipitates in epitaxial InN by transmission electron microscopy Appl. Phys. Lett. 87(2005)092102-1-092102-3.
    [93] C. Stampfl, C. G. Van de Walle, D. Vogel, P. KrUger, J. Pollmann Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials Phys. Rev. B 61(2000)R7846-R7847.
    [94] S. Limpijumnong, C. G. Van de Walle Passivation and doping due to hydrogen in III-nitrides Phys. Status Solidi (b) 228(2001)303-307.
    [95] T. Inushima, M. Higashiwaki, T. Matsui, Optical properties of Si-doped InN grown on sapphire (0001) Phys. Rev. B 68(2003)235204-1-235204-7.
    [96] P. P. T. Chen, K. S. A. Butchera, M. Wintrebert-Fouqueta, R. Wuhrerb, M. R. Phillipsb, Kathryn. E. Princec, H. Timmersd, S. K. Shresthad, B. F. Ushere, Apparent band-gap shift in InN films grown by remote-plasma-enhanced CVD J. Cryst. Growth 228(2006)241-246.
    [97] F. Bechstedt, J. Furthmuller, M. Ferhat, L. K. Teles, L. M. R. Scolfaro, J. R. Leite, V. Yu. Davydov, O. Ambacher, R. Goldhahn, Energy gap and optical properties of In_xGa_(1-x)N Phys. Status Solidi (a) 195(2003)628-633.
    [98] Y. N. Xu, W. Y. Ching, Electronic, optical, and structural properties of some wurtzite crystals Phys. Rev. B 48(1993)4335-4351.
    [99] D. Fritsch, H. Schmidt, M. Grundmann Band dispersion relations of zinc-blende and wurtzite InN Phys. Rev. B 69(2004)165204-1-165204-5.
    [100] Z. X. Bi, R. Zhang, Z. L. Xie, X. Q. Xiu, Y. D. Ye, B. Liu, S. L. Gu, B. Shen, Y. Shi, Y. D. Zheng, Thermal annealing of InN films grown by metal-organic chemical vapor deposition Thin Solid Films 488(2005)111-115.
    [101] Q. Guo, O. Kato, Thermal stability of indium nitride single crystal films J. Appl. Phys. 73(1993)7969-7971.
    [102] L. Gao, Q. Zhang, J. Li, Preparation of ultrafine InN powder by the nitridation of In_2O_3 or In(OH)_3 and its thermal stability J. Mater. Chem. 13(2003)154-158.
    [103] S. Krukowski, A. Witek, J. Adamczyk, J. Jun, M. Bockowski, I. Grzegory, B. Lucznik, G. Nowak, M. Wr6blewski, A. Presz, S. Gierlotka, S. Stelmach, B. Palosz, S. Porowski, P. Zinn, Thermal properties of indium nitride J. Phys. Chem. Solids 59(1998)289-295.
    [104] J. A. Van Vechten, Quantum dielectric theory of electronegativity in covalent systems. III. pressure-temperature phase diagrams, heats of mixing, and distribution coefficients Phys. Rev.B 7(1973)1479-1507.
    [105] N. Dietz, M. Alevli, V. Woods, M. Strassburg, H. Kang, I. T. Ferguson, The characterization of InN growth under high-pressure CVD conditions Phys. Status Solidi (b) 242(2005)2985-2994.
    [106] J. Leitner, P. Marsik, D. Sedmidubsky, K. Ruzick, High temperature enthalpy, heat capacity and other thermodynamic functions of solid InN J. Phys. Chem. Solids 65(2004)1127-1131.
    [107] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmu¨ller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, E. E. Haller, Band gap of InN and In-Rich In_xGa_(1-x)N alloys (0.36 < x < 1) Phys. Status Solidi (b) 230(2002)R4-R6.
    [108] M. Higashiwaki, T. Matsui, Estimation of band-gapenergy of intrinsic InN from photoluminescence properties of undoped and Si-doped InN films grown by plasma-assisted molecular-beam epitaxy J. Cryst. Growth 269(2004)162-166.
    [109] S. H. Wei, X. Nie, I. G. Batyrev, S. B. Zhang, Breakdown of the band-gap-common-cation rule: The origin of the small band gap of InN Phys. Rev. B67(2003)165209-1-165209-4.
    [110] P. Carrier, S. H. Wei, Theoretical study of the band-gap anomaly of InN J. Appl. Phys. 97(2005)033707-1 -033707-5.
    [111] L. W. Yin, Y. Bando, D. Golberg, M. S. Li, Template-free synthesis on single-crystalline InP nanotubes Appl. Phys. Lett. 85(2004)3869-3871.
    [112] A. G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, V. Y. Davydov Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy Appl. Phys. Lett. 83(2003)4788-4790.
    [113] K. Scott, A. Butcher, M. Wintrebert-Fouquet, P. P.T. Chen, K. E. Prince, H. Timmers, S. K. Shrestha, T. V. Shubina, S. V. Ivanov, R. Wuhrer, M. R. Phillips, B. Monemar, Non-stoichiometry and non-homogeneity in InN Phys. Status Solidi (c) 2(2005)2263-2266.
    [114]沈学础.半导体光学性质.北京:科学出版社,1992:147-150.
    [115] Y. Uesaka, A. Yamamoto, A. Hashimoto, Band gap widening of MBEgrown InN layers by impurity incorporation J.Cryst. Growth 278(2005)402-405.
    [116] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Effects of the narrow band gap on the properties of InN Phys. Rev. B 66(2002)201403-1-201403-4.
    [117] J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, R. Jakiela, Effects of electron concentration on the optical absorption edge of InN Appl. Phys. Lett. 84(2004)2805-2807.
    [118] K. L. Westra, R. P. W. Lawson, M. J. Brett, The effect of oxygen contamination on the properties of reactively sputtered indium nitride films J. Vac. Sci. Technol. A. 6(1998)1730-1732.
    [119] C. P. Foley, J. Lyngdai, Analysis of indium nitride surface oxidation, J. Vac. Sci. Technol. A. 5(1987)1708-1712.
    [120] D. Alexandrov, K. Scott A. Butcher, M. Wintrebert-Fouquet, Absorption and photoluminescence features caused by defects in InN J. Cryst.Growth 269 (2004)77-86.
    [121] Motlan, E. M. Goldys, T. L. Tansley, Optical and electrical properties of InN grown by radio-frequency reactive sputtering, J. Cryst. Growth 241(2002)165-170.
    [122] D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, Z. Liliental-Weber, Donor and acceptor concentrations in degenerate InN Appl. Phys. Lett.80(2002)258-260.
    [123] I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In_2O_3 films: Basic optical properties and applications to energy-efficient windows J. Appl. Phys. 60 (11) (1986) R123.
    [124] M. Girtan, Investigations on the optical constants of indium oxide thin films prepared by ultrasonic spray pyrolysis Mater. Sci. Eng. B 118(2005)175-178.
    [125] Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, L. C. Chen, Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods J. Cryst. Growth 269(2004)87-94.
    [126] S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B. W. Alphenaar, M. K. Sunkara, Mechanisms of 1D crystal growth in reactive vapor transport: indium nitride nanowires Nano Lett. 5(2005)1625-1631.
    [127] S. V. Ivanov, T. V. Shubina, V. N. Jmerik, V. A. Vekshin, P. S. Kop'ev, B. Monemar, Plasma-assisted MBE growth and characterization of InN on sapphire J. Cryst. Growth 269(2004)1-9.
    [128] T. V. Shubina, D. D. Solnyshkov, A. Vasson, J. Leymarie, M. Larsson, P.O. Holtz, B. Monemar, Hai Lu, W.J. Schaff, P.S. Kop'ev, Surface-plasmon resonances in indium nitride with metal-enriched nano-particles J. Cryst. Growth 288(2006)230-235.
    [129] T. V. Shubina, S. V. Ivanov, V. N. Jmerik, M. M. Glazov, A. P. Kalvarskii, M. G. Tkachman, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, I. Akasaki, K. S. A. Butcher, Q. Guo, B. Monemar, P. S. Kop'ev, Optical properties of InN with stoichoimetry violation and indium clustering Phys. Status Solidi (A) 202(2005)377-382.
    [130] K. S. A. Butcher, M. Wintrebert-Fouquet, P. P.-T. Chen, T. L. Tansley, H. Dou, S. K. Shrestha, H. Timmers, M. Kuball, K. E. Prince, J. E. Bradby, Nitrogen-rich indium nitride J. Appl. Phys. 95(2004)6124-6128.
    [131] Z. G.Qian, W. Z. Shen, H. Ogawa, Q. X. Guo, Experimental studies of lattice dynamical properties in indium nitride J. Phys.: Condens. Matter 16(2004)R381-R414.
    [132] G. Kaczmarczyk, A. Kaschner, S. Reich, A. Hoffmann, C. Thomsen, D. J. As, A. P. Lima, D. Schikora, K. Lischka, R. Averbeck, H. Riechert Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations Appl. Phys. Lett. 76(2000)2122-2124.
    [133] V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, T. Inushima, Experimental and theoretical studies of phonons in hexagonal InN Appl. Phys. Lett. 75(1999)3297-3299.
    [134] K. S. A. Butcher, H. Dou, E. M. Goldys, T. L. Tansley, S. Srikeaw, Ultraviolet raman and optical transmission studies of RF sputtered indium nitride Phys. Status Solidi (c) 0(2002)373-376.
    [135] M. Kuball, J. W. Pomeroy, M. Wintrebert-Fouquet, K. S. A. Butcher, H. Luc, W. J. Schaffc, A Raman spectroscopy study of InN J. Cryst. Growth 269(2004)59-65.
    [136] O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, J. Frandon, Absorption and Raman scattering processes in InN films and dots J. Cryst. Growth 269(2004)22-28.
    [137] M. C. Lee, H. C. Lin, Y. C. Pan, C. K. Shu, J. Ou, W. H.Chen, W. K. Chen, Raman and x-ray studies of InN films grown by metalorganic vapor phase epitaxy Appl. Phys. Lett. 73(1998)2606-2608.
    [138] V. Darakchieva, P. P. Paskov, E. Valcheva, T. Paskova, B. Monemar, M. Schubert, H. Lu, W. J. Schaff, Deformation potentials of the E_1(TO) and E_2 modes of InN Appl. Phys. Lett. 84(2004)3636-3638.
    [139] E. Kurimoto, H. Harima, A. Hashimoto, A. Yamamoto, MOCVD growth of high-quality InN films and Raman characterization of residual stress effects Phys. Status Solidi (b) 228(2001)1-4.
    [140] O. Briot, B. Gil, B. Maleyre, S. Ruffenach, C. Pinquier, F. Demangeot, J. Frandon, Strain-induced correlations between the phonon frequencies of indium nitride Phys. Status Solidi (c) 1(2004)1420-1424.
    [141] T. Inushima, T. Shiraishi, V.Yu Davydov, Phonon structure of InN grown by atomic layer epitaxy Solid State Commun. 110(1999)491-495.
    [142] H. Lu, W. J. Schaff, J. Hwang, H. Wu, W. Yeo, A. Pharkya, L. F. Eastman, Improvement on epitaxial grown of InN by migration enhanced epitaxy Appl. Phys. Lett. 77(2000)2548-2550.
    [143] E. A. Davis, S. F. J. Cox, R. L. Lichti, C. G. Van de Walle, Shallow donor state of hydrogen in indium nitride Appl. Phys. Lett. 82(2003)592-594.
    [144]V.W.L.Chin,T.L.Tansley,T.Osotchan,Electron mobllities in gallium,indium,and aluminum nitrldes,J.Appl.Phys.75(1994)7365-7372.
    [145]H.Lu,W.J.Schaff,J.Hwang,H.Wu,G.Koley,L.F.Eastman,Effect of an AIN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy Appl.Phys.Lett.79(2001)1489-1491.
    [146]C.H.Swartz,P.Tompkins,N.C.Giles,T.H.Myers,H.Lub,W.J.Schaff,L.F.Eastman,Investigation of multiple carrier effects in InN epilayers using variable magnetic.eld Hall measurements J.Cryst.Growth 269(2004)29-34.
    [147]S.K.O'Leary,B.E.Foutz,M.S.Shur,U.V.Bhapkar,F.Eastman,Electron transport in wurtzite indium nitride J.Appl.Phys.83(1998)826-829.
    [148]B.E.Foutz,S.K.O'Leary,M.S.Shur,L.F.Eastman,Transient electron transport in wurtzite GaN,InN,and AIN J.Appl.Phys.85(1999)7727-7734.
    [149]E.Bellotti,B.K.Doshi,K.F.Brennan,J.D.Albrech,P.Paul Ruden,Ensemble Monte Carlo study of electron transport in wurtzite InN J.Appl.Phys.85(1999)916-923.
    [150]S.Chen,S.Lin,Kun-Ta Wu,C.Huang,P.Chang,N.C.Chen,C.Chang,H.Peng,C.Shih,K.Liu,H.Wang,P.Yang,C.T.Liang,Y.H.Chang,Y.F.Chen,Transport measurements on MOVPE-grown InN films Microelectronics J.36(2005)428-430.
    [151]S.Lin,K.Wu,C.Huang,C.T.Liang,Y.H.Chang,Y.F.Chen,P.H.Chang,N.C.Chen,C.A.Chang,H.C.Peng,C.F.Shih,K.S.Liu,T.Y.Lin,Electron transport in In-rich In xGa1- xN films J.Appl.Phys.97(2005)046101-1-046101-3.
    [152]潘葳,沈文忠,小川博斯,郭其新.物理学进展 24(2004)195-218.
    [153]潘葳,沈文忠.六方InN薄膜的载流子输运特性研究.物理学报 53(2004)1501-1506.
    [154]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002:32-42.
    [155]黄惠忠.纳米材料分析.北京:化学工业出版社,2003:2-5.
    [156]A.Revesz,Melting behavior and origin of strain in ball-milled nanocrystalline Al powders J.Mater.Sci.40(200)1643-1646.
    [157]M.Dippe,A.Maier,V.Gimple,H.Wider,W.E.Evenson,R.L.Rasera,G.Schatz,Size-dependent melting of self-assembled indium nanostructures Phys.Rev.B 87(2001)095505-1-095505-4.
    [158]M.Zhang,M.Yu.Efremov,F.Schiettekatte,E.A.Olson,A.T.Kwan,S.L.Lai,T.Wisleder,J.E.Greene,L.H.Allen,Size-dependent melting point depression of nanostructures:Nanocalorimetric measurements Phys.Rev.B 62(2001)10548-10557.
    [159]C.Zhou,J.Kong,H.Dai,Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters Appl.Phys.Lett.76(1999)1597-1599.
    [160]S.Tans,A.Verschueren,C.Dekker,Room-temperature transisitor based on a single carbon nanotube Nature 393(1998)49-52.
    [161]A.Javey,H.Kim,M.Brink,Q.Wang,A.Ural,J.Guo,P.Mcintyre,P.Mceuen,M.Lundstrom,H.J.Dai,Hing-kappa dielectrics for advanced carbon-nanotube transistors and logic gates Nat.Mater.1(2002)241-246.
    [162]Y.Huang,X.F.Duan,Y.Cui,L.J.Lauhon,K.H.Kim,C.M.Lieber,Logic gates and computation from assembled nanowire building blocks Science 294(2001)1313-1317.
    [163]H.T.Ng,T.Yamada,P.Nguyen,Y.P.Chen,M.Meyyappan,Single crystal nanowire vertical surround-gate field-effect transistor Nano Lett.4(2004)1247-1252.
    [164]Z.Y.Fan,D.W.Wang,P.C.Chang,W.Y.Tseng,J.G.Lu,ZnO nanowire field-effect transistor and oxygen sensing property Appl.Phys.Lett.85(2004)5923-5925.
    [165]Y.W.Heo,D.P.Norton,L.C.Kwon,B.S.Kang,F.Ren,S.J.Peraton,J.R.Laroche,ZnO nanowire growth and devices Mater.Sci.Eng.R 47(2004)1-47.
    [166]M.S.Gudiksen,L.J.Lauhon,J.F.Wang,D.C.Smith,C.M.Lieber,Growth of nanowire superlattice structures for nanoscale photonics and electronics Nature 415(2002)617-620.
    [167] M. C. Mcalpine, R. S. Friedman, S. Jin, K. H. Lin, W. U. Wang , C. M. Lieber, High-performance nanowire electronics and photonics on glass and plastic substrates Nano Lett. 3(2003)1531-1535.
    [168] K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, D. G. Hasko, Field emission from dense, sparse, and patterned arrays of carbon nanofibers Appl. Phys. Lett. 80(2002)2011-2013.
    [169] S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, J. T. Fourkas, Field-emission studies on thin films of zinc oxide nanowires Appl. Phys. Lett. 83(2003) 4821-4823.
    [170] J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, P. D. Yang, Single nanowire lasers J. Phys. Chem. B 105(2001)11387-11390.
    [171] C. Z. Li, H. X. He, A. Bogozi, J. S. Bunch, N. J. Tao, Molecular detection based on conductance quantization of nanowires Appl. Phys. Lett. 76(2000)1333-1335.
    [172] Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, X. L. He, J. P. Li, C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors Appl. Phys. Lett. 84(2004)3654-3656.
    [173] M. F. Yu, M. Z. Atashbar, X. L. Chen, Mechanical and electrical characterization of beta-Ga2O3 nanostructures for sensing applications IEEE Sensors J. 5(2005)20-25.
    [174] D. J. Zhang, C. Li, X. L. Liu, S. Han, T. Tang, C. W. Zhou, Doping dependent NH_3 sensing of indium oxide nanowires Appl. Phys. Lett. 83(2003)1845-1847.
    [175] H. Q. Liu, J. Kameoka, D. A. Czaplewski, H. G. Craighead, Polymeric nanowire chemical sensor Nano Lett. 4(2004)671-675.
    [176] Q. H. Li, Y. X. Liang, Q. Wan, T. H. Wang, Oxygen sensing characteristics of individual ZnO nanowire transistors Appl. Phys. Lett. 85(2004)6389-6391.
    [177] Y. S. Zhang, K. Yu, D. S. Jiang, Z. Q. Zhu, H. R. Geng, L. Q. Luo, Zinc oxide nanorod and nanowire for humidity sensor Appl. Surf. Sci. 242(2005)212-217.
    [178] A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, Super-tough carbon-nanotube fibers Nature 423(2003)703.
    [179] B. I. Yakobson, C. J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response Phys. Rev. lett. 76(1996)2511-2514.
    [180] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes Nature 381(1996)678-680.
    [181] Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, D. L. Zhang, Tensile tests of ropes of very long aligned multiwall carbon nanotubes Appl. Phys. Lett. 74(1999)3152-3154.
    [182] L. Song, L. Ci, L. Lv, Z. Zhou, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, X. Zhao, Z. Zhang, X. Dou, W. Zhou, G. Wang, C. Wang, S. Xie, Direct synthesis of a macroscale single-walled carbon nanotube non-woven materials Adv. Mater. 16(2004)1529-1534.
    [183] L. An, W. Xu, S. Rajagopalan, C. Wang, H. Wang, Y. Yan, L. Zhang, D. Jiang, J. Kapat, L. Chow, B. Guo, J. Liang, R. Vaidyannthan, Carbon-nanotube-reinforced polymer-derived ceramic composite Adv. Mater. 16(2004)2036-2040.
    [184] L. Ci, J. Bai, Novel micro/nanoscale hybrid reinforcement: Multiwalled carbon nanotubes on SiC particles Adv. Mater. 16(2004)2021-2024.
    [185] W. Yang, H. Araki, S. Thaveethavorn, A. Kohyama, J. Yu, H. Suzuki, T. Noda, Advanced CVI-SiC/SiC composite with in-situ growth of SiC nanowires in the matrix as additional reinforcements Mater. Sci. Forum 1009-1012(2005)475-479.
    [186] W. Yang, H. Araki, A. Kohyama, Y. Katoh, Q. Hu, H. Suzuki, T. Noda, Tyranno-SA/SiC composite with SiC nanowires in the matrix by CVI process J. Nucl. Mater. 329-333(2004)539-543.
    [187] N. G. Portney, M. Ozkan, Nano-oncology: drug delivery, imaging, and sensing Anal Bioanal Chem 384 (2006)620-630.
    [188] H. G. Craighead, Nanostructure science and technology: Impact and prospects for biology J. Vac. Sci. Technol. A 21 (2003)S216-S221.
    [189] A. M. Bittner, Biomolecular rods and tubes in nanotechnology Naturwissenschaften 92 (2005)51-64.
    [190] C. R. Martin, P. Kohli, The emerging field of nanotube biotechnology Nat. Rev. Drug, Discovery 2(2003)29-37.
    [191] X. F. Shi, J. L. Hudson, P. P. Spicer, J. M. Tour, R. Krishnamoorti, A. G. Mikos, Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering Nanotechnology 16(2005)S531-S538.
    [192] M. Zheng, A. Jagota, E. D. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi, DNA-assisted dispersion and separation of carbon nanotubes Nat. Mater. 2(2003)338-342.
    [193] S. Kubota, K. Johkura, K. Asanuma, Y. Okouchi, N. Ogiwara, K. Sasaki, T. Kasuga, Titanium oxide nanotubes for bone regeneration J. Mater. Sci.-Mater. Medicine 15(2004)1031-1035.
    [194] D. H. Reich, M. Tanase, A. Hultgren, L. A. Bauer, C. S. Chen, G. J. Meyer, Biological applications of multifunctional magnetic nanowires J. Appl. Phys. 93(2003)7275-7280.
    [195] H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, R. A. Fischer, Investigations on InN whiskers grown by chemical vapor deposition J. Cryst. Growth 231(2001)68-74.
    [196] L. W. Yin, Y. Bando, D. Golberg, M. Li, Growth of single-crystal indium nitride nanotubes and nanowires by a controlled-carbonitridation reaction route Adv. Mater. 16(2004)1833-1838.
    [197] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Vhen, K/ H. Chen, L. C. Chen, Sharp infrared emission from single-crystalline indium nitride nanobelts prepared using guided-stream thermal chemical vapor Adv. Funct. Mater. 16(2006)537-541.
    [198] K. Sardar, F. L. Deepak, A.Govindaraj, M. M. Seikh, C. N. R. Rao, InN nanocrystals, nanowires, and nanotubes Small 1(2005)91-94.
    [199] J. Zhang, B. Xu, F. Jiang, Y. Yang, J. Li, Fabrication of ordered InN nanowire arrays and their photoluminescence properties Phys. Lett. A 337(2005)121-126.
    [200] O. Kryliouk, H. J. Park, H. T. Wang, B. S. Kang, T. J. Anderson, F. Ren, S. J. Pearton, Pt-coated InN nanorods for selective detection of hydrogen at room temperature J. Vac. Sci. Technol. B 23(2005)1891-1894.
    [201] M. C. Johnson, C. J. Lee, E. D. Bourret-Ourchesne, S. L. Konsek, S. Aloni, W. Q. Han, A. Zettl, Growth and morphology of 0.80 eV photoemitting indium nitride nanowires Appl. Phys. Lett. 85(2005)5670-5672.
    [202] T. Tang, S. Han, W. Jin, X. Liu, C. Li, D. Zhang, C. Zhou, B. Chen, J. Han, M. Meyyapan, Synthesis and characterization of single-crystal indium nitride nanowires J. Mater. Res.19(2004)423-426.
    [203] J. Zhang, L. Zhang, X. Peng, X. Wang, Vapor-solid growth route to single-crystalline indium nitride J. Mater. Chem. 12(2002)802-804.
    [204] B. Schwenzer, L. Loeffler, R. Seshadri, S. Keller, F. F. Lange, S. P. Denbaars, U. K. Mishra, Preparation of indium nitride micro- and nanostructures by ammonolysis of indium oxide J. Mater. Chem. 14(2004)637-641.
    [205] S. Luo, W. Zhou, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, S. Xie, Synthesis of long indium nitride indium nitride nanowires with uniform diameters in large quantities Small 1(2005)1004-1009.
    [206] W. S. Jung, C. S. Ra, B. K. Min, Growth of nano- and microstructured indium nitride crystals by the raction of indium oxide with ammonia Bull. Korean Chem. Soc. 26(2005)1354-1358.
    
    [207] G. Cheng, E. Stern, D. Turner-Evans, M. A. Reed, Electronic properties of InN nanowires Appl. Phys. Lett. 87(2005)253103-1-253103-3.
    [208] S. Luo, W. Zhou, W. Wang, Z. Zhang, L. Liu, X. Dou, J, Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, S. Xie, Template-free synthesis of helical hexagonal microtubes of indium nitride Appl. Phys. Lett. 87(2005)063109-1-063109-3.
    [209] S. Luo, W. Zhou, Z. Zhang, X. Dou, L. Liu, X. Zhao, D. Liu, L. Song, Y. Xiang, J. Zhou, S. Xie, Bulk-quantity synthesis of single-crystalline indium nitride nanobelts Chem. Phys. Lett. 411(2005)361-365.
    [210] S. C. Shi, C. F. Chen, G. M. Hsu, J. S. Hwang, S. Chattopadhyay, Z. H. Lan, K. H. Chen, L. C. Chen, Reduced temperature-quenching of photoluminescence from indium nitride nanotips grown by metalorganic chemical vapor deposition App. Phys. Lett. 87(2005)203103-1-203103-3.
    [211] Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L. C. Chen, C. C. Chen, Nanohomojunction (GaN) and nanoheterojunction (InN) nanorods on one-dimensional GaN nanowires substrates Adv. Funct. Mater. 14(2004)233-237.
    [212] L. W. Yin, Y. Bando, Y. C. Zhu, D. Golberg, M. S. Li, Synthesis of InN/InP bore/sheath nanowires Appl. Phys. Lett. 84(2004)1546-1548.
    [213] H. A. Lin, R. Jaccodine, M. S. Freund, Doping-density dependence of scanning tunneling spectroscopy on lightly doped silicon Appl. Phys. Lett. 72(1998)1993-1995.
    [214] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, S. J. Pearton, Transport properties of InN nanowires Appl. Phys. Lett. 87(2005)093112-1-093112-3.
    [215] W. A. Deheer, A. Chatelain, D. Ugarte, A Carbon nanotube field-emission electron source Science 270(1995)1179-1180.
    [216] R. H. Baughman, A. A. Zakhidov, W. A. Deheer, Carbon nanotubes-the route toward appications Science 297(2002)187-792.
    [217] L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, D. Golberg, Growth and field emssion of hierarchical single-crystalline wurthzite A1N nanoarchitechitures Adv. Mater. 17(2005)110-114.
    [218] C. F. Shih, N. C. Chen, P. H. Chang, K. S. Liu, Field emission properties of self-assembled InN nano-structures: Effect of Ga incorporation J. Cryst. Growth 281(2005)328-333.
    [219] X. H. Ji, S. P. Lau, H. Y. Yang, S. F. Yu, Aligned InN nanofingers prepared by the ion-beam assisted filtered cathodic vacuum arc technique Nanotechnology 16(2005)3069-3073.
    [220] Y. J. Chen, Q. H. Li, Y. X. Liang, T. H. Wang, Q. Zhao, D. P. Yu, Field-emission from long SnO2 nanobelt arrays Appl. Phys. Lett. 85(2004)5682-5684.
    [221] L. Luo, K. Yu, Z. Zhu, Y. Zhang, H. Ma, C. Xue, Y. Yang, S. Chen, Field emission from GaN nanobelts with herringbone morphology Mater. Lett. 58(2004)2893-2896.
    [222] D. F. Zhang, L. D. Sun, J. L. Yin, C. H. Yan, Low-temperature fabrication of highly crystalline SnO2 nanorods Adv. Mater. 15(2003)1022-1026.
    [223] O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, C. A. Grimes, Hydrogen sensing using titania nanotubes Sen. Actuators B 93(2003)338-344.
    [224] J. L. Solis, S. Saukko, L. Kish, C. G. Granqvist, V. Lantto, Semiconductor gas sensors based on nanostructured tungsten oxide Thin Solid Films 391(2001)255-260.
    [1]F.A.Ponce,D.P.Bour,Nitride-based semiconductors for blue and green light-emitting devices Nature 386(1997)351-359.
    [2]A.B.Djurisic,Y.Chan,E.H.Li,Progress in the room-temperature optical functions of semiconductors Mater.Sci.Eng.R 38(2002)237-293.
    [3]H.Mrkoc,S.Strite,G.B.Gao,M.E.Lin,B.Sverdlov,M.Bums,Large-band-gap SIC,Ⅲ-Ⅴ nitride,and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies J.Appl.Phys.76(1994)1363-1398.
    [4]F.Qian,S.Gradecak,Y.Li,C.Y.Wen,C.M.Lieber,Core/multishell nanowire heterostructures as multicoior high-efficiency light-emitting diodes Nano Lett.5(2005)2287-2291.
    [5]H.M.Kim,Y.H.Cho,H.Lee,S.I.Kim,S.R.Ryu,D.Y.Kim,T.W.Kang,K.S.Chung,High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays Nano Lett.4(2004)1059-1062.
    [6]O.Ambacher,Growth and applications of Group Ⅲ-nitrides J.Phys.D:Appl.Phys.31(1998)2653-2710.
    [7]I.Vurgaftman,J.R.Meyer,Band parameters for nitrogen-containing semiconductors J.Appl.Phys.94(2003)3675-3696.
    [8]蒋荣华,削顺珍,李燕,氮化物半导体的研究进展半导体技术,25(2000)16-20.
    [9]A.G.Bhuiyan,A.Hashimoto,A.Yamamoto,Indium nitride:A review on growth,characterization and properties J.Appl.Phys.94(2003)2779-2808.
    [10]B.R.Nag,Electron mobility in indium nitride J.Crystal Growth 269(2004)35-40.
    [11]R.Asca'zubi,I.Wilke,K.Denniston,H.Lu,W.J.Schaff,Terahertz emission by InN Appl.Phys.Lett.84(2004)4810-4812.
    [12]潘葳,沈文忠,小川博斯,郭其新,半导体氮化铟(InN)的电学性质物理学报24(2004)195-215.
    [13]O.Ambacher,M.S.Brandt,R.Dimitrov,T.Metzger,M.Stuzmann,R.A.Fisher,A.Miehr,A.Bergmaier,G.Dollinger,Thermal stability and desposition of Group Ⅲ nitrides prepared by metal organic chemical vapor deposition J.Vac.Sci.Technol.B 14(1996)3532-3542.
    [14]I.Grzegory,J.Jun,St.Krukowski,M.Bockowski,S.Porowski,Phys.B 185(1993)99-102.
    [15]B.Onderka,J.Unland,R.Schemid-Fetzer,Thermdynamics and phase stability in the In-N system J.Mater.Res.17(2002)3065-3083.
    [16]C.B.Vartuli,S.J.Pearton,C.R.Abemathy,J.D.Mackenzie,E.S.Lambers,J.C.Zolper,High temperature surface degradation on Ⅲ-Ⅴ nitrides J.Vac.Sci.Technol.B 14(1996)3523-3531.
    [17]L.Gao,Q.Zhang,J.Li,Preparation of ultrafine InN powder by the nitridation of In_2O_3 or In(OH)_3 and its thermal stability J.Mater.Chem.13(2003)154-158.
    [18]Q.Guo,O.Kato,Thermal stability of indium nitride single crystal films J.Appi.Phys.73(1993)7969-7971.
    [19]S.Strite,H.Mrkoc,GaN,AIN,InN:A review J.Vac.Sci.Technol.B10(1992)1237-1266.
    [20]D.A.Neumayer,J.G.Ekerdt,Growth of Group Ⅲ nitrides.A review of precursors and techniques Chem.Mater.8(1996)9-25.
    [21]S.Iijima,Helical microtubes ofgraphitic carbon Nature 356(1991)56-58.
    [22]Y.Xia,P.Yang,Y.Sun,Y.Wu,B.Mayers,B.Gates,Y.Yin,F.Kim,H.Yan,One-dimensional nanostructures:synthesis,characterization,and applications Adv.Mater.15(2003)353-389.
    [23]H.Dai,Carbon nanotubes:opportunities and challenges Surf.Sci.500(2002)218-241.
    [24]C.N.R.Rao,F.L.Deepak,Gautam Gundiah,A.Govindaraj,Inorganicnanowires Progress in Solid State Chem. 31(2003)5-147.
    [25] M. L. Cohen. Nanotubes, nanoscience, and nanotechnology Mater. Sci. Eng. C 15(2001)1-11.
    [26] M. Law, J. Goldberger, P. D. Yang, Semiconductor nanowires and nanotubes Annu. Rev. Mater. Res. 34(2004)83-122.
    
    [27] M. Remskar, Inorganic nanotubes Adv. Mater. 16(2004)1479-1504.
    [28] A. Fert, L. Piraux, Magnetic nanowires J. Magn. Magn. Mater. 200(1999)338-358.
    [29] K. Shantha Shankar, A. K. Raychaudhuri, Fabrication of nanowires of multicomponent oxides: Review of recent advances Mater. Sci. Eng. C 25(2005)738-751.
    [30] A. M. Bittner, Biomolecular rods and tubes in nanotechnology Naturwissenschaften 92 (2005)51-64.
    [31] S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Low-temperature, catalyzed growth of indium nitride fibers from azido-indium precursors Angew. Chem. Int. Ed. 39(2000)1470-1472.
    [32] H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, R. A. Fischer, Investigations on InN whiskers grown by chemical vapor deposition J. Cryst. Growth 231(2001)68-74.
    [33] K. Sardar, F. L. Deepak, A.Govindaraj, M. M. Seikh, C. N. R. Rao, InN nanocrystals, nanowires, and nanotubes Small 1(2005)91-94.
    [34] T. Tang, S. Han, W. Jin, X. Liu, C. Li, D. Zhang, C. Zhou, B. Chen, J. Han, M. Meyyapan,Synthesis and characterization of single-crystal indium nitride nanowires J. Mater. Res. 19(2004)423-426.
     [35] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, Y. F. Chen, Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates Appl. Phys. Lett. 81(2002)22-24.
    [36] Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, L. C. Chen, Growth mechanism, structure and 1R photoluminescence studies of indium nitride nanorods J. Cryst. Growth 269(2004)87-94.
    [37] M. C. Johnson, C. J. Lee, E. D. Bourret-Ourchesne, S. L. Konsek, S. Aloni, W. Q. Han, A. Zettl, Growth and morphology of 0.80 eV photoemitting indium nitride nanowires Appl. Phys. Lett. 85(2005)5670-5672.
    [38] S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B. W. Alphenaar, M. K. Sunkara, Mechanisms of 1D crystal growth in reactive vapor transport: indium nitride nanowires Nano Lett. 5(2005)1625-1631.
    [39] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, L. C. Chen, Sharp infrared emission from single-crystalline indium nitride nanobelts prepared using guided-stream thermal chemical vapor Adv. Funct. Mater. 16 (2006) 537-541.
    [40] O. Kryliouk, H. J. Park, H. T. Wang, B. S. Kang, T. J. Anderson, F. Ren, S. J. Pearton, Pt-coated InN nanorods for selective detection of hydrogen at room temperature J. Vac. Sci. Technol. B 23(2005)1891-1894.
    [41] Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L. C. Chen, C. C. Chen, Nanohomojunction (GaN) and nanoheterojunction (InN) nanorods on one-dimensional GaN nanowires substrates Adv. Funct. Mater. 14(2004)233-237.
    [42] L. W. Yin, Y. Bando, D. Golberg, M. Li, Growth of single-crystal indium nitride nanotubes and nanowires by a controlled-carbonitridation reaction route Adv. Mater. 16(2004)1833-1838.
    [43] J. zhang, B. Xu, F. Jiang, Y. Yang, J. Li, Fabrication of ordered InN nanowire arrays and their photoluminescence properties Phys. Lett. A 337(2005)121-126.
    
    [44] B. Schwenzer, L. Loeffler, R. Seshadri, S. Keller, F. F. Lange, S. P. Denbaars, U. K. Mishra, Preparation of indium nitride micro- and nanostructures by ammonolysis of indium oxide J. Mater. Chem. 14(2004)637-641.
    [45] W. S. Jung, C. S. Ra, B. K. Min, Growth of nano- and microstructured indium nitride crystals by the raction of indium oxide with ammonia Bull. Korean Chem. Soc. 26(2005)1354-1358.
    [46] T. Yodo, H. Yona, H. Ando, D. Nosei, Y. Harada, Strong band edge luminescence from InN films grown on Si substrates by electron cyclotron resonance-assisted molecular beam epitaxy Appl. Phys. Lett. 80(2002)968-970.
    [47] J. Zhang, L. Zhang, X. Peng, X. Wang, Vapor-solid growth route to single-crystalline indium nitride J. Mater. Chem. 12(2002)802-804.
    [48] N. Takahashi, R. Matsumoto, A. Koukitu, H. Seki, Growth of InN at high temperature by halide vapor phase epitaxy Jpn. J. Appl. Phys. Part2 36(1997)L743-L745.
    [49] H. J. Chun, Y. S. Choi, S. Y. Bae, H. C. Choi, J. Park, Single-crystalline gallium-doped indium oxide nanowires Appl. Phys. Lett. 85(2004)461-463.
    [50] H. Shinoda, N. Mutsukura, Deposition of an InN thin film by a r.f. plasma-assisted reactive ion-beam sputtering deposition (R-IBSD) technique Diamond Relat. Mater. 11(2002)896-900.
    [51] O. Takai, K. Ikuta, Y. Inoue, Growth and nanostructure of InN thin films deposited by reactive magnetron sputtering Thin Solid Films 318(1998)148-150.
    [52] R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 1983-1984 P.D47.
    [53] Motlan, E. M. Goldys, T. L. Tansley, Optical and electrical properties of InN grown by radio-frequency reactive sputtering, J. Cryst. Growth 241 (2002) 165-170.
    [54] C. P. Foley, J. Lyngdai, Analysis of indium nitride surface oxidation, J. Vac. Sci. Technol.A.5(1987)1708-1712.
    [55] E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, K. Kisoda, Spectroscopic observation of oxidation process in InN, Appl. Phys. Lett. 84(2004)212-214.
    [56] R. S. Wagner, W. C. Illis, Vapor-Liquid-Solid mechanism of single crystal growth Appl.Phys. Lett. 4(1964)89-90.
    [57] Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications J. Phys.: Condens. Matter 16 (2004) R829-R858.
    [58] N. Takahashi, A. Niwa, T. Takahashi, T. Nakamura, M. Yoshioka, Y. Momose, Growth of InN pillar crystal films by means of atmospheric pressure halide chemical vapor deposition J. Mater. Chem. 12(2002)1573-1576.
    [59] A. Koukitu, N. Takahashi, H. Seki, Thermodynamic study on metalorganic vapor-phase epitaxial growth of group III nitrides Jpn. J. Appl. Phys. Part2 36(1997)L1136-L1138.
    [60] R. A. Olive, C. Norenberg, M. G. Martin, M. R. Castell, L. Allers,G. A. D. Briggs, The e.ect of V:III ratio on the growth of InN nanostructures by molecular beam epitaxy Surf. Sci. 532-535(2003)806-810.
    [61] A. K. Murali, A. D. Barve, S. H. Risbud, A kinetic study of indium nitride formation from indium oxide Mater. Sci. Eng. B 96(2002)111-114.
    [62] S. Luo, W. Zhou, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, S. Xie, Synthesis of long indium nitride nanowires with uniform diameters in large quantities Small 1(2005)1004-1009.
    [63] S. F. Yin, B. Q. Xu, X. P. Zhou, C. T. Au, A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications App. Catal. A: Gen. 277(2004)1-9.
    [64] Y. Wu, P. Yang, Direct observation of vapor-liquid-solid nanowire growth J. Am. Chem. Soc. 123(2001)3165-3166.
    [65] A. Kato, N. Tamari, Some common aspects of the growth of TiN, ZrN, TiC and ZrC whiskers in chemical vapor deposition J. Cryst. Growth 49(1979)199-203.
    [66] G. Cheng, E. Stern, D. Turner-Evans, M. A. Reed, Electronic properties of InN nanowires Appl. Phys. Lett. 87(2005)253103-1-253103-3.
    [67] X. Xu, P. Specht, R. Armitage, J. C. Ho, E. R. Weber, C. Kisielowski, Characterization of oxide precipitates in epitaxial InN by transmission electron microscopy Appl. Phys. Lett. 87(2005)092102-1-092102-3.
    [68] C. Ma, D. Moore, J. Li, Z. L. Wang, Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS Adv. Mater. 15(2003)228-231.
    [69] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides Science 291(2001)1947-1949.
    [70] Q. Lia, C. Wang, Fabrication of wurtzite ZnS nanobelts via simple thermal evaporation Appl. Phys. Lett. 83(2003)359-361.
    [71] J. Liu, X. Wang, Q. Peng, Y. Li, Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials Adv. Mater. 17(2005)764-767.
    [72] J. Jian, X. L. Chen, M. He, W. J. Wang, X. N. Zhang, F. Shen, Large-scale GaN nanobeltsand nanowires grown from milled Ga_2O_3 powders Chem. Phys. Lett. 368(2003)416-420.
    [73] Q. Wu, Z. Hu, X. Wang, Y Chen, Y. Lu, Synthesis and optical characterization of aluminum nitride nanobelts J. Phys. Chem. B 107(2003)9726-9729.
    [74] Z. R. Dai, Z. W. Pan, Z. L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation Adv. Funct. Mater. 13(2003)9-24.
    [75] Y. Ding, Z. L. Wang, Structure analysis of nanowires and nanobelts by transmission electron microscopy J. Phys. Chem. B 108(2004)12280-12291.
    [76] T. Gao, T. Wang, Catalyst-assisted vapor-liquid-solid growth of single-crystal CdS nanobelts and their luminescence properties J. Phys. Chem. B 108(2004)20045-20049.
    [77] B. Y. Geng, L. D. Zhang, G. Z. Wang, T. Xie, Y. G. Zhang, G. W. Meng, Synthesis and photoluminescence properties of ZnMnS nanobelts Appl. Phys. Lett. 84(2004)2157-2159.
    [78] S. H. Sun, G. W. Meng, G. X. Zhang, T. Gao, B. Y. Geng, L. D. Zhang, J. Zuo, Raman scattering study of rutile SnO_2 nanobelts synthesized by thermal evaporation of Sn powders Chem. Phys. Lett. 376 (2003)103-107.
    [79] S. Y. Bae, H. W.n Seo, J. Park, H. Yang, J. C. Park, S. Y. Lee, Single-crystalline gallium nitride nanobelts Appl. Phys. Lett. 81(2002)126-128.
    [80] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Boron-nitride nanotubes Science 269(1995)966-967.
    [81] R. Tenne, L. Margulis, M. Genut, and G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide Nature 360(1992)444-446.
    [82] M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater. 2002,14,1658-1662.
    [83] M. Nakagawa, D. Ishii, K. Aoki, T. Seki, T. Iyoda, Tubular and twisted Ni-P fibers molded from morphology-tunable and recyclable organic templates of hydrogen-bonded supramolecular assemblages Adv. Mater. 17(2005)200-205.
    [84] J. H. Jung, H. Kobayashi, M. Masuda, T. Shimizu, S. Shinkai, Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription J. Am. Chem. Soc. 123(2001)8785-8789.
    [85] J. E. Meegan, A. Aggeli, N. Boden, R. Brydson, A. P. Brown, L. Carrick, A. R. Brough, A. Hussain, R. J. Ansell, Designed elf-assembled β-sheet peptide fibrils as templates for silica nanotubes Adv. Funct. Mater. 14(2004)31-37.
    [86] D. Bernaerts, S. Amelinckx, G. Van Tendeloo, J. Van Landuyt, Microstructure and formation mechanism of cylindrical and conical scrolls of the misfit layer compounds PbNb_nS_(2n+1) J. Cryst. Growth 172(1997)433-439.
    [87] A. Vorob'ev, V. Prinz, V. Preobrazhenskii, B. Semyagin, Free-standing InAs/InGaAs microtubes and microspirals on InAs (100) Jpn. J. Appl. Phys. 42 (2003)L7-L9.
    [1]A.G.Bhuiyan,A.Hashimoto,A.Yamamoto,Indium nitride:A review on growth,characterization and properties J.Appl.Phys.94(2003)2779-2808.
    [2]K.S.A.Butcher,T.L.Tansley,InN,last development and a review of the band-gap controversy Superlattices and Microstructures 38(2005)1-37.
    [3]F.Bechstedt,J.Furthmuller,Do we know the fundamental energy gap of InN? J.Cryst.Growth 246(2002)315-319.
    [4]P.Carrier,S.H.Wei,Theoretical study of the band-gap anomaly of InN J.Appl.Phys.97(2005)033707-1-033707-5.
    [5]B.R.Nag,On the band gap of indium nitride Phys.Status.Solidi.(b)237(2003)R1-R2.
    [6]C.H.Liang,L.C.Chen,J.S.Hwang,K.H.Chen,Y.T.Hung,Y.F.Chen,Selective-area growth of indium nitride nanowires on gold-patterned Si(100)substrates Appl.Phys.Lett.81(2002)22-24.
    [7]T.Tang,S.Han,W.Jin,X.Liu,C.Li,D.Zhang,C.Zhou,B.Chen,J.Han,M.Meyyapan,Synthesis and characterization of single-crystal indium nitride nanowires J.Mater.Res.19(2004)423-426.
    [8]M.S.Hu,W.M.Wang,T.T.Chen,L.S.Hong,C.W.Chen,C.C.Chen,Y.F.Chen,K.H.Chen,L.C.Chen,Sharp infrared emission from single-crystalline indium nitride nanobelts prepared using guided-stream thermal chemical vapor Adv.Funct.Mater.16(2006)537-541.
    [9]L.W.Yin,Y.Bando,D.Golberg,M.Li,Growth of single-crystal indium nitride nanotubes and nanowires by a controlled-carbonitridation reaction route Adv.Mater.16(2004)1833-1838.
    [10]J.zhang,B.Xu,F.Jiang,Y.Yang,J.Li,Fabrication of ordered InN nanowire arrays and their photoluminescence properties Phys.Lett.A 337(2005)121-126.
    [11]M.C.Johnson,C.J.Lee,E.D.Bourret-Ourchesne,S.L.Konsek,S.Aloni,W.Q.Han,A.Zettl,Growth and morphology of 0.80 eV photoemitting indium nitride nanowires Appl.Phys.Lett.85(2005)5670-5672.
    [12]T.L.Tansley,C.P.Foley,optical bad gap of indium nitride A.J.Appl.Lett.59(1986)3241-3244.
    [13]T.L.Tansley,C.P.Foley,Infrared absorption in indium nitride A.Appl.Lett.60(1986)2092-2095.
    [14]T.L.Tansley,C.P.Foley,Electron.Lett.20(1984)1066-1068.
    [15]V.W.L.Chin,T.L.Tansley,T.Osotchan,Electron mobllities in gallium,indium,atid aluminum nitrldes J.Appl.Phys.75(1994)7365-7373.
    [16]E.Bellotti,B.K.Doshi,K.F.Brennan,J.D.Albrecht,P.P.Ruden,Ensemble Monte Carlo study of electron transport in wurtzite InN J.Appl.Phys.85(1999)916-923.
    [17]M.C.Lee,H.C.Lin,Y.C.Pan,C.K.Shu,J.Ou,W.H.Chen,W.K.Chen,Raman and x-ray studies of InN films grown by metalorganic vapor phase epitaxy Appl.Phys.Lett.73(1998)2606-2608.
    [18]M.Kuball,J.W.Pomeroy,M.Wintrebert-Fouquet,K.S.A.Butcher,H.Luc,W.J.Schaffe,A Raman spectroscopy study of InN J.Cryst.Growth 269(2004)59-65.
    [19] V. Darakchieva, P. P. Paskov, E. Valcheva, T. Paskova, B. Monemar, M. Schubert, H. Lu, W. J. Schaff, Deformation potentials of the E_1(TO) and E_2 modes of InN Appl. Phys. Lett. 84(2004)3636-3638.
    [20] T. Inushima, M. Higashiwaki, T. Matsui, Optical properties of Si-doped InN grown on sapphire (0001) Phys. Rev. B 68(2003)235204-1-235204-7.
    [21] C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, B. Gil, Raman scattering in hexagonal InN under high pressure Phys. Rev. B 70(2004)113202-1-113202-4.
    [22]张光寅,蓝国祥,王玉芳.晶格振动光谱学.北京:高等教育出版社,第二版,2001: 198-204.
    [23] Z. G. Qian, W. Z. Shen, H Ogawa, Q X Guo, Experimental studies of lattice dynamical properties in indium nitride J. Phys.: Condens. Matter 16(2004)R381-R414.
    [24] H. J. Kwon, Y. H. Lee, O. Miki, H. Yamano, A. Yoshida, Raman spectra of indium nitride thin films grown by microwave-excited metalorganic vapor phase epitaxy on (0001) sapphire substrates Appl. Phys. Lett. 69(1996)937-939.
    [25] T. Inushima, T. Shiraishi, V.Yu Davydov, Phonon structure of InN grown by atomic layer epitaxy Solid State Commun. 110(1999)491-495.
    [26] S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B. W. Alphenaar, M. K. Sunkara, Mechanisms of 1D crystal growth in reactive vapor transport: indium nitride nanowires Nano Lett. 5(2005) 1625-1631.
    [27] Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, L. C. Chen, Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods J. Crys. Growth 269(2004)87-94.
    [28] V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, T. Inushima, Experimental and theoretical studies of phonons in hexagonal InN Appl. Phys. Lett. 75(1999)3297-3299.
    [29] O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, J. Frandon, Absorption and Raman scattering processes in InN films and dots J. Cryst. Growth 269(2004)22-28.
    [30] M. Kuball, J. W. Pomeroy, M. Wintrebert-Fouquet, K. S. A. Butcher, Hai Lu, W. J. Schaff, T. V. Shubina, S. V. Ivanov, A. Vasson, J. Leymarie, Resonant Raman spectroscopy on InN Phys. Status. Solidi. (a) 202(2005)763-767.
    [31] A. Link, K. Bitzer, W. Limmer, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, D. G. Ebling, K. W. Benz, Temperature dependence of the E2 and A1(LO) phonons in GaN and A1N J. Appl. Phys. 86(1999)6256.
    [32] X. D. Pu, J. Chen, W. Z. Shen, H. Ogawa, Q. X. Guo, Temperature dependence of Raman scattering in hexagonal indium nitride films J. Appl. Phys. 98(2005)033527-1-033527-6.
    [33] J. Menendez, M. Cardona, Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and a-Sn: Anharmonic effects Phys. Rev. B 29(1984)2051.
    [34] W. S. Li, Z. X. Shen, Z. C. Feng, S. J. Chua, Temperature dependence of Raman scattering in hexagonal gallium nitride films J. Appl. Phys. 87(2000)3332-3337.
    [35] J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R. E. Tallman, T. M. Ritter, B. A. Weinstein, Raman scattering in b-ZnS Phys. Rev. B 69(2004)014301-1-014301-11.
    [36] J. W. Pomeroy, M. Kuball, H. Lu, W. J. Schaff, X. Wang, and A. Yoshikawa, Phonon lifetimes and phonon decay in InN Appl. Phys. Lett. 86(2005)223501-1-223501-3.
    [37] X. B. Chen, J. Huso, J. L. Morrison, L. Bergman, A. P. Purdy, Temperature response and anharmonicity of the optical phonons in GaN nanowires J. Appl. Phys. 98(2005) 026106-1-026106-3.
    [38] R. Intartaglia, B. Maleyre, S. Ruffenach, O. Briot, T. Taliercio, B. Gil, Radiative and nonradiative recombination processes in InN films grown by metal organic chemical vapor deposition Appl. Phys. Lett. 86(2005)142104-1-142104-3.
    [39] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Unusual properties of the fundamental band gap of InN Appl. Phys. Lett.80(2002)3967-3969.
    [40] C. P. Foley, J. Lyngdai, Analysis of indium nitride surface oxidation, J. Vac. Sci. Technol. A. 5(1987)1708-1712.
    [41] X. Xu, P. Specht, R. Armitage, J. C. Ho, E. R. Weber, C. Kisielowski, Characterization of oxide precipitates in epitaxial InN by transmission electron microscopy Appl. Phys. Lett. 87(2005)092102-1-092102-3.
    [42] E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, K. Kisoda, Spectroscopic observation of oxidation process in InN, Appl. Phys. Lett. 84(2004)212-214.
    [43] A. G Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, V. Y. Davydov Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown usingdifferent techniques and evidence of the actual band gap energy Appl. Phys. Lett. 83(2003)4788-4790.
    [44] M. Yoshimoto, H. Yamamoto, W. Huang, H. I. Harima, J. Saraie, A. Chayahara, Yuji Horino Widening of optical bandgap of polycrystalline InN with a few percent incorporation of oxygen Appl. Phys. Lett. 83(2003)3480-3482.
    [45] T. V. Shubina, S. V. Ivanov, V. N. Jmerik, D. D. Solnyshkov, V. A. Vekshin, P. S. Kop'ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, K. Shimono, A. Kasic, B. Monemar, Mie resonances, infrared emission, and the band gap of InN Phys. Rev. Lett. 92(2004)117407-1-117407-3.
    [46] T. V. Shubina, D. D. Solnyshkov, A. Vasson, J. Leymarie, M. Larsson, P.O. Holtz, B. Monemar, Hai Lu, W.J. Schaff, P.S. Kop'ev, Surface-plasmon resonances in indium nitride with metal-enriched nano-particles J. Cryst. Growth 288(2006)230-235.
    [47] T. V. Shubina, S. V. Ivanov, V. N. Jmerik, M. M. Glazov, A. P. Kalvarskii, M. G.Tkachman, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, I. Akasaki, K. S. A. Butcher, Q. Guo, B. Monemar, P. S. Kop'ev, Optical properties of InN with stoichoimetry violation and indium clustering Phys. Status Solidi (A) 202(2005)377-382.
    [48] V. M. Naik, R. Naik, D. B. Haddad, J. S. Thakur, G. W. Auner, H. Lu, W. J. Schaff, Room-temperature photoluminescence and resonance-enhanced Raman scattering in highly degenerate InN films Appl. Phys. Lett. 86(2006)201913-1-201913-3.
    [49] T. L. Tansley, R. J. Egan, Point-defect energies in the nitride of aluminum, gallium, and indium Phys. Rev. B 45(1992)10942-10950.
    [50] J. C. Ho, P. Specht, Q. Yang, X. Xu, D. Hao, E. R. Weber, Effects of stoichiometry on electrical, optical, and structural properties of indium nitride J. Appl. Phys. 98(2005)093712-1-093712-5.
    
    [51]沈学础.半导体光学性质.北京:科学出版社,1992:321-378.
    
    [52] A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, W. J. Schaff, Acceptor states in the photoluminescence spectra of n-InN Phys. Rev. B 71(2005)195207-1-195207-16.
    [53] K. Xu and A. Yoshikawa, Effects of film polarities on InN growth by molecular-beam epitaxy Appl. Phys. Lett. 83(2003)251-253.
    [54] A. Klochikhin, V. Davydov, V. Emtsev, A. Sakharov, V. Kapitonov, B. Andreev, H. Lu, W. J. Schaff, Photoluminescence of n-InN with low electron concentration Phys. Status. Solidi (a)203(2006)50-58.
    [55]D.G.Thomas,J.J.Hopfield,Optical Properties of Bound Exciton Complexes in Cadmium Sulfide Phys.Rev.128(1962)2135-2148.
    [56]I.Mahboob,T.D.Veal,C.F.McConville,H.Lu,W.J.Schaff,Intrinsic electron accumulation at clean InN surfaces Phys.Rev.Lett.92(2004)036804-1-036804-3.
    [57]R.Fuchs,K.L.Kliewer,Optical Modes of Vibration in an Ionic Crystal Slab Phys.Rev.140(1965)A2076-A2088.
    [58]E.Valcheva,S.Alexandrova,S.Dimitrov,H.Lu,W.J.Schaff,Recombination processes with and without momentum conservation in degenerate InN Phys.Status Solidi(a)203(2006)75-79.
    [59]K.L.Westra,R.P.W.Lawson,M.J.Brett,The effect of oxygen contamination on the properties of reactively sputtered indium nitride films J.Vac.Sci.Technol.A.6(1998)1730-1732.
    [60]D.Alexandrov,K.Scott A.Butcher,M.Wintrebert-Fouquet,Absorption and photoluminescence features caused by defects in InN J.Cryst.Growth 269(2004)77-86.
    [61]L.H.Dmowski,J.A.Plesiewicz,T.Suski,H.Lu,W.Schaff,M.Kurouchi,Y.Nanishi,L.Konczewicz,V.Cimalla,O.Ambacher,Resonant localized donor state above the conduction band minimum in InN Appl.Phys.Lett.86(2005)262105-1-262105-3.
    [62]D.C.Look,H.Lu,W.J.Schaff,J.Jasinski,Z.Liliental-Weber,Donor and acceptor concentrations in degenerate InN Appl.Phys.Lett.80(2002)258-260.
    [63]S.Z.Wang,S.F.Yoon,Y.X.Xia,S.W.Xie,20 meV-deep donor level in InN film of 0.76eV band gap grown by plasma-assisted nitrogen source J.Appl.Phys.95(2004)7998-8001.
    [64]C.Stampfl,C.G.Van de Walle,D.Vogel,P.Kruger,J.Pollmann,Native defects and impurities in InN:First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials Phys.Rev.B 61(2000)R7846-R7849.
    [65]S.H.Wei,A.Zunger,Valence band splittings and band offsets of AIN,GaN,and InN Appl.Phys.Lett.69(1996)2719-2721.
    [66]J.Li,L.W.Wang,Band-structure-corrected local density approximation study of semiconductor quantum dots and wires Phys.Rev.B 72(2005)125325-1-125325-15.
    [67]J.M.Chalmers,P.R.Griffiths,Handbook of vibrational spectroscopy,Wenheim:John Wiley & Sons LTD 2002:942-944.
    [68]K.S.A.Butcher,M.Wintrebert-Fouquet,P.P.T.Chen,H.Timmers,S.K.Shresth,Detailed analysis of absorption data for indium nitride Mater.Sci.Semiconductor Processing 6(2003)351-354.
    [69]M.Wintrebert-Fouquet,K.S.A.Butcher,P.P.T.Chen,InN grown by remote plasma-enhanced chemical vapor deposition J.Cryst.Growth 269(2004)134-138.
    [70]P.P.T.Chen,K.S.A.Butchera,M.Wintrebert-Fouqueta,R.Wuhrerb,M.R.Phillipsb,Kathryn.E.Princec,H.Timmersd,S.K.Shresthad,B.F.Ushere,Apparent band-gap shift in InN films grown by remote-plasma-enhanced CVD J.Cryst.Growth 288(2006)241-246.
    [71]J.Wu,W.Walukiewicz,S.X.Li,R.Armitage,J.C.Ho,E.R.Weber,E.E.Hailer,H.Lu,W.J.Schaff,A.Barcz,R.Jakiela,Effects of electron concentration on the optical absorption edge of InN Appl.Phys.Lett.84(2004)2805-2807.
    [72]潘葳,沈文忠,小川博司,郭其新,半导体氮化铟(InN)的电学性质物理学进展 24(2004)195-215.
    [73]G.Cheng,E.Stem,D.Turner-Evans,M.A.Reed,Electronic properties of InN nanowires Appl.Phys.Lett.87(2005)253103-1-253103-3.
    [74]K.A.Rickert,A.B.Ellis,F.J.Himpsel,H.Lu,W.Schaff,J.M.Redwing,F.Dwikusuma,T.F.Kuech,X-ray photoemission spectroscopic investigation of surface treatments,metal deposition, and electron accumulation on InN Appl. Phys. Lett. 82(2003)3254-3256.
    [75] I. Hamberg, C. G. Granqvist, Evaporated Sn-doped In_2O_3 films: Basic optical properties and applications to energy-efficient windows J. Appl. Phys. 60( 1986)R123-R159.
    [76] D. Alexandrov, K. S. A. Butcher, T. L. Tansley, Energy band gap and optical properties of non-stoichiometric InN—theory and experiment J. Cryst. Growth 288(2006)261-267.
    [77] K. S. A. Butcher, M. Wintrebert-Fouquet, P. P. T. Chen, T. L. Tansley, H. Dou, S. K. Shrestha, H. Timmers, M. Kuball, K. E. Prince, J. E. Bradby, Nitrogen-rich indium nitride J. Appl. Phys. 95(2004)6124-6128.
    [78] K. S. A. Butcher, H. Hirshy, R. M. Perks, M. Wintrebert-Fouquet, P. P. T. Chen, Stoichiometry effects and the Moss-Burstein effect for InN Phys. Status Solidi (a) 203(2006)66-74.
    [79] K. Scott, A. Butcher, M. Wintrebert-Fouquet, P. P. T. Chen, K. E. Prince, H. Timmers, S. K. Shrestha, T. V. Shubina, S. V. Ivanov, R. Wuhrer, M. R. Phillips, B. Monemar, Non-stoichiometry and non-homogeneity in InN Phys. Status Solidi (c) 2(2005)2263-2266.
    [80] S. Vezian, F. Semond, J. Massies, D. W. Bullock, Z. Ding, P. M. Thibado, Origins of GaN(0 0 0 1) surface reconstructions Surf. Sci. 541(2003)242-251.
    [81] S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. Ager III, W. Shan, E. E. Haller, Hai Lu, W. J. Schaff, Fermi-level stabilization energy in group III nitrides Phys. Rev. B 71(2005)161201-1-161201-4.
    [82] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, S. J. Pearton,Transport properties of InN nanowires Appl. Phys. Lett. 87(2005)093112-1-093112-3.
    [83] S. K. Lin, K. T. Wu, C. P. Huang, C. T. Liang, Y. H. Chang, Y. F. Chen, P. H. Chang, N. C. Chen, C. A. Chang, H. C. Peng, C. F. Shih, K. S. Liu, T. Y. Lin, Electron transport in In-rich In xGa1- xN films J. Appl. Phys. 97(2005)046101-1-046101-046101-3.
    [84] C. B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. Mackenzie, E. S. Lambers, J. C. Zolper, High temperature surface degradation on III-V nitrides J. Vac. Sci. Technol. B14(1996)3523-3531.
    [85] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stuzmann, R. A. Fisher, A. Miehr, A. Bergmaier, G Dollinger, Thermal stability and desposition of Group III nitrides prepared by metal organic chemical vapor deposition J. Vac. Sci. Technol. B 14(1996)3532-3542.
    [86] O. Ambacher, Growth and applications of Group III-nitrides J. Phys. D: Appl. Phys. 31 (1998)2653-2710.
    [87] B. Onderka, J. Unland, Schmid-fetzer, Thermodynamics and phase stability in the In-N system J. Mater. Res. 17(2002)3065-3083.
    [88] Q. Guo, O. Kato, Thermal stability of indium nitride single crystal films J. Appl. Phys. 73(1993)7969-7971.
    [89] L. Gao, Q. Zhang, J. Li, Preparation of ultrafine InN powder by the nitridation of In_2O_3 or In(OH)_3 and its thermal stability J. Mater. Chem. 13(2003)154-158.
    [90] R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 1983-1984 P.D47.
    [91] Motlan, E. M. Goldys, T. L. Tansley, Optical and electrical properties of InN grown by radio-frequency reactive sputtering, J. Cryst. Growth 241(2002)165-170.
    [92] Y. Sawada, A. Hashimoto, Thermal oxidation of indium nitride films Thermochimica Acta 231(1994)307-315.
    [93] I. J. Lee, J. Y. Kim, T. B. Hur, H. K. Kim, Oxidation study of InN/sapphire(0001) film using in-situ synchrotron X-ray scattering, Phys. Status. Solidi A 201(2004)2777-2781.
    [1]M.K.Mazumder,K.Kobayashi,T.Ogata,J.Mitsuhashi,Y.Mashiko,S.Kawzu,M.Sekine,H.Koyama,A.Yasuoka,Improved reliability of wet oxidized nitride MOS capacitors in comparison to RTP N_2O oxidized nitride films Solid-Sate Electronics 41(1997)749-755.
    [2]N.Singh,A.Rys,Thermal-oxidation and electrical-properties of silicon-carbide metal-oxide-semicondutor structures J.Appl.Phys.73(1993)1279-1283.
    [3]J.Welser,J.L.Hoyt,J.F.Gibbons,Electron-mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistor IEEE Electron Device Lett.15(1993)100-102.
    [4]J.A.Cooper,Advances in SiC MOS technology Phys.Status Solidi A-Appl.Res.162(1997)305-320.
    [5]J.C.Poler,Characterization of the Si/SiO2 interface morphology from quantum oscillations in fowler-nordherm tunneling currents J.Vac.Sci.Technol.B 12(1994)88-95.
    [6]G.Eftekhari,Influence of rapid thermal annealing on the electrical characteristics of GaAs metal-oxide-semiconductor structures with a double oxide layer Thin Solid Films 257(1995)110-115.
    [7]H.C.Kang,S.H.Seo,J.W.Kim,D.Y.Noh,Periodic oxide breakdown during oxidation of AlN/Sapphire(0001)films Appl.Phys.Lett.80(2002)1364-1366.
    [8]H.C.Kang,S.H.Seo,H.W.Jang,D.H.Kim,J.W.Kim,D.Y.Noh,Synthesis of epitaxial γ-A1203 thin films by thermal oxidation of AIN/sapphire(0001)thin films Appl.Phys.A 77(2003)627-632.
    [9]J.Kolodzey,E.A.Chowdhury,G.Qui,J.Olowolafe,C.P.Swann,K.M.Unruh,J.Suehle,R.G.Wilson,J.M.Zavada,The effects of oxidation temperature on the capacitance-voltage characteristics of oxidized AIN films on Si Appl.Phys.Lett.71(1997)3802-3804.
    [10]D.J.Fu,Y.H.Kwon,T.W.Kang,C.J.Park,K.H.Baek,H.Y.Cho,D.H.Shin,C.H.Lee,K.S.Chung,GaN metal-oxide-semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation Appl.Phys.Lett.80(2002)446-448.
    [11]H.Kim,S.J.Park,H.S.Hwang,Thermally oxidized GaN film for use as gate insulators J.Vac.Sci.Technol.B 19(2001)579-581.
    [12]T.Tsuruoka,M.Kawasaki,S.Ushioda,R.Franchy,Y.Naoi,T.Sugahara,S.Sakai,Y.Shintani,Combined HREELS/LEED study on the oxidation of GaN surfaces Surf.Sci.427-428(1999)257-261.
    [13]E.Kurimoto,M.Hangyo,H.Harima,M.Yoshimoto,T.Yamaguchi,T.Araki,Y.Nanishi,K.Kisoda,Spectroscopic observation of oxidation process in InN,Appl.Phys.Lett.84(2004)212-214.
    [14]C.P.Foley,J.Lyngdai,Analysis of indium nitride surface oxidation,J.Vac.Sci.Technol.A.5(1987)1708-1712.
    [15]Y.Sawada,A.Hashimoto,Thermal oxidation of indium nitride films Thermochimica Acta 231(1994)307-315.
    [16]L.Gao,Q.Zhang,J.Li,Preparation of ultrafine InN powder by the nitridation of In_2O_3 or In(OH)_3 and its thermal stability J.Mater.Chem.13(2003)154-158.
    [17]I.J.Lee,J.Y.Kim,T.B.Hur,H.K.Kim,Oxidation study of lnN/sapphire(0001)film using in-situ synchrotron X-ray scattering,Phys.Status.Solidi A 201(2004)2777-2781.
    [18] T. B. Hur, H. L. Park, Y. H. Hwang, H. K. Kim, Structural relation and epitaxial properties of hexagonal InN and oxidized cubic In_2O_3 Solid State Commun. 130(2004)397-400.
    [19] W. Q. Han, S. S. Fan, Q. Q. Li, Y. D. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction Science 277(1997)1287-1289.
    [20] J. Goldberger, R. R. He, Y. F. Zhang, S. Lee, H. Q. Yan, H. J. Choi, P. D. Yang, Single-crystal gallium nitride nanotubes Nature 422(2003)599-602.
    [21] S. Y. Bae, H. W. Seo, J. Park, H. Yang, S. A. Song, Synthesis and structure of gallium nitride nanobelts Chem. Phys. Lett. 365(2002)525-529.
    [22] J. A. Haber, P. C. Gibbons, W. E. Buhro, Morphological control of nanocrystalline aluminum nitride: aluminum chloride-assisted nanowhisker growth J. Am. Chem. Soc. 119(1997)5455-5456.
    [23] Q. Wu, Z. Hu, X. Z. Wang, Y. N. Lu, X. Chen, H. Xu, Y. Chen, Synthesis and characterization of faceted hexagonal aluminum nitride Nanotubes J. Am. Chem. Soc. 125(2003)10176-10177.
    [24] T. Xie, Y. Lin, G. S. Wu, X.Y. Yuan, Z. Jiang, C. H. Ye, G. W. Meng, L. D. Zhang, AlN serrated nanoribbons synthesized by chloride assisted vapor-solid route Inorganic Chem. Commun. 7(2004)545-547.
    [25] L. W. Yin, Y. Bando, D. Golberg, M. Li, Growth of single-crystal indium nitride nanotubes and nanowires by a controlled-carbonitridation reaction route Adv. Mater. 16(2004)1833-1838.
    [26] S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Low-temperature, catalyzed growth of indium nitride fibers from azido-indium precursors Angew. Chem. Int. Ed. 39(2000)1470-1472.
    [27] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, L. C. Chen, Sharp infrared emission from single-crystalline indium nitride nanobelts prepared using guided-stream thermal chemical vapor Adv. Funct. Mater. 16(2006)537-541.
    [28] V. M. Bermudez, Study of oxygen chemisorption on the GaN(0001)-(1 × 1) surface J. Appl. Phys. 80(1996)1190-1200.
    
    [29] L. J. lauhon, M. S. Gudlksen, D. Wang, C. M. Lieber, Nature 420(2003)57.
    [30] C. Tang, Y. Bando, Z. Liu, Thermal oxidation of gallium nitride nanowires 83(2003)3177-3179.
    [31] M. Kang, J. S. Lee, S. K. Sim, B. Min, K. Cho, H. Kim, M. Y. Sung, S. Kim, S. A. Song, M. S. Lee, Structural and optical properties of as-synthesized, Ga_2O_3-coated, and Al_2O_3-coated GaN nanowires Thin Solid Films 466(2004)265-271.
    [32] J. Tong, S. H. Risbud, Processing and structure of gallium nitride—gallium oxide platelet nanostructures J. Solid State Chem. 177(2004)3568-3574.
    [33] R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 1983-1984 P.D47.
    [34] Y. Chen, J. Zou, S. J. Campbell, G. L. Caer, Boron nitride nanotubes: Pronounced resistance to oxidation Appl. Phys. Lett. 84(2004)2430-2432.
    [35] Motlan, E. M. Goldys, T. L. Tansley, Optical and electrical properties of InN grown by radio-frequency reactive sputtering, J. Cryst. Growth 241(2002)165-170.
    [36] S. D. Wolter, B. P. Luther, D. L. Waltemyer, C. Cmneby, S. E. Mohney, R. J. Molnar, X-ray photoelectron spectroscopy and x-ray diffraction study of the thermal oxide on gallium nitride Appl. Phys. Lett. 70(1997)2156-2158.
    [37] H. Shinoda, N. Mutsukura, Deposition of an InN thin film by a r.f. plasma-assisted reactive ion-beam sputtering deposition (R-IBSD) technique Diamond Relat. Mater. 11(2002)896-900.
    [38] M. Ohkubo, S. Nonomura, H. Watanabe, T. Gotoh, K. Yamamoto, S. Nitta, Optical properties of amorphous indium nitride films and their electrochromic and photodarkening effects Appl. Surf. Sci. 113/114( 1997) 476-479.
    [39] O. Takai, K. Ikuta, Y. Inoue, Growth and nanostructure of InN thin films deposited by reactive magnetron sputtering Thin Solid Films 318(1998)148-150.
    [40] V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, T. Inushima, Experimental andtheoretical studies of phonons in hexagonal InN Appl. Phys. Lett. 75(1999)3297-3299.
    [41] O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, J. Frandon, Absorption and Raman scattering processes in InN films and dots J. Crys. Growth 269(2004)22-28
    [42] G. P. Schwartz, W. A. Sunder, J. E. Griffiths, Raman scattering study of the thermal oxidation of InP Appl. Phys. Lett. 37(1980)925-927.
    [43] J. X. Wang, H. Y. Chen, Y. Gao, D. F. Liu, L. Song, Z. X. Zhang, X. W. Zhao, X. Y. Dou, S. D. Luo, W. Y. Zhou, G. Wang, S. S. Xie, Synthesis and characterization of In2O_3/SnO_2 hetero-junction beaded nanowires J. Crys. Growth 284(2005)73-79.
    [44] X. Xu, P. Specht, R. Armitage, J. C. Ho, E. R. Weber, C. Kisielowski, Characterization of oxide precipitates in epitaxial InN by transmission electron microscopy Appl. Phys. Lett. 87(2005)092102-1-092102-3.
    [45] Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, L. C. Chen, Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods J. Crys. Growth 269(2004)87-94.
    [46] S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B. W. Alphenaar, M. K. Sunkara, Mechanisms of 1D crystal growth in reactive vapor transport: indium nitride nanowires Nano Lett. 5(2005)1625-1631.
    [47] B. Cheng, E. T. Samulski, Fabrication and characterization of nanotubular semiconductor oxides In_2O_3 and Ga_2O_3 J. Mater. Chem. 11(2001)2901-2902.
    
    [48] X. P. Shen, H. J. Liu, X. Fan, Y. Jiang, J. M. Hong, Z. Xu, Construction and photoluminescence of In_2O_3 nanotube array by CVD-template method J. Cryst. Growth 276(2005)471-477.
    [49] Y. Li, Y. Bando, D. Golberg, Single-crystalline In_2O_3 nanotubes filled with In Adv. Mater. 15(2003)581-585.
    [50] A. Link, K. Bitzer, W. Limmer, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, D. G. Ebling, K. W. Benz, Temperature dependence of the E2 and A1 (LO) phonons in GaN and AlN J. Appl. Phys. 86(1999)6256.
    [51] J. Menendez, M. Cardona, Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and a-Sn: Anharmonic effects Phys. Rev. B 29(1984)2051.
    
    [52] X. Chen, J. Huso, J. L. Morrison, L. Bergman, A. P. Purdy Temperature response and anharmonicity of the optical phonons in GaN nanowires J. Appl. Phys. 98(2005)026106-1-026106-3.
    [53] G. Lu, H. An, Y. Chen, J. Huang, H. Zhang, B. Xiang, Q. Zhao, D. Yu, W. Du, Temperature dependence of Raman scattering of ZnSe nanoparticle grown through vapor phase J. Cryst. Growth 274(2005)530-535.
    [54] X. D. Pu, J. Chen, W. Z. Shen, H. Ogawa, Q. X. Guo, Temperature dependence of Raman scattering in hexagonal indium nitride films J. Appl. Phys. 98(2005)033527-1-033527-6.
    
    [55] J. W. Pomeroy, M. Kuball, H. Lu, W. J. Schaff, X. Wang, A. Yoshikawa, Phonon lifetimes and phonon decay in InN Appl. Phys. Lett. 86(2005)223501-1-223501-3.
    [56] G. Korotcenkov, V. Brinzari, M. Ivanov, A. Cerneavschi, J. Rodriguez, A. Cirera, A. Cornet, J. Morante, Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing Thin Solid Films 479(2005)38-51.
    [57] H. Cao, X. Qiu, Y. Liang, Q. Zhu, M. Zhao, Room-temperature ultraviolet-emmiting In_2O_3 nanowires Appl. Phys. Lett. 83(2003)761-763.
    [58] M. Zhang, L. Zhang, X. Zhang, J. Zhang. G. Li, Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes Chem. Phys. Lett. 334(2001)298-302.
    [59] A. K. Murali, A. D. Barve, S. H. Risbud, A kinetic study of indium nitride formation from indium oxide powders Mater. Sci. Eng. B96(2002)l 11-114.
    [60] S. Luo, W. Zhou, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, S. Xie, Synthesis of long indium nitride nanowires with uniform diameters in large quantities Small 1(2005)1004-1009.
    [61] W. S. Jung, C. S. Ra, B. K. Min, Growth of nano- and microstructured indium nitride crystals by the reaction of indium oxide with ammonia Bull. Korean Chem. Soc. 26(2005)1354-1358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700