用户名: 密码: 验证码:
导电高分子/偶氮聚电解质多层膜和微尺度结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电高分子具有很多独特的电学和光学性能,是一类十分重要的功能高分子材料。偶氮聚合物具有独特的光响应性和潜在的应用前景。制备同时包含这两种聚合物的分子复合材料和相关的纳/微米结构,系统研究其功能性是本论文研究的重点。本论文对有关分子复合材料的制备方法、纳/微米结构控制、电化学活性和光响应性能等进行了深入研究,取得了如下的创新性成果。
     通过静电逐层吸附方法,制备了聚苯胺分别和四种偶氮聚电解质(PPAPE、PNACN、PNANT和PNATZ)的自组装多层膜。通过改变溶液的浓度和pH等,薄膜的层厚和内部结构可以得到精确控制。这类自组装多层膜具有多种电活性和光响应性,特别是具有丰富的电致变色功能性。通过改变偶氮聚电解质的种类和层数,自组装多层膜可表现出不同的电致颜色变化。
     建立了一种结合电化学聚合和静电逐层自组装制备多层膜的新方法。该方法利用电化学沉积制备导电高分子层,利用静电吸附引入聚电解质层。通过对不同类型的导电高分子(PANI、PPY和PEDOT)和聚电解质(PNACN、PNANT、PEDOT:PSS)以及羧化MWNT等体系的研究,证明了该方法具有很好的普适性,具备成膜快、薄膜增长可控等优点。该方法是一种制备偶氮聚电解质和不溶性导电高分子复合多层膜的有效新途径。
     利用模板电化学聚合、模板静电逐层自组装和软刻技术等,成功制备了导电高分子(PEDOT)的有序多孔介孔薄膜、超支化大分子重氮盐/聚(3-乙酸噻吩)的中空微囊泡,聚苯胺的表面起伏光栅等。系统研究了聚苯胺光栅在不同酸掺杂和电化学氧化还原电位条件下的光栅衍射效率变化规律,利用Lorentz振子模型从理论上解释了不同酸掺杂程度对光栅衍射效率的影响规律。
     论文还探索了偶氮聚电解质(PPAPE)和具有生物催化活性的β-葡萄糖苷酶(GLS)的模板静电逐层自组装。通过在聚苯乙烯胶体球表面的交替吸附,得到了固定化GLS的多层膜。对比游离酶,这种固定化酶在不同pH和温度环境下的酶活稳定性较高。研究了紫外光照对PPAPE/GLS复合膜的催化活性的影响,发现光照会引起PPAPE固定化酶活性小幅度下降。
Conducting polymers (CPs) possess many unique electrical/optical properties and play an extremely important role as functional polymers. Azo polymers were well-known for their photoresponsive properties. Constructing novel composite materials such multilayers composed of both types of polymers and developing related nano/microstructures are important for potential applications in areas such as electrochromic displays, photonic crystals, micro-reactors, electro-optic modulators, and sensors. In this dissertation study, focusing on this new type of materials and structures, the methodology establishments, nano/microstructure control and electric/optical functions of the materials have been extensively investigated. The main achievements of the study are summarized as follows.
     Self-assembled multilayer films composed of alternate polyaniline (PANI) and azo polyelectrolytes (PPAPE, PNACN, PNANT and PNATZ) layers were fabricated through the electrostatic layer-by-layer (LBL) adsorption. The thickness contributed by each individual layer was found to be dependent on the concentrations and pH values of the PANI and azo polyelectrolytes dipping solutions. The multilayer films show interesting properties related with both components, such as conductivity, electrochemical redox, photoinduced dichroic and surface-relief-grating formation. The multilayer films possess the unique electrochromic function owning to the absorption bands of the azo chromophores and electrochromic variation of PANI. Using the azo polyelectrolytes with different hues, the electrochromic color variations can be dramatically enriched.
     A novel method to construct multilayer films through both the electrochemical polymerization and the electrostatic LBL self-assembly has been established. In the process, the conducting layers are built-up by the electrochemical polymerization and the polyelectrolyte layers are introduced through electrostatic adsorption. Multilayers composed of different conducting polymers (PANI, PPY and PEDOT) and polyelectrolytes (PNACN, PNANT, and PEDOT:PSS) as well as carboxyl-MWNT were fabricated by this method. Results show that the growth of multilayer films can be easily controlled by the currents and time period of the electrochemical polymerization process. By this method, multilayer composed of both CPs and azo polyelectrolytes can be feasibly fabricated, even for CPs lacking solubility in solvents.
     Nano/microstructures of related materials have been prepared through several methods. The honeycomb microporous conducting polymer (PEDOT) films were prepared through electrochemical polymerization of EDOT in acetonitrile and boron trifluoride ethyl ether (BFEE) solution by using polystyrene colloidal crystals as templates, which were obtained by vertical deposition on stainless steel electrodes. Uniform hollow capsules were fabricated from PTAA and a hyperbranched azobenzene-containing polymeric diazonium salt (HB-DAS) through LBL self-assembly on polystyrene (PS) colloidal spheres and removing templates after the deposition. Surface-relief-gratings of PANI were prepared through soft-lithography and studied for the optical sensor applications. The UV-vis spectra and complex refractive index of PANI change with the variations of pH and electrochemical potentials. Therefore, the diffraction efficiencies (DEs) of PANI gratings can sensing the redox and doping states. Lorentz model has been used to simulate and explain the complex refractive index changes of PANI after being treated in the different pH solutions.
     The LBL method has also been used in this study to prepare multilayer containing bioactive molecules. The electrostatic LBL self-assembled films composed of azobenzene polyelectrolytes PPAPE and enzyme (GLS) layers were prepared on the surfaces of PS colloidal particles. The relative activities of the immobilized GLS were measured in different pH and temperatures conditions and compared with the same enzyme in solution. The immobilized enzyme shows a wider range of environments adaption and smaller decrease of the catalysis activities. The influences of UV irradiation on enzyme activity of GLS/PPAPE-coated PS were investigated, which can result in the slight decrease of enzyme activity of immobilized GLS.
引文
[1] Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, 1977: 578-580.
    [2] Su W P, Schrieffer J R, Heeger A J. Solitons in polyacetylene. Physical Review Letters, 1979, 42: 1698-1701.
    [3] Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. Chemistry of Materials, 2004, 16: 4533-4542.
    [4] Munstedt H, Kohler G, Mohwald H, Naegele D, Bitthin R, Ely G, Meissner E. Rechargeable polypyrrole/lithium cells. Synthetic Metals, 1987, 18: 259-264.
    [5] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347: 539-541.
    [6] Wright P V, Wong T C P, Chambers B, Anderson A P. Electrical characteristics of polypyrrole composites at microwave frequencies. Advanced Materials for Optics and Electronics, 1994, 4: 253-263.
    [7] Deberry D W. Modification of the electrochemical and corrosion behavior of stainless Steels with an electroactive coating. Journal of the Electrochemical Society, 1985, 132: 1022-1026.
    [8] Couves L D, Porter S J. Polypyrrole as a potentiometric glucose sensor. Synthetic Metals, 1989, 28: 761-768.
    [9] Rosseinsky D R, Mortimer R J. Electrochromic systems and the prospects for devices. Advanced Materials, 2001, 13: 783-793.
    [10] Kumar G S, Neckers D C. Photochemistry of azobenzene-containing polymers. Chemical Reviews, 1989, 89: 1915-1925.
    [11] Xie S, Natansohn A, Rochon P. Recent development in aromatic azo polymers research. Chemistry of Materials, 1993, 5: 403-411.
    [12] Viswanathan N K, Kim D Y, Bian S P, Williams J, Liu W, Li L, Samuelson L, Kumar J, Tripathy S K. Surface relief structures on azo polymer films. Journal of Materials Chemistry, 1999, 9: 1941-1955.
    [13] Delaire J A, Nakatani K. Linear and nonlinear optical properties of photochromic molecules and materials. Chemical Reviews, 2000, 100: 1817-1845.
    [14] Natansohn A, Rochon P. Photoinduced motions in azo-containing polymers. Chemical Reviews, 2002, 102: 4139-4175.
    [15] Oliveira O N, dos Santos D S, Balogh D T, Zucolotto V, Mendonca C R. Optical storage and surface-relief gratings in azobenzene-containing nanostructured films. Advances in Colloid and Interface Science, 2005, 116: 179-192.
    [16] Langmuir I. The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 1917, 39: 1848-1906.
    [17] Decher G, Hong J D. Buildup of ultrathin multilayer films by a self-assembly process: I. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surface. Makromol Chem Macromol Symp, 1991, 46: 321-327.
    [18] Decher G, Hong J D. Buildup of ultrathin multilayer films by a self-assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surface. Berichte der Bunsen-Gesellschaft für Physikalische Chemie, 1991, 95: 1430-1434.
    [19] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992, 210-211: 831-835.
    [20] Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277: 1232-1237.
    [21] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282: 1111-1114.
    [22] Caruso F, Lichtenfeld H, Giersig M, Mohwald H. Electrostatic self-assembly of silica nanoparticle-Polyelectrolyte multilayers on polystyrene latex particles. Journal of the American Chemical Society, 1998, 120: 8523-8524.
    [23] Donath E, Sukhorukov G B, Caruso F, Davis S A, Mohwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angewandte Chemie-International Edition, 1998, 37: 2202-2205.
    [24] Sukhorukov G B, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov V I, Mohwald H. Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polymers for Advanced Technologies, 1998, 9: 759-767.
    [25] Ai S F, Lu G, He Q, Li J B. Highly flexible polyelectrolyte nanotubes. Journal of the American Chemical Society, 2003, 125: 11140-11141.
    [26] Liang Z, Susha A S, Yu A, Caruso F. Nanotubes prepared by layer-by-layer coating of porous membrane templates. Advanced Materials, 2003, 15: 1849-1853.
    [27] Kleinfeld E R, Ferguson G S. Stepwise Formation of multilayered nanostructural films from macromolecular precursors. Science 1994, 265: 370-373.
    [28] Lvov Y, Decher G, Sukhorukov G. Assembly of thin films by means of successive depostion of alternate layers of DNA and poly(allyamine). Macromolecules 1993, 26:6117-6123.
    [29] Lvov Y, Haas H, Decher G, Mohwald H, Mikhailov A, Mtchedlishvily B, Morgunova E, Vainshtein B. Successive deposition of alternate layers of polyelectrolytes and a charged virus. Langmuir, 1994, 10: 4232-4236.
    [30] Lvov Y, Ariga K, Ichinose I, Kunitake T. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. Journal of the American Chemical Society, 1995, 117: 6117-6123.
    [31] Caruso F, Schuler C. Enzyme multilayers on colloid particles: Assembly, stability, and enzymatic activity. Langmuir, 2000, 16: 9595-9603.
    [32] Kellogg G J, Mayes A M, Stockton W B, Ferreira M, Rubner M F, Satija S K. Neutron reflectivity investigations of self-assembled conjugated polyion multilayers. Langmuir, 1996, 12: 5109-5113.
    [33] Baur J W, Rubner M F, Reynolds J R, Kim S. Forster energy transfer studies of polyelectrolyte heterostructures containing conjugated polymers: A means to estimate layer interpenetration. Langmuir, 1999, 15: 6460-6469.
    [34] Arys X, Laschewsky A, Jonas A M. Ordered polyelectrolyte "multilayers". 1. Mechanisms of growth and structure formation: A comparison with classical fuzzy "multilayers". Macromolecules, 2001, 34: 3318-3330.
    [35] Hong H P, Steitz R, Kirstein S, Davidov D. Superlattice structures in poly(phenylenevinylene)-based self-assembled films. Advanced Materials, 1998, 10: 1104-1108.
    [36] Tedeschi C, Caruso F, Mohwald H, Kirstein S. Adsorption and desorption behavior of an anionic pyrene chromophore in sequentially deposited polyelectrolyte-dye thin films. Journal of the American Chemical Society, 2000, 122: 5841-5848.
    [37] Ferreira M, Rubner M F. Molecular-Level Processing of Conjugated Polymers .1. Layer-by-Layer Manipulation of Conjugated Polyions. Macromolecules, 1995, 28: 7107-7114.
    [38] Dubas S T, Schlenoff J B. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules, 1999, 32: 8153-8160.
    [39] Yoo D, Shiratori S S, Rubner M F. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules, 1998, 31: 4309-4318.
    [40] Shiratori S S, Rubner M F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 2000, 33: 4213-4219.
    [41] Miles R W, Hynes K M, Forbes I. Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Progress in Crystal Growth andCharacterization of Materials, 2005, 51: 1-42.
    [42] Durstock M F, Taylor B, Spry R J, Chiang L, Reulbach S, Heitfeld K, Baur J W. Electrostatic self-assembly as a means to create organic photovoltaic devices. Synthetic Metals, 2001, 116: 373-377.
    [43] Yoshida T, Terada K, Schlettwein D, Oekermann T, Sugiura T, Minoura H. Electrochemical self-assembly of nanoporous ZnO/Eosin Y thin films and their sensitized photoelectrochemical performance. Advanced Materials, 2000, 12: 1214-1217.
    [44] Mattoussi H, Rubner M F, Zhou F, Kumar J, Tripathy S K, Chiang L Y. Photovoltaic heterostructure devices made of sequentially adsorbed poly(phenylene vinylene) and functionalized C60. Applied Physics Letters, 2000, 77: 1540-1542.
    [45] Shi F, Wang Z Q, Zhang X. Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders. Advanced Materials, 2005, 17: 1005-1009.
    [46] Shi F, Niu J, Liu J L, Liu F, Wang Z Q, Feng X Q, Zhang X. Towards understanding why a superhydrophobic coating is needed by water striders. Advanced Materials, 2007, 19: 2257-2261.
    [47] He J A, Valluzzi R, Yang K, Dolukhanyan T, Sung C, Kumar J, Tripathy S K, Samuelson L, Balogh L, Tomalia D A. Electrostatic multilayer deposition of a gold?dendrimer nanocomposite. Chemistry of Materials, 1999, 11: 3268-3274.
    [48] Yu A M, Gentle I, Lu G Q, Caruso F. Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactors. Chemical Communications, 2006: 2150-2152.
    [49] Kumar A, Whitesides G M. Patterned condensation figures as optical diffraction gratings. Science, 1994, 263: 60-62.
    [50] Wilbur J L, Kumar A, Kim E, Whitesides G M. Microfabrication by microcontact printing of self-assembled monolayers. Advanced Materials, 1994, 6: 600-604.
    [51] Kumar A, Biebuyck H A, Whitesides G M. Patterning self-assembled monolayers - applications in materials science. Langmuir, 1994, 10: 1498-1511.
    [52] Granlund T, Nyberg T, Roman L S, Svensson M, Inganas O. Patterning of polymer light-emitting diodes with soft lithography. Advanced Materials, 2000, 12: 269-273.
    [53] Gates B D, Xu Q B, Love J C, Wolfe D B, Whitesides G M. Unconventional nanofabrication. Annual Review of Materials Research, 2004, 34: 339-372.
    [54] Xia Y N, McClelland J J, Gupta R, Qin D, Zhao X M, Sohn L L, Celotta R J, Whitesides G M. Replica molding using polymeric materials: A practical step toward nanomanufacturing. Advanced Materials, 1997, 9: 147-149.
    [55] Malek C K, Thuillier G, Blind P. Hybrid replication development for construction ofpolymeric devices. Microsystem Technologies, 2004, 10: 711-715.
    [56] Zhao X M, Xia Y N, Whitesides G M. Fabrication of three-dimensional micro-structures: Microtransfer molding. Advanced Materials, 1996, 8: 837-840.
    [57] Kim E, Xia Y, Whitesides G M. Polymer microstructures formed by moulding in capillaries. Nature, 1995, 376: 581-584.
    [58] Jeon N L, Choi I S, Xu B, Whitesides G M. Large-area patterning by vacuum-assisted micromolding. Advanced Materials, 1999, 11: 946-950.
    [59] Kim E, Xia Y N, Zhao X M, Whitesides G M. Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers. Advanced Materials, 1997, 9: 651-654.
    [60] Marikkar F S, Carter C, Kieltyka K, Robertson J W F, Williamson C, Simmonds A, Zangmeister R, Fritz T, Armstrong N R. Conducting polymer diffraction gratings on gold surfaces created by microcontact printing and electropolymerization at submicron length scales. Langmuir, 2007, 23: 10395-10402.
    [61] Massari A M, Stevenson K J, Hupp J T. Development and application of patterned conducting polymer thin films as chemoresponsive and electrochemically responsive optical diffraction gratings. Journal of Electroanalytical Chemistry, 2001, 500: 185-191.
    [62] Tian S J, Armstrong N R, Knoll W. Electrochemically tunable surface-plasmon-enhanced diffraction gratings and their (bio-)sensing applications. Langmuir, 2005, 21: 4656-4660.
    [63] Makela T, Haatainen T, Ahopeito J, Isotalo H. Imprinted electrically conductive patterns from a polyaniline blend. Journal of Vacuum Science and Technology B, 2001, 19: 487-489.
    [64] Admassie S, Inganas O. Electrochromism in diffractive conducting polymer gratings. Journal of the Electrochemical Society, 2004, 151: H153-H157.
    [65] Na S I, Seok-Soon K, Kwon S S, Jang J, Juhwan K, Lee T, Dong-Yu K. Surface relief gratings on poly(3-hexylthiophene) and fullerene blends for efficient organic solar cells. Applied Physics Letters, 2007, 91: 173509.
    [66] Lee S, Jeong Y C, Park J K. Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates. Optics Express, 2007, 15: 14550-14559.
    [67] Zhao X M, Smith S P, Wadman S J, Whitesides G M, Prentiss M. Demonstration of waveguide couplers fabricated using microtransfer molding. Applied Physics Letters, 1997, 71: 1017-1019.
    [68] Jeon N L, Clem P G, Nuzzo R G, Payne D A. Patterning of Dielectric Oxide Thin-Layers by Microcontact Printing of Self-Assembled Monolayers. Journal of Materials Research, 1995, 10: 2996-2999.
    [69] Rogers J A, Bao Z, Meier M, Dodabalapur A, Schueller O J A, Whitesides G M. Printing, molding, and near-field photolithographic methods for patterning organic lasers, smart pixels and simple circuits. Synthetic Metals, 2000, 115: 5-11.
    [70] Xiao P F, He N Y, Liu Z C, He Q G, Sun X, Lu Z H. In situ synthesis of oligonucleotide arrays by using soft lithography. Nanotechnology, 2002, 13: 756-762.
    [71] Lu H B, Homola J, Campbell C T, Nenninger G G, Yee S S, Ratner B D. Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing. Sensors and Actuators B, 2001, 74: 91-99.
    [72] Basabe-Desmonts L, Beld J, Zimmerman R S, Hernando J, Mela P, Parajo M F G, van Hulst N F, van den Berg A, Reinhoudt D N, Crego-Calama M. A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass. Journal of the American Chemical Society, 2004, 126: 7293-7299.
    [73] Shim H Y, Lee S H, Ahn D J, Ahn K D, Kim J M. Micropatterning of diacetylenic liposomes on glass surfaces. Materials Science and Engineering C, 2004, 24: 157-161.
    [74] Bae S S, Lim D K, Park J I, Lee W R, Cheon J, Kim S. Selectively assembled Co nanoparticle stripes prepared by covalent linkage and microcontact printing. The Journal of Physical Chemistry B, 2004, 108: 2575-2579.
    [75] Kwak S K, Lee G S, Ahn D J, Choi J W. Pattern formation of cytochrome c by microcontact printing and dip-pen nanolithography. Mat Sci Eng C, 2004, 24,: 151-155.
    [76] Wilhelm T, Wittstock G. Generation of periodic enzyme patterns by soft lithography and activity imaging by scanning electrochemical microscopy. Langmuir, 2002, 18: 9485-9493.
    [77] Lee N Y, Lim J R, Lee M J, Park S, Kim Y S. Multilayer transfer printing on microreservoir-patterned substrate employing hydrophilic composite mold for selective immobilization of biomolecules. Langmuir, 2006, 22: 7689-7694.
    [78] Diaz A F, Kanazawa K K, Gardini G P. Electrochemical Polymerization of Pyrrole. Journal of the Chemical Society, Chemical Communications, 1979: 635-636.
    [79] Fu M X, Zhu Y F, Tan R Q, Shi G Q. Aligned polythiophene micro- and nanotubules. Advanced Materials, 2001, 13: 1874-1877
    [80] Kim B H, Kim M S, Park K T, Lee J K, Park D H, Joo J, Yu S G, Lee S H. Characteristics and field emission of conducting poly (3,4-ethylenedioxythiophene) nanowires. Applied Physics Letters, 2003, 83: 539-541.
    [81] Joo J, Park K T, Kim B H, Kim M S, Lee S Y, Jeong C K, Lee J K, Park D H, Yi W K, Lee S H, Ryu K S. Conducting polymer nanotube and nanowire synthesized by using nanoporous template: Synthesis, characteristics, and applications. Synthetic Metals, 2003, 135: 7-9.
    [82] Fu M X, Chen F, Zhang J X, Shi G Q. Electrochemical fabrication of aligned microtubular heterojunctions of poly(p-phenylene) and polythiophene. Journal of Materials Chemistry, 2002, 12: 2331-2333.
    [83] Yamada K, Gasparac R, Martin C R. Electrochemical and transport properties of templated gold/polypyrrole-composite microtube membranes. Journal of the Electrochemical Society, 2004, 151: E14-E19.
    [84] Jerome C, Demoustier-Champagne S, Legras R, Jerome R. Electrochemical synthesis of conjugated polymer wires and nanotubules. Chemistry-A European Journal, 2000, 6: 3089-3093.
    [85] Hatano T, Bae A H, Takeuchi M, Fujita N, Kaneko K, Ihara H, Takafuji M, Shinkai S. Helical structures of conjugate polymers created by oxidative polymerization using synthetic lipid assemblies as templates. Chemistry-A European Journal, 2004, 10: 5067-5075.
    [86] Hatano T, Bae A H, Takeuchi M, Fujita N, Kaneko K, Ihara H, Takafuji M, Shinkai S. Helical superstructure of conductive polymers as created by electrochemical polymerization by using synthetic lipid assemblies as a template. Angewandte Chemie-International Edition, 2004, 43: 465-469.
    [87] Hatano T, Takeuchi M, Ikeda A, Shinkai S. Nano-rod structure of poly(ethylenedioxythiophene) and poly(pyrrole) as created by electrochemical polymerization using anionic porphyrin aggregates as template. Organic Letters, 2003, 5: 1395-1398.
    [88] Hulvat J F, Stupp S I. Anisotropic properties of conducting polymers prepared by liquid crystal templating. Advanced Materials, 2004, 16: 589-592.
    [89] Jerome C, Labaye D E, Jerome R. Electrochemical formation of polypyrrole nanowires. Synthetic Metals, 2004, 142: 207-216.
    [90] Sumida T, Wada Y, Kitamura T, Yanagida S. Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids. Chemical Communications, 2000: 1613-1614.
    [91] Han S B, Briseno A L, Shi X Y, Mah D A, Zhou F M. Polyelectrolyte-coated nanosphere lithographic patterning of surfaces: Fabrication and characterization of electropolymerized thin polyaniline honeycomb films. The Journal of Physical Chemistyr B, 2002, 106: 6465-6472.
    [92] Briseno A L, Han S B, Rauda I E, Zhou F M, Toh C S, Nemanick E J, Lewis N S. Electrochemical polymerization of aniline monomers infiltrated into well-ordered truncated eggshell structures of polyelectrolyte multilayers. Langmuir, 2004, 20: 219-226.
    [93] Qu L T, Shi G Q. Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid). Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42: 3170-3177.
    [94] Qu L T, Shi G Q, Yuan J Y, Han G Y, Chen F. Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid. Journal of Electroanalytical Chemistry, 2004, 561: 149-156.
    [95] Bajpai V, He P G, Dai L M. Conducting-polymer microcontainers: Controlled syntheses and potential applications. Advanced Functional Materials, 2004, 14: 145-151.
    [96] MacDiarmid A G, Chiang J C, Halpern M, Huang W S, Krawczyk J R, Mammone R J, Mu S L, Somasiri N L D, Wu W. Aqueous chemistry and electrochemistry of polyacetylene and‘polyaniline’: application to rechargeable batteries. Polymeric Preprints, 1984, 25: 248-249.
    [97] Huang W S, Humphrey B D, MacDiarmid A G. Polyaniline, a novel conducting polymer: morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of Chemical Society, Faraday Transactions, 1986, 82: 2385-2400.
    [98] Onoda M, Yoshino K. Heterostructure Electroluminescent Diodes Prepared from Self-Assembled Multilayers of Poly(P-Phenylene Vinylene) and Sulfonated Polyaniline. Japanese Journal of Applied Physics, 1995, 34: L260-L263.
    [99] Onoda M, Yoshino K. Fabrication of Self-Assembled Multilayer Heterostructure of Poly(P-Phenylene Vinylene) and Its Use for an Electroluminescent Diode. Journal of Applied Physics, 1995, 78: 4456-4462.
    [100] Sim W S, Goh F Y. Molecular self-assembly of sulfonated polyaniline thin films. Surface Review and Letters, 2001, 8: 491-496.
    [101] Cao T B, Wei L H, Yang S M, Zhang M F, Huang C H, Cao W X. Self-assembly and photovoltaic property of covalent-attached multilayer film based on highly sulfonated polyaniline and diazoresin. Langmuir, 2002, 18: 750-753.
    [102] Li C, Mitamura K, Imae T. Electrostatic layer-by-layer assembly of poly(amido amine) dendrimer/conducting sulfonated polyaniline: Structure and properties of multilayer films. Macromolecules, 2003, 36: 9957-9965.
    [103] Sun J Z, Sun J Q, Ma Y G, Zhang X, Shen J C. Blue emitting diodes based on self-assembled multilayers of cationic oligo(p-phenylene vinylene) and sulfonated polyaniline. Materials Science and Engineering C, 1999, 10: 83-86.
    [104] Sun J Q, Long C B, Liu F, Dong S J, Wang Z Q, Zhang X, Shen J C. Covalently attached multilayer assemblies containing photoreactive diazo-resins and conducting polyaniline. Colloids and Surfaces A, 2000, 169: 209-217.
    [105] Li D, Jiang Y D, Wu Z M, Chen X D, Li Y R. Fabrication of self-assembled polyaniline films by doping-induced deposition. Thin Solid Films, 2000, 360: 24-27.
    [106] Cheung J H, Stockton W B, Rubner M F. Molecular-level processing of conjugated polymers .3. Layer-by-layer manipulation of polyaniline via electrostatic interactions.Macromolecules, 1997, 30: 2712-2716.
    [107] Ram M K, Salerno M, Adami M, Faraci P, Nicolini C. Physical properties of polyaniline films: Assembled by the layer-by-layer technique. Langmuir, 1999, 15: 1252-1259.
    [108] Baba A, Park M K, Advincula R C, Knoll W. Simultaneous surface plasmon optical and electrochemical investigation of layer-by-layer self-assembled conducting ultrathin polymer films. Langmuir, 2002, 18: 4648-4652.
    [109] Yao G J, Wang B Q, Dong Y P, Zhang M F, Yang Z H, Yao Q L, Yip L J W, Tang B Z. Self-assembly and photovoltaic properties of multilayer films based on partially doped polyaniline and poly (4-carboxyphenyl) acetylene. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42: 3224-3229.
    [110] Liu J Y, Tian S J, Knoll W. In neutral solution and their application for stable low-potential detection of reduced beta-nicotinamide adenine dinucleotide. Langmuir, 2005, 21: 5596-5599.
    [111] Park M K, Onishi K, Locklin J, Caruso F, Advincula R C. Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells. Langmuir, 2003, 19: 8550-8554.
    [112] Watanabe A, Mori K, Iwasaki Y, Nakamura Y, Niizuma S. Electrochromism of Polyaniline Film Prepared by Electrochemical Polymerization. Macromolecules, 1987, 20: 1793-1796.
    [113] Watanabe A, Mori K, Mikuni M, Nakamura Y, Matsuda M. Comparative-Study of Redox Reactions of Polyaniline Films in Aqueous and Nonaqueous Solutions. Macromolecules, 1989, 22: 3323-3327.
    [114] DeLongchamp D, Hammond P T. Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices. Advanced Materials, 2001, 13: 1455-1459.
    [115] DeLongchamp D M, Hammond P T. Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian Blue nanocomposite thin films. Chemistry of Materials, 2004, 16: 4799-4805.
    [116] Guernion N J L, Hayes W. 3-and 3,4-substituted pyrroles and thiophenes and their corresponding polymers - A review. Current Organic Chemistry, 2004, 8: 637-651.
    [117] Kim J, Tripathy S K, Kumar J, Chittibabu K G. Fabrication of multilayer thin films via metal-macromolecular ligand complexation. Materials Science and Engineering, 1999, 7: 11-18.
    [118] Mello S V, Pereira E C, Oliveira O N. Poly(3-thiophene acetic acid) poly(o-methoxyaniline) self-assembled films. Synthetic Metals, 1999, 102: 1204-1204.
    [119] Trivinho-Strixino F, Pereira E C, Mello S V, Oliveira O N. Self-doping effect in poly(o-methoxyaniline)/poly(3-thiopheneacetic acid) layer-by-layer films. Langmuir,2004, 20: 3740-3745.
    [120] Sato N, Rikukawa M, Sanui K, Ogata N. Fabrication and properties of self-assembled films of poly(thiophene) derivatives. Synthetic Metals, 1999, 101: 132-133.
    [121] Yamaue T, Kawai T, Onoda M, Yoshino K. Doping effect of charged porphyrin derivative into multilayered conducting polymer heterostructure by self-assembly method. Journal of Applied Physics, 1999, 85: 1626-1630.
    [122] Ding H M, Ram M K, Nicolini C. Construction of organic-inorganic hybrid ultrathin films self-assembled from poly(thiophene-3-acetic acid) and TiO2. Journal of Materials Chemistry, 2002, 12: 3585-3590.
    [123] Xin H, Li F Y, Huang Y Y, Huang C H. Self-assembled film of Tb3+ and poly (3-thiophene acetic acid) via layer-by-layer complexation technique and its photoluminescence. Journal of Rare Earths, 2002, 20: 333-338.
    [124] Constantine C A, Mello S V, Dupont A, Cao X H, Santos D, Oliveira O N, Strixino F T, Pereira E C, Cheng T C, Defrank J J, Leblanc R M. Layer-by-layer self-assembled chitosan/poly(thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. Journal of the American Chemical Society, 2003, 125: 1805-1809.
    [125] Zotti G, Zecchin S, Schiavon G, Vercelli B, Berlin A, Porzio W. Electrostatically self-assembled multilayers of novel symmetrical rigid-rod polyanionic and polycationic polythiophenes on ITO/glass and gold electrodes. Chemistry of Materials, 2004, 16: 2091-2100.
    [126] Takeoka Y, Iguchi Y, Rikukawa M, Sanui K. Self-assembled multilayer films based on functionalized poly(thiophene)s. Synthetic Metals, 2005, 154: 109-112.
    [127] Tang Z X, Donohoe S T, Robinson J A, Chiarelli P A, Wang H L. Film formation, surface character, and relative density for electrochromic PEI/(PSS : PEDOT) multilayered thin films. Polymer, 2005, 46: 9043-9052.
    [128] Agarwal M, Lvov Y, Varahramyan K. Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology, 2006, 17: 5319-5325.
    [129] Jung M H, Lee H. Patterning of conducting polymers using charged self-assembled monolayers. Langmuir, 2008, 24: 9825-9831.
    [130] Zheng S P, Cheng T, Qiang H, Zhu H F, Li J B. Self-assembly and characterization of polypyrrole and polyallylamine multilayer films and hollow shells. Chemistry of Materials, 2004, 16: 3677-3681.
    [131] Ai S F, He Q, Tao C, Zheng S P, Li J B. Conductive polypyrrole and poly(allylamine hydrochloride) nanotubes fabricated with layer-by-layer assembly. Macromolecular Rapid Communications, 2005, 26: 1965-1969.
    [132] Wessling R A, Zimmerman R G. US 3401152, 1968.
    [133] Fou A C, Onitsuka O, Ferreira M, Rubner M F, Hsieh B R. Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene). Journal of Applied Physics, 1996, 79: 7501-7509.
    [134] Onitsuka O, Fou A C, Ferreira M, Hsieh B R, Rubner M F. Enhancement of light emitting diodes based on self-assembled heterostructures of poly(p-phenylene vinylene). Journal of Applied Physics, 1996, 80: 4067-4071.
    [135] Hong H, Davidov D, Chayet H, Faraggi E Z, Tarabia M, Avny Y, Neumann R, Kirstein S. Blue luminescence induced by confinement in self-assembled films. Supramolecular Science, 1997, 4: 67-73.
    [136] Cho J, Char K, Kim S Y, Hong J D, Kim D Y, Lee K B. Change in electrical characteristics of poly(p-phenylene vinylene)-based self-assembled devices by addition of ionic salt to poly(sodium 4-styrenesulfonate). Synthetic Metals, 2001, 124: 415-419.
    [137] Sonoda T, Fujisawa T, Fujii A, Yoshino K. Optical properties of self-assembled thin-film of poly(p-phenylene vinylene)s and its application to light-emitting devices with microring geometry. Applied Physics Letters, 2000, 76: 3227-3229.
    [138] Fujisawa T, Sonoda T, Ootake R, Fujii A, Yoshino K. Microring light-emitting devices with self-assembled multilayer structures based on poly(p-phenylene vinylene)s. Synthetic Metals, 2001, 121: 1739-1740.
    [139] Gao M Y, Richter B, Kirstein S, Mohwald H. Electroluminescence studies on self-assembled films of PPV and CdSe nanoparticles. The Journal of Physical Chemistry B, 1998, 102: 4096-4103.
    [140] Mattoussi H, Radzilowski L H, Dabbousi B O, Thomas E L, Bawendi M G, Rubner M F. Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. Journal of Applied Physics, 1998, 83: 7965-7974.
    [141] Gao M Y, Richter B, Kirstein S. Electroluminescence and photoluminescence in CdSe poly (p-phenylene vinylene) composite films. Synthetic Metals, 1999, 102: 1213-1214.
    [142] Baur J W, Durstock M F, Taylor B E, Spry R J, Reulbach S, Chiang L Y. Photovoltaic interface modification via electrostatic self-assembly. Synthetic Metals, 2001, 121: 1547-1548.
    [143] Durstock M F, Taylor B, Spry R J, Chiang L, Reulbach S, Heitfeld K, Baur J W. Electrostatic self-assembly as a means to create organic photovoltaic devices. Synthetic Metals, 2001, 116: 373-377.
    [144] Wang H L, McBranch D W, Donohoe R J, Xu S, Kraabel B, Chen L H, Whitten D, Helgeson R, Wudl F. Highly efficient energy and charge transfer in thin self-assembled multilayered polymer films. Synthetic Metals, 2001, 121: 1367-1368.
    [145] Kumar G S. Azo functional polymers: functional group approach in macromoleculardesign. Lancaster Basel: Technomic Publishing Company Inc., 1993.
    [146] Irie M, Ikeda T. Photoresponsive polymers. in: Takemoto K, Ottenbrite R M, Kamachi M. (eds). Functional Monomers and Polymers. New York: Wiley, 1994: 66-116.
    [147] Xie S, Natansohn A, Rochon P. Recent development in aromatic azo polymers research. Chemistry of Materials, 1993, 5: 403-411.
    [148] Rau H, photoisomerization of azobenzenes. In photochemistry and photophysics, Rabek J F, Ed. CRC press: Boca Raton, 1990; Vol. II.
    [149] Irie M, Menja A, Hayashi K. Photoresponsive polymers: reversible solution viscosity change of poly(methyl methacrylate) having spirbenzopyran side groups. Macromolecules, 1979, 12: 1176-1180.
    [150] Kumar G S, DePra P, Neckers D C. Chelating copolymers containing photosensitive functionalities. Macromolecules, 1984, 17: 1912-1917.
    [151] Irie M, Tanaka H. Photoresponsive polymers: 5. Reversible solubility change of polystyrene having azobenzene pendant groups. Macromolecules, 1983, 16: 210-214.
    [152] Anzai J, Sasaki H, Ueno A, et al. Poly(vinyl chioride)/ azobenzene-linked bis(15-crown-5),membranes: Photointroduced potential changes across asymmetric membranes. Chemistry Letters, 1984, 151: 1205-1208.
    [153] Knobloch H, Orendi H, Stiller B, et al. Photochromic command surface-induced switching of liquid-crystal optical wave-guide structures. Journal of Applied Physics, 1995, 77: 481-487.
    [154] Seki T, Sakuragi M, Kawanishi Y, et al. "Command surfaces" of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers. Langmuir, 1993, 9: 211-218.
    [155] Aoki K, Tamaki T, Seki T, et al. Regulation of alignment of cyanobiphenyl liquid crystals by azobenzene molecular films. Langmuir, 1992, 8: 1014-1017.
    [156] Ichimura K, Suzuki Y, Seki T, et al. Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer. Langmuir, 1988, 4: 1214-1216.
    [157] Todorov T, Nicolova L, Tomova N. Polarization holograph. 1: A new high-efficiency organic material with reversible photoinduced birefringence. Applied Optics, 1984, 23: 4309-4312.
    [158] Eich M, Wendroff J H, Beck B, Ringsdorf H. Reversible digital and holographic optical storage in polymeric liquid crystals. Die Makromolekulare Chemie. Rapid communications, 1987, 8: 59-63.
    [159] Kim D Y, Tripathy S K, Li L, Kumar J. Laser-Induced Holographic Surface-Relief Gratings on Nonlinear-Optical Polymer-Films. Applied Physics Letters, 1995, 66:1166-1168.
    [160] Rochon P, Batalla E, Natansohn A. Optically Induced Surface Gratings on Azoaromatic Polymer-Films. Applied Physics Letters, 1995, 66: 136-138.
    [161] Barrett C J, Natansohn A L, and Rochon P L. Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films. The Journal of Physical Chemistry, 1996, 100: 8836-8842.
    [162] Ho M S, Barrett C, Paterson J, et al. Synthesis and optical properties of poly{(4-nitrophenyl)-[3-[n-[2-(methacryloyloxy)ethyl]-carbazolyol]]diazene}. Macromolecules, 1996, 29: 4613-4618.
    [163] Jiang X L, Li L, Kumar J, et al. Unusual polarization dependent optical erasure of surface relief gratings on azobenzene polymer films. Applied Physics Letters, 1998, 72: 2502-2504.
    [164] Viswanathan N K, Kim D Y, Bian S, et al. Surface relief structures on azo polymer films. Journal of Materials Chemistry, 1999, 9: 1941-1955.
    [165] Barrett C J, Natansohn A L. Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films. The Journal of Physical Chemistry, 1996, 100: 8836-8842.
    [166] Pedersen T G, Johansen P M, Holme N C R, et al. Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers. Physical Review Letters, 1998, 80: 89-92.
    [167] He Y N, Wang X G, Zhou Q X. Epoxy-based azo polymers: synthesis, characterization and photoinduced surface-relief-gratings. Polymer, 2002, 43, 7325-7333.
    [168] Yu Y L, Nakano M, Ikeda T. Directed bending of a polymer film by light - Miniaturizing a simple photomechanical system could expand its range of applications. Nature, 2003, 425: 145-145.
    [169] Li M H, Keller P, Li B, Wang X G, Brunet M. Light-driven side-on nematic elastomer actuators. Advanced Materials, 2003, 15: 569-572.
    [170] Li Y B, He Y N, Tong X L, Wang X G. Photoinduced deformation of amphiphilic azo polymer colloidal spheres. Journal of the American Chemical Society, 2005, 127: 2402-2403.
    [171] Liu Z F, Hashimota K, Fujishima A. Photoelectrochemical information storage using an azobenzene derivative. Nature, 1990, 347: 658-660.
    [172] Ikeda T, Horiuchi S, Karanjit D B, et al. Photochemically introduced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 1. calorimetric studies and order parameters. Macromolecules, 1990, 23: 36~42.
    [173] Ikeda T, Horiuchi S, Karanjit D B, et al. Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2.Photochemically induced isothermal phase transition behaviors. Macromolecules, 1990, 23: 42-48.
    [174] Sasaki T, Ikeda T, Ichimura K. Time resolved observation of photochemical phase transition in polymer liquid crystals. Macromolecules, 1992, 25: 3807-3811.
    [175] Ikeda T, Tsutsumi O. Optical switching and image storage by means of azobenzene liquid-crystal films. Liquid crystal photonics: Optical switching and image storage by means of nematic liquid crystals and ferroelectric liquid crystals. Science, 1995, 268: 1873-1875.
    [176] Tsutsumi O, Shiono T, Ikeda T, et al. Photochemical phase transition behavior of nematic liquid crystals with azobenzene moieties as both mesogens and photosensitive chromophores. The Journal of Physical Chemistry, 1997, 101: 1332-1337.
    [177] Ichimura K, Oh S K, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface. Science, 2000, 288: 1624-1626.
    [178] Cooper T M, Campbell A L, Crane R L. Formation of Polypeptide-Dye Multilayers by an Electrostatic Self-Assembly Technique. Langmuir, 1995, 11: 2713-2718.
    [179] Wang X G, Balasubramanian S, Li L, Jiang X L, Sandman D J, Rubner M F, Kumar J, Tripathy S K. Self-assembled second order nonlinear optical multilayer azo polymer. Macromolecular Rapid Communications, 1997, 18: 451-459.
    [180] Balasubramanian S, Wang X G, Wang H C, Yang K, Kumar J, Tripathy S K, Li L. Azochromophore-functionalized polyelectrolytes. 2. Acentric self-assembly through a layer-by-layer deposition process. Chemistry of Materials, 1998, 10: 1554-1560.
    [181] Lvov Y, Yamada S, Kunitake T. Non-linear optical effects in layer-by-layer alternate films of polycations and an azobenzene-containing polyanion. Thin Solid Films, 1997, 300: 107-112.
    [182] Lenahan K M, Wang Y X, Liu Y J, Claus R O, Heflin J R, Marciu D, Figura C. Novel polymer dyes for nonlinear optical applications using ionic self-assembled monolayer technology. Advanced Materials, 1998, 10: 853-855.
    [183] Heflin J R, Figura C, Marciu D, Liu Y, Claus R O. Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers. Applied Physics Letters, 1999, 74: 495-497.
    [184] Jung B D, Hong J D, Voigt A, Leporatti S, Dahne L, Donath E, Mohwald H. Photochromic hollow shells: photoisomerization of azobenzene polyionene in solution, in multilayer assemblies on planar and spherical surfaces. Colloids and Surfaces A, 2002, 198: 483-489.
    [185] Toutianoush A, Tieke B. Photoinduced switching in self-assembled multilayers of azobenzene-containing ionene polycations and anionic polyelectrolytes. MacromolecularRapid Communications, 1998, 19: 591-595.
    [186] Dante S, Advincula R, Frank C W, Stroeve P. Photoisomerization of polyionic layer-by-layer films containing azobenzene. Langmuir, 1999, 15: 193-201.
    [187] Ziegler A, Stumpe J, Toutianoush A, Tieke B. Photo orientation of azobenzene moieties in self-assembled polyelectrolyte multilayers. Colloids and Surfaces A, 2002, 198: 777-784.
    [188] Jung B D, Stumpe J, Hong J D. Influence of multilayer nanostructures on photoisomerization and photoorientation of azobenzene. Thin Solid Films, 2003, 441: 261-270.
    [189] Kumar S K, Hong J D, Lim C K, Park S Y. Synthesis and photoisomerization characteristics of a 2,4,4 '-substituted azobenzene tethered to the side chains of polymethacrylamide. Macromolecules, 2006, 39: 3217-3223.
    [190] Kang E H, Bu T J, Jin P C, Sun J Q, Yang Y Q, Shen J C. Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores. Langmuir, 2007, 23: 7594-7601.
    [191] Lee S H, Balasubramanian S, Kim D Y, Viswanathan N K, Bian S, Kumar J, Tripathy S K. Azo polymer multilayer films by electrostatic self-assembly and layer-by-layer post azo functionalization. Macromolecules, 2000, 33: 6534-6540.
    [192] Kang E H, Liu X K, Sun J Q, Shen J C. Robust ion-permselective multilayer films prepared by photolysis of polyelectrolyte multilayers containing photo-cross-linkable and photolabile groups. Langmuir, 2006, 22: 7894-7901.
    [193] Kang E H, Jin P C, Yang Y Q, Sun J Q, Shen J C. A facile room temperature layer-by-layer deposition process for the fabrication of ultrathin films with noncentrosymmetrically oriented azobenzene chromophores. Chemical Communications, 2006: 4332-4334.
    [194] He Y N, Wang H P, Tuo X L, Deng W, Wang X G. Synthesis, self-assembly and photoinduced surface-relief gratings of a polyacrylate-based Azo polyelectrolyte. Optical Materials, 2004, 26: 89-93.
    [195] Wang H P, He Y N, Tuo X L, Wang X G. Sequentially adsorbed electrostatic multilayers of branched side-chain polyelectrolytes bearing donor-acceptor type Azo chromophores. Macromolecules, 2004, 37: 135-146.
    [196] Li X Y, Fan P W, Tuo X L, He Y N, Wang X G. Photoresponsive layer-by-layer ultrathin films prepared from a hyperbranched azobenzene-containing polymeric diazonium salt. Thin Solid Films, 2009, 517: 2055-2062.
    [197] Wan M X, Wada T, Sasabe H. Third-harmonic generation of thin films of polyaniline. Thin Solid Films, 1992, 208: 1-3.
    [198] Cao Y, Smith P, Heeger A J. Counter-ion induced processibility of conducting polyanilineand of conducting polyblends of polyaniline in bulk polymers. Synthetic Metals, 1992, 48: 91-97.
    [199] Mizobuchi H, Kawai T, Yoshino K. Ferromagnetic behavior of self-doping type polyaniline derivatives depending on oxidation state. Solid State Communications, 1995, 96: 925-929.
    [200] Alva K S, Lee T S, Kumar J, Tripathy S K. Enzymatically synthesized photodynamic polyaniline containing azobenzene groups. Chemistry of Materials, 1998, 10: 1270-1275.
    [201] Huang K, Wan M X. Self-assembled polyaniline nanostructures with photoisomerization function. Chemistry of Materials, 2002, 14: 3486-3492.
    [202] Mattoso L H C, Macdiarmid A G, Epstein A J. Controlled synthesis of high-molecular-weight polyaniline and poly(o-methoxyaniline). Synthetic Metals, 1994, 68: 1-11.
    [203] Wu L, Tuo X, Cheng H, Chen Z, Wang X G. Synthesis, photoresponsive behavior, and self-assembly of poly(acrylic acid)-based azo polyelectrolytes. Macromolecules, 2001, 34: 8005-8013.
    [204] Wang X G, Yang K, Kumar J, Tripathy S K. Heteroaromatic chromophore functionalized epoxy-based nonlinear optical polymers. Macromolecules, 1998, 31: 4126-4134.
    [205] Zhang H Y, Yan X J, Wang Y W, Deng Y H, Wang X G. Sequentially adsorbed electrostatic multilayers of polyaniline and azo polyelectrolytes. Polymer, 2008, 49: 5504-5512.
    [206] Yager K G, Barrett C J. Novel photo-switching using azobenzene functional materials. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182: 250-261.
    [207] van der Pauw L J. A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape. Philips Technical Review, 1958/1959, 20: 220-224.
    [208] Groenendaal L, Zotti G, Aubert P H, Waybright S M, Reynolds J R. Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Advanced Materials, 2003, 15: 855-879.
    [209] Argun A A, Aubert P H, Thompson B C, Schwendeman I, Gaupp C L, Hwang J, Pinto N J, Tanner D B, MacDiarmid A G, Reynolds J R. Multicolored electrochromism polymers: Structures and devices. Chemistry of Materials, 2004, 16: 4401-4412.
    [210] Mortimer R J, Dyer A L, Reynolds J R. Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27: 2-18.
    [211] Walczak R M, Reynolds J R. Poly (3,4-alkylenedioxypyrroles): The PXDOPS as versatile yet underutilized electroactive and conducting polymers. Advanced Materials, 2006, 18: 1121-1131.
    [212] DeLongchamp D M, Kastantin M, Hammond P T. High-contrast electrochromism fromlayer-by-layer polymer films. Chemistry of Materials, 2003, 15: 1575-1586.
    [213] DeLongchamp D M, Hammond P T. High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials, 2004, 14: 224-232.
    [214] Ho M S, Natansohn A, Barrett C, Rochon P. Azo polymers for reversible optical storage .8. The effect of polarity of the azobenzene groups. Canadian Journal of Chemistry, 1995, 73: 1773-1778.
    [215] Akhremitchev B B, Walker G C. Finite sample thickness effects on elasticity determination using atomic force microscopy. Langmuir, 1999, 15: 5630-5634.
    [216] Du B Y, Tsui O K C, Zhang Q L, He T B. Study of elastic modulus and yield strength of polymer thin films using atomic force microscopy. Langmuir, 2001, 17: 3286-3291.
    [217] Feiler A, Plunkett M A, Rutland M W. Atomic force microscopy measurements of adsorbed polyelectrolyte layers. 1. Dynamics of forces and friction. Langmuir, 2003, 19: 4173-4179.
    [218] Plunkett M A, Feiler A, Rutland M W. Atomic force microscopy measurements of adsorbed polyelectrolyte layers. 2. Effect of composition and substrate on structure, forces, and friction. Langmuir, 2003, 19: 4180-4187.
    [219] Notley S M, Biggs S, Craig V S J. Application of a dynamic atomic force microscope for the measurement of lubrication forces and hydrodynamic thickness between surfaces bearing adsorbed polyelectrolyte layers. Macromolecules, 2003, 36: 2903-2906.
    [220] Dubreuil F, Elsner N, Fery A. Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. European Physical Journal E, 2003, 12: 215-221.
    [221] Lulevich V V, Radtchenko I L, Sukhorukov G B, Vinogradova O I. Deformation properties of nonadhesive polyelectrolyte microcapsules studied with the atomic force microscope. The Journal of Physical Chemistry B, 2003, 107: 2735-2740.
    [222] Vinogradova O I. Mechanical properties of polyelectrolyte multilayer microcapsules. Journal of Physics-Condensed Matter, 2004, 16: R1105-R1134.
    [223] Mermut O, Lefebvre J, Gray D G, Barrett C J. Structural and mechanical properties of polyelectrolyte multilayer films studied by AFM. Macromolecules, 2003, 36: 8819-8824.
    [224] Richert L, Engler A J, Discher D E, Picart C. Elasticity of native and cross-linked polyelectrolyte multilayer films. Biomacromolecules, 2004, 5: 1908-1916.
    [225] Jaber J A, Schlenoff J B. Mechanical properties of reversibly cross-linked ultrathin polyelectrolyte complexes. Journal of the American Chemical Society, 2006, 128: 2940-2947.
    [226] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal ofMaterials Research, 1992, 7: 1564-1583.
    [227] Pavoor P V, Bellare A, Strom A, Yang D H, Cohen R E. Mechanical characterization of polyelectrolyte multilayers using quasi-static nanoindentation. Macromolecules, 2004, 37: 4865-4871.
    [228] Yoshida T, Tochimoto M, Schlettwein D, Wohrle D, Sugiura T, Minoura H. Self-assembly of zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition. Chemistry of Materials, 1999, 11: 2657-2667.
    [229] Yoshida T, Minoura H. Electrochemical self-assembly of dye-modified zinc oxide thin films. Advanced Materials, 2000, 12: 1219-1222.
    [230] Wu W W, Xue M Z, Liu Y G. Electrochemical self-assembly of ZnO/dye hybrid thin film and its characterization. Synthetic Metals, 2003, 137: 1515-1516.
    [231] Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z Q, Jiang L, Li X Y. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. Journal of the American Chemical Society, 2004, 126: 3064-3065.
    [232] Estrany F, Aradilla D, Oliver R, Aleman C. Electroactivity, electrochemical stability and electrical conductivity of multilayered films containing poly(3,4-ethylendioxythiophene) and poly(N-methylpyrrole). European Polymer Journal, 2007, 43: 1876-1882.
    [233] Waenkaew P, Taranekar P, Phanichphant S, Advincula R C. Electro-copolymerization of layer-by-layer deposited polythiophene and polycarbazole precursor ultrathin films. Macromolecular Rapid Communications, 2007, 28: 1522-1527.
    [234] Mamedov A A, Kotov N A, Prato M, Guldi D M, Wicksted J P, Hirsch A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Materials, 2002, 1: 190-194.
    [235] Forster S, Plantenberg T. From self-organizing polymers to nanohybrid and biomaterials. Angewandte Chemie-International Edition, 2002, 41: 689-714.
    [236] Cao W X, Yang L, Luo H. Interaction of sodium dodecyl sulfate with polyelectrolyte complex from diazoresin and poly(sodium styrene sulfonate) in aqueous solution. Journal of Applied Polymer Science, 1998, 70: 1817-1821.
    [237] Sun J Q, Long C B, Liu F, Dong S J, Wang Z Q, Zhang X, Shen J C. Covalently attached multilayer assemblies containing photoreactive diazo-resins and conducting polyaniline. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2000, 169: 209-217.
    [238] Sun J Q, Wu T, Liu F, Wang Z Q, Zhang X, Shen J C. Covalently attached multilayer assemblies by sequential adsorption of polycationic diazo-resins and polyanionic poly(acrylic acid). Langmuir, 2000, 16: 4620-4624.
    [239] Cao T B, Yang S M, Cao J, Zhang M F, Huang C H, Cao W X. Nanoassembly film of carboxylic polyaniline with photosensitive diazoresin and its photoelectric conversionproperties. Journal of Physical Chemistry B, 2001, 105: 11941-11944.
    [240] Pastoriza-Santos I, Scholer B, Caruso F. Core-shell colloids and hollow polyelectrolyte capsules based on diazoresins. Advanced Functional Materials, 2001, 11: 122-128.
    [241] Cao T B, Wei F, Yang Y L, Huang L, Zhao X S, Cao W X. Microtribologic properties of a covalently attached nanostructured self-assembly film fabricated from fullerene carboxylic acid and diazoresin. Langmuir, 2002, 18: 5186-5189.
    [242] Cao T B, Wei L H, Yang S M, Zhang M F, Huang C H, Cao W X. Self-assembly and photovoltaic property of covalent-attached multilayer film based on highly sulfonated polyaniline and diazoresin. Langmuir, 2002, 18: 750-753.
    [243] Kang E H, Liu X K, Sun J Q, Shen J C. Robust ion-permselective multilayer films prepared by photolysis of polyelectrolyte multilayers containing photo-cross-linkable and photolabile groups. Langmuir, 2006, 22: 7894-7901.
    [244] Xia Y N, Gates B, Yin Y D, Lu Y. Monodispersed colloidal spheres: Old materials with new applications. Advanced Materials, 2000, 12: 693-713.
    [245] Che P C, He Y N, Zhang Y, Wang X. Synthesizing hyperbranched Azo polymer through Azo-coupling reaction. Chemistry Letters, 2004, 33: 22-23.
    [246] Kim B S, Chen L, Gong J P, Osada Y. Titration behavior and spectral transitions of water-soluble polythiophene carboxylic acids. Macromolecules, 1999, 32: 3964-3969.
    [247] Sakmeche N, Aeiyach S, Aaron J J, Jouini M, Lacroix J C, Lacaze P C. Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir, 1999, 15: 2566-2574.
    [248] Shi, G. Q.; Jin, S.; Xue, G.; Li, C., A Conducting Polymer Film Stronger Than Aluminum. Science 1995, 267, (5200), 994-996.
    [249] Kvarnstrom C, Neugebauer H, Ivaska A, Sariciftci N S. Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study. Journal of Molecular Structure, 2000, 521: 271-277.
    [250] Jin S, Xue G. Interaction between thiophene and solvated Lewis acids and the low-potential electrochemical deposition of a highly anisotropic conducting polythiophene film. Macromolecules, 1997, 30: 5753-5757.
    [251] Schanze K S, Bergstedt T S, Hauser B T, Cavalaheiro C S P. Photolithographically-patterned electroactive films and electrochemically modulated diffraction gratings. Langmuir, 2000, 16: 795-810.
    [252] Liu B, Wang M W, He Y N, Wang X G. Duplication of photoinduced azo polymer surface-relief gratings through a soft lithographic approach. Langmuir, 2006, 22:7405-7410.
    [253] Rolland J P, Hagberg E C, Denison G M, Carter K R, De Simone J M. High-resolution soft lithography: Enabling materials for nanotechnologies. Angewandte Chemie-International Edition, 2004, 43: 5796-5799.
    [254] Rozkiewicz D I, Brugman W, Kerkhoven R M, Ravoo B J, Reinhoudt D N. Dendrimer-mediated transfer printing of DNA and RNA microarrays. Journal of the American Chemical Society, 2007, 129: 11593-11599.
    [255] Bae W S, Convertine A J, McCormick C L, Urban M W. Effect of sequential layer-by-layer surface modifications on the surface energy of plasma-modified poly(dimethylsiloxane). Langmuir, 2007, 23: 667-672.
    [256] Zheng Z J, Azzaroni O, Zhou F, Huck W T S. Topography printing to locally control wettability. Journal of the American Chemical Society, 2006, 128: 7730-7731.
    [257] Tischer W, Wedekind F. Immobilized enzymes: Methods and applications. Biocatalysis - from Discovery to Application, 1999, 200: 95-126.
    [258] Liang J F, Li Y T, Yang V C. Biomedical application of immobilized enzymes. Journal of Pharmaceutical Sciences, 2000, 89: 979-990.
    [259] O'Fagain C. Enzyme stabilization - recent experimental progress. Enzyme and Microbial Technology, 2003, 33: 137-149.
    [260] Haupt B, Neumann T, Wittemann A, Ballauff M. Activity of enzymes immobilized in colloidal spherical polyelectrolyte brushes. Biomacromolecules, 2005, 6: 948-955.
    [261] Jia H F, Zhu G Y, Vugrinovich B, Kataphinan W, Reneker D H. Wang, P., Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnology Progress, 2002, 18: 1027-1032.
    [262] Pan X H, Kan J Q, Yuan L M. Polyaniline glucose oxidase biosensor prepared with template process. Sensors and Actuators B-Chemical, 2004, 102: 325-330.
    [263] Caruso F, Mohwald H. Protein multilayer formation on colloids through a stepwise self-assembly technique. Journal of the American Chemical Society, 1999, 121: 6039-6046.
    [264] Caruso F, Fiedler H, Haage K. Assembly of beta-glucosidase multilayers on spherical colloidal particles and their use as active catalysts. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2000, 169: 287-293.
    [265] Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman A S, Stayton P S. Photoresponsive polymer-enzyme switches. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 16592-16596.
    [266] Shimoboji T, Ding Z L, Stayton P S, Hoffman A S. Photoswitching of ligand association with a photoresponsive polymer-protein conjugate. Bioconjugate Chemistry, 2002, 13:915-919.
    [267] Nakayama K, Endo M, Majima T. A hydrophilic azobenzene-bearing amino acid for photochemical control of a restriction enzyme BamHI. Bioconjugate Chemistry, 2005, 16: 1360-1366.
    [268] Tao X, Li J B, Mohwald H. Self-assembly, optical behavior, and permeability of a novel capsule based on an azo dye and polyelectrolytes. Chemistry-a European Journal, 2004, 10: 3397-3403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700