用户名: 密码: 验证码:
结构有序纳米HA涂层的电化学构筑及钛/细胞界面原位EIS研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医用金属钛及其合金的表面活性改性及材料的生物学响应是生物材料研究领域的焦点之一。针对当前国内外在钛表面的羟基磷灰石(HA)涂覆、HA涂层组分和结构控制、HA涂层形成机理及主要影响因素以及生物材料与细胞的相互作用机理等关键技术和科学问题,本论文工作旨在从仿生学角度进一步发展温和的电化学沉积技术在医用钛金属表面构筑具有优良生物性能和力学性能的有序结构HA涂层,探明高生物活性涂层的形成机理及规律性;发展电化学交流阻抗谱(EIS)技术用于原位检测材料/细胞相互作用及其存在的电化学本质联系,以探明生物材料与细胞相互作用过程的界面结构。
     本论文主要研究内容有:a)侧重采用低浓度体系的电化学沉积技术制备均匀纳米HA涂层,探索涂层结构设计和组分设计的可能性,以制备结构仿生复合人工骨涂层;b)考察相关实验参数对涂层性能的影响,深入探讨低浓度体系HA涂层的电化学沉积过程的规律性;c)深入探讨钙磷盐电化学沉积机理,并建立低浓度体系HA涂层的电化学沉积模型;d)建立材料/细胞界面EIS原位测量技术,探索钛/细胞界面相互作用过程的电化学本质。主要研究结果如下:
     1.发展了低浓度体系电化学沉积方法,获得高结晶度、单一组分HA涂层,在此条件下制备的纯HA涂层具有花簇状、直立状和微孔状三种典型的微观形貌。首次实现了钛表面纳微米结构有序的纯HA涂层的构筑,细胞实验表明,这种特殊结构的HA涂层具有比其它结构的HA涂层更加优异的生物性能。
     2.发展电化学共沉积方法构筑了具有独特微孔状结构的HA/胶原复合仿生骨涂层,红外谱图证明,涂层中有一定量胶原组分存在,SEM形貌和XRD谱图表明,该复合涂层中HA晶粒更加细化,结构特征比纯HA涂层更接近于自然骨。
     3.系统考察了电化学沉积技术中各种影响因素的作用机制,从理论和实验上证实,对于低浓度体系,在相当宽的实验参数范围内,均能获得高结晶度HA涂层,而涂层中HA晶粒的尺寸分布、排列等形貌特征以及涂层的生长速度等与电化学沉积的实验参数关系密切。
     4.研究表明,HA涂层沉积过程中的热力学和动力学条件直接决定其组成与结构,成核过程主要由热力学(ΔG)控制,生长过程主要由动力学环境控制。热力学分析证明,低浓度体系中的低钙磷物种浓度和较高沉积温度有利于单一组分HA的形成。动力学计算得到一定条件下涂层生长的表观活化能近似为174.9 kJ·mol~(-1),涂层生长过程由动力学控制。探明HA电化学沉积过程的规律性,并初步提出了低浓度体系HA涂层的沉积模型。
     5.设计了原位电解池,并引入Ag/AgCl参比电极,测试生物材料/细胞界面相互作用的电化学交流阻抗谱,解决了EIS测试过程中高频信号失真的问题。
     6.钛/细胞界面EIS测量初步结果表明,细胞在电极材料表面附着可改变界面双电层组成和电极的表面状态。材料表面阻抗信号通常处于中低频段,而细胞膜层自身的电化学阻抗信号处于高频段,解析其相互关系可以得到材料/细胞相互作用机理方面的信息。
The surface modification for bioproperties and biological response of titaniumare among the most focal studies in biomaterials field.The emphases of this thesisresearch are put on some scientific and technical key problems,such as the novelcoating techniques of hydroxyapatite (HA),the control of composition and structureof HA coating,the mechanism and main influence factors of HA coating formationand the interaction of biomaterials and cells in biological environment.The aims ofthis work are to develop novel HA electrochemical deposition methods,from theaspect of bionics,to construct ordered nano structrured HA coating and its hybridcoating with both excellent biological and good mechanical properties on titaniumsubstrate,to further study the mechanism of HA formation on the Ti surface and todevelop electrochemical impedance spectroscopy (EIS) to in situ elucidate theinterfacial structure and the interactions of biomaterials and cells.
     The main work includes:a) construction of nano HA coating byelectrochemical deposition technique in low concentration system,b) design andcontrol of structure and composition of HA coating for fabrication of bionic artificialbone coating,c) systematical investigation of the effects of main depositionparameters on coating properties,d) further understanding of the mechanism ofelectrochemical deposition of calcium phosphates on Ti in low concentration system,and e) establishment of an in situ electrochemical cell for studying the interaction oftitanium/MG63 cell by EIS measurement.The following conclusions can be drawn:
     1.A pure HA coating with high crystallinity has been prepared byelectrochemical deposition method in low concentration system.The HAcoating exhibits three kinds of typical topographies,i.e.flower type,standing-up type and porous type topographies.The nano-micro structuredordered pure HA coating has been firstly constructed on titanium substrate.Preliminary in vitro test indicates that the HA coating with such specialnano-micro two level structure is of more excellent bioactivity comparedwith other kinds of HA coatings.
     2.The HA/Collagen hybrid coating with nano-micro ordered structure has beenfabricated as well by using electrochemical co-deposition method.The FTIR spectra demonstrates the existence of collagen in the composite coating,andthe SEM and XRD results shows that the crystal size of HA in the compositecoating is significantly decreased with the addition of collagen component,and the structure of the composite coating is more mimetic to the naturalbone when compared with the pure HA coating.
     3.The effect of the main preparing parameters on the HA electrochemicaldeposition in low concentration system has been systematically investigated.It is indicated that in a very wide range of preparing parameter,highlycrystallized and pure HA coating can be obtained,while the distribution ofthe crystal size,the arrangement of the crystal grains and the depositionvelocity of the HA coating are intimately related to the depositionparameters.
     4.The chemical composition and structure of the electrochemically depositedcalcium phosphate coating are determined by both thermodynamic andkinetic conditions.The nucleation process is mainly influenced by thethermodynamic factors,such asΔG,and the growth behavior is mainlycontrolled by the dynamic environments.The thermodynamic analysisdemonstrates that both the lower concentration of calcium and phosphorusspecies and the higher temperature in the system facilitate the pure HAformation,comparing with the traditional high concentration system.According to kinetic calculation,the apparent activity energy of the HAformation in a specific low concentration system is estimated to be 174.9kJ·mol~(1).An electrochemical deposition model of HA coating in lowconcentration system has been proposed to further clarify the behaviors ofthe HA coating formation.
     5.An in situ electrochemical cell has been designed for the ac impedancemeasurements at biomaterial/cell interface.A home-made Ag/AgCl electrodeis introduced to the in situ cell as a reference electrode to eliminate thedistortion phenomena during the ac impedance measurement in highfrequency range.
     6.It is demonstrated,from the EIS analysis of titanium/cell interface,that theadhesion of cells onto the biomaterial surface may alter the surface states andstructure of double layer at the interface.The ac impedance information in the higher frequency range is mainly from the cell adsortion process ontitanium surface,which is helpful to understand the interaction betweenbiomaterials and living cells.
引文
[1].Boretos JW, Eden M.Contemporary Biomaterials: Material and Host Response, Clinical Applications, [M], New Technology and Legal Aspects.Noyes Publications, Park Ridge, NJ 1984, 232-233.
    [2].顾汉卿,徐国风主编.生物医学材料学.[M],天津科技翻译出版公司,天津,1993.
    [3].Dee KC, Puleo DA, Bizios R.An Introduction to Tissue-Biomaterial Interactions.[M], John Wiley & Sons, New York, 2002, 1-13.
    [4].Ratner BD, Hoffman AS, Schoen FJ, et al.Biomaterials Science: An Introduction to Materials in Medicine.[M], Academic Press, New York, NY 1996, 37-130.
    [5].Ratner BD, Hoffman AS, Schoen FJ, et al.Biomaterials Science: An Introduction to Materials in Medicine.[M], Academic Press, New York, NY 1996, 11-35.
    [6].Peppas NA, Langer R.New Challenges in Biomaterials.[J], Science, 1994, 263: 1715-1720.
    [7].Morscher E, Gerber B, Fasel J.Surgical treatment of spondylolisthesis by bone grafting and direct stabilization of spondylolysis by means of a book screw.[J], Arch Orthop Trauma Surg 1984, 103(3): 175-178.
    [8].Williams DF.主编.朱鹤孙等译.医用与口腔材料.[M],科学出版社,北京,1999.
    [9].Brunette DM, Tengvall P, Textor M, et al.Titanium in Medicine.[M], Spinger-Verlag Berlin Heidelberg, NY, 2001.
    [10].Hench LL, Splinter RJ, Allen WC, et al.Bonding mechanism at interface of ceramic prosthetic materials.[J], J Biomed Mater Res Symp, 1971, 2: 117-141.
    [11].Hench LL, Wilson J.Surface-active biomaterials.[J], Science, 1984, 226: 630.
    [12].Hench LL.Bioactive ceramics.in Bioceramics: Material characteristics versus in vivo behaviour, [M], Ducheyne P and Lemons JE, Eds., New York Academy of Science, New York, 1988, 54-71.
    [13].Kokubo T.Bioactive glass ceramics: properties and applications.[J], Biomaterials, 1991, 12:155-163.
    [14].Hench LL.Bioceramics: from concept to clinic.[J], J Am Ceram Soc, 1991, 74(7):1487-1510.
    [15].Matsuda T, Davies JE.The in vitro response of osteoblasts to bioactive glass.[J],Biomaterials, 1987, 8: 275-284.
    [16].Narasaraju TSB, Phebe DE.Some physico-chemical aspects of hydroxyapatite.[J], J Mater Sci, 1996, 31: 1-21.
    [17].Donners JJJM, Nolte RJM, Sommerdijk NAJM.Dentrimer-based hydroxyapatite composites with remarkable materials properties.[J], Adv Mater, 2003, 15(3): 314-316.
    [18].Ueshima M, Nakamura S, Yamashita K.Huge, millicoulomb charge storage in ceramic hydroxyapatite by bimodal electric polarization.[J], Adv Mater, 2002, 14(8): 591-595.
    [19].Lopez-Macipe A, Gomez-Morales J, Rodriguez R.Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating.[J], Adv Mater, 1998, 10(1): 49-53.
    [20].Mondragon-Cortez P, Vargas-Gutierrez G.Selective deposition of hydroxyapatite nanoparticles by eletrophoretic deposition.[J], Adv Eng Mater, 2003, 5(11): 812-815.
    [21].Zhang H, Yan Y, Wang Y, et al.Thermal stability of hydroxyapatite whiskers prepared by homogenous precipitation.[J], Adv Eng Mater, 2002, 4(12): 916-919.
    [22].Dittrich R, Tomandl C Mangler M.Preparation of Al_2O_3, TiO_2, and hydroxyapatite ceramics with pore similar to a honeycomb structure.[J], Adv Eng Mater, 2002, 4(7):487-490.
    [23].Tampieri A, Celotti G, Szontagh F, et al.Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity.[J], J Mater Sci Mater Med,1997, 8: 29-37.
    [24].Dorner-Reisel A, Muller E, Tomandl G.Short fiber reinforced hydroxyapatite-based bioceramics.[J], Adv Eng Mater, 2004, 6(7): 572-577.
    [25].Shen Z, Adolfsson E, Nygren M, et al.Dense hydroxyapatite-zirconia ceramic composites with high strength for biological applications.[J], Adv Mater, 2001, 13(3): 214-216.
    [26].Durucan C, Brown PW.Biodegradable hydroxyapatite-polymer composites.[J], Adv Eng Mater 2001, 3(4): 227-231.
    [27].IgnjatovicN,PlavsicM,UskokovicD.Hydroxyapatite/poly-L-lactide(collagen) biocomposite with poly-L-lactide of different molecular weights.[J], Adv Eng Mater, 2000,2(8): 511-514.
    [28].Evans SL, Gregson PJ.Composite technology in load-bearing orthopaedic implants.[J], Biomaterials, 1998, 19: 1329-1342.
    [29].Buckwalter JA, Glimcher MJ, Cooper PR, et al.Bone Biology.[J], J Bone Joint Surg, 1995,77-A(8) 1256-1275.
    [30].Black J.Biological Performance of Materials: Fundamentals of Biocompatibility, [M],Third Edition.Marcel Dekker, New York, 1999.
    [31].Williams DF.Fundamental Aspects of Biocompatibility.[M], CRC Press, Boca Raton, FL,1981.
    [32].Braybrook JH.Biocompatibility Assessment of Medical Devices and Materials.[M], John Wiley & Sons, New York, 1997.
    [33].Silver FH, Christiansen DL.Biomaterials Science and Biocompatibility.[M], Springer Verleg, New York, 1999.
    [34].http://www.devicelink.com/mpb/archive/97/05/001.html.
    [35].Milella E, Cosentino F, Licciulli A, et al.Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process.[J], Biomaterials,2001,22:1425-1431.
    [36]. Stoch A, Brozek A, Kmita G, et al. Electrophoretic coating of hydroxyapatite on titanium implants. [J], J Mol Struc, 2001, 596: 191-200.
    [37]. Wei M, Ruys AJ, Swain MV, et al. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. [J], J Mater Sci Mater Med, 1999, 10:401-409.
    [38]. Tkalcec E, Sauer M, Nonninger R, et al. Sol-gel-derived hydroxyapatite powders and coatings. [J], J Mater Sci, 2001, 36: 5253-5263.
    [39]. Chern Lin JH, Chen KS, Ju CP. Biocorrosion behavior of hydroxyapatite/bioactive glass plasma sprayed on Ti6A14V. [J], Mater Chem Phys, 1995,41: 282-289.
    [40]. Moroni A, Caja VL, Egger EL, et al. Histomorphometry of hydroxyapatite coated and uncoated porous titanium bone implants. [J], Biomaterials 1994, 15(11): 926-930.
    [41]. Tisdel CL, Goldberg VM, Parr JA, et al. The influence of a hydroxyapatite and tricalcium-phosphate coating on bone growth into titanium fiber-metal implants. [J], J Bone Joint Surg, 1994, 76-A(2): 159-171.
    [42]. Dalton JE, Cook SD, Thomas KA, et al. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants. [J], J Bone Joint Surg, 1995, 77-A(l): 97-110.
    [43]. Soballe K, Hansen ES, Brockstedt-Rasmussen H, et al. Bone graft incorporation around titanium-alloy- and hydroxyapatite-coated implants in dogs. [J], Clin Orthop Relat R, 1991, 272: 282-293.
    [44]. Overgaard S, Lind M, Glerup H, et al. Hydroxyapatite and fluorapatite coatings for fixation of weight loaded implants. [J], Clin Orthop Relat R, 1997,336: 286-296.
    [45]. Galante J, Rostoker W, Lueck R, et al. Sintered fiber metal composites as a basis for attachment of implants to bone. [J], J Bone Jt Surg Am, 1971, 53A: 101-114.
    [46]. Kienapfel H, Sprey C, Wilke A, et al. Implant fixation by bone ingrowth. [J], J Arthroplasty, 1999, 14(3): 355-368.
    [47]. Lange R, L(?)then F, Beck U, et al. Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. [J], Biomol Eng, 2002, 19: 255-261.
    [48]. Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO_2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. [J], Surf Coat Tech, 2000, 125:407-414.
    [49]. Akin FA, Zreiqat H, Jordan S, et al. Preparation and analysis of macroporous TiO_2 films on Ti surfaces for bone-tissue implants. [J], J Biomed Mater Res, 2001, 57(4): 588-596.
    [50]. Schwartz Z, Martin JY, Dean DD, et al. Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. [J], J Biomed Mater Res, 1996, 30: 145-155.
    [51]. Tullos HS, McCaskill BL, Dickey R, et al. Total hip arthroplasty with a low-modulus porous-coated femoral component. [J], J Bone Joint Surg, 1984, 66-A(6): 888-898.
    [52]. Pilliar RM. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth. [J], Clin Orthop Relat R, 1983,176: 42-51.
    [53]. Bobyn JD, Pilliar RM, Cameron HU, et al. The effect of porous surface configuration on the tensile strength of fixation of implants by bone ingrowth. [J], Clin Orthop Telat R, 1980, 149: 291-298.
    [54]. Jasty M, Rubash HE, Paiement GD, et al. Porous-coated uncemented components in experimental total hip arthroplasty in dogs. [J], Clin Orthop Relat R, 1992,280: 300-309.
    [55]. Predecki P. Attachment of bone to thread implants by ingrowth and mechanical inter-locking. [J], J Biomed Mater Res, 1972, 6: 401-412.
    [56]. Takatsuka K, Yamamuro T, Nakamura T, et al. Bone-bonding behavior of titanium alloy evaluated mechanically with detaching failure load. [J], J Biomed Mater Res, 1995, 29: 157-163.
    [57]. Goldberg VM, Stevenson S, Feighan J, et al. Biology of grit-blasted titanium alloy implants. [J], Clin Orthop Relat R, 1995, 319: 122-129.
    [58]. Sun LM, Berndt CC, Grey CP. Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. [J], Mater Sci Eng A, 2003, 360 (1-2): 70-84.
    [59]. Mondragon-Cortez P, Vargas-Gutierrez G. Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. [J], Mater Lett, 2004, 58(7-8): 1336-1339.
    [60]. Darr JA, Guo ZX, Raman V, et al. Metal organic chemical vapour deposition (MOCVD) of bone mineral like carbonated hydroxyapatite coatings. [J], Chem Commun, 2004, 6: 696-697.
    [61]. Fogarassy P, Gerday D, Lodini A. Agglomerated nanostructured particles disintegration during the plasma thermal spraying process. [J], Mech Res Commun, 2005, 32(2):221-239.
    [62]. Guo LH, Li H. Fabrication and characterization of thin nano-hydroxyapatite coatings on titanium. [J],Surf Coat Tech, 2004,185(2-3): 268-274.
    [63]. Wei M. Ruys AJ, Milthorpe BK, et al. Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual-Coating Approach. [J], J Sol-Gel Sci Techn,2001,21(l-2):39-48.
    [64]. Bigi A, Boanini E, Bracci B, et al. Nanocrystalline hydroxyapatite coatings on titaniunra new fast biomimetic method. [J], Biomaterials, 2005, 26(19): 4085-4089.
    [65]. Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. [J], J Mater Sci Mater Med 1998,9(2): 67-72.
    [66]. Redepenning J, Mclsaac JP. Electrocrystallization of brushite coatings on prosthetic alloys. [J], Chem Mater, 1990,2(6): 625-627.
    [67]. Benhayoune H, Laquerriere P, Jallot E, et al. Micrometer level structural and chemical evaluation of electrodeposited calcium phosphate coatings on TA6V substrate by STEM-EDXS. [J], J Mater Sci Mater Med, 2002,13: 1057-1063.
    [68]. Shirkhanzadeh M. Bioactive calcium phosphate coatings prepared by electrodeposition on titanium and titanium alloy. [J], J Mater Sci Lett, 1991, 10: 1415-1417.
    [69]. Shirkhanzadeh M. Electrochemical preparation of bioactive calcium phosphates coatings on porous substrates by the periodic pulse technique. [J], J Mater Sci Lett, 1993, 12: 16-19.
    [70]. Shirkhanzadeh M. Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes. [J], J Mater Sci Mater Med, 1995, 6: 90-93.
    [71]. Ban S, Maruno S. Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. [J], Biomaterials, 1995, 16: 977-981.
    [72]. Ban S, Maruno S. Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. [J], Biomaterials, 1998, 19 (14): 1245-1253.
    [73]. Manso M, Jimenez C, Morant C, et al. Electrodeposition of hydroxyapatite coatings in basic conditions. [J], Biomaterials, 2000,21: 1755-1761.
    [74]. Hou X, Liu X, Xu J, et al. A self-optimizing electrodeposition process for fabrication of calxium phosphate coatings. [J], Mater Lett, 2001, 50: 103-107.
    [75]. Kuo MC, Yen SK. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. [J], Mater Sci Eng C, 2002, 20(1-2): 153-160.
    [76]. da Silva MHP, Soares GDA, Elias CN, et al. In vitro cellular response to titanium electrochemically coated with hydroxyapatite compared to titanium with three different levels of surface roughness. [J], J Mater Sci Mater Med, 2003, 14(6): 511-519.
    [77]. Zhang JM, Lin CJ, Feng ZD, et al. Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in situ pH-microsensor technique. [J], J Electroanal Chem, 1998,452(2): 235-240.
    [78]. da Silva MHP, Lima JHC, Soares GA, et al. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. [J], Surf Coat Tech, 2001, 137(2-3): 270-276.
    [79]. Wang J, Layrolle P, Stigter M, et al. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. [J], Biomaterials, 2004,25(4): 585-592.
    [80]. Becker P, Neumann HG, Nebe B, et al. Cellular investigations on electrochemically deposited calcium phosphate composites. [J], J Mater Sci Mater Med, 2004, 15(4): 437-440.
    [81]. LeGeros JP, Lin SJ, Mijares D, et al. Electrochemically deposited calcium phosphate coating on titanium alloy substrates. [J], Key Eng Mater 2005,17: 247-250.
    [82]. Hu R, Shi HY, Lin LW, et al. The crystal growth behavior of hydroxyapatite coating on titanium substrate under electrochemical deposition conditions. [J], Acta Phys-Chim Sin, 2005,21(2): 197-201.
    [83]. Hu R, Hu HB, Lin CJ. Preparation and characterization for a co-deposited hybrid coating of calcium phosphate/chitosan on Ti alloy surface. [J], Chem J Chinese U, 2002, 23(11): 2142-2146.
    [84]. Hu HB, Lin CJ, Hu R, et al. A study on hybrid bioceramic coatings of HA/poly(vinyl acetate) co-deposited electrochemically on Ti-6A1-4V alloy surface. [J], Mater Sci Eng C, 2002, 20(1-2): 209-214.
    [85].Cheng XL, Filiaggi M, Roscoe SG.Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy.[J], Biomaterials, 2004, 25(23):5395-403.
    [86].Kasuga T, Kondo H, Nogami M.Apatite formation on TiO2 in simulated body fluid.[J], J Cryst Growth, 2002, 235: 235-240.
    [87].Miyazaki T, Kim HM, Kokubo T, et al.Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid.[J], Biomaterials, 2002, 23: 827-832.
    [88].Lin FH, Hsu YS, Lin SH, et al.The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel.[J], Biomaterials, 2002, 23: 4029-4038.
    [89].Kieswetter K,Schwartz Z, Dean DD, et al.The role of implant surface characteristics in the healing of bone.[J], Crit Rev Oral Biol Med, 1996, 7(4): 329-345.
    [90].史美伦.交流阻抗谱原理及应用.[M],国防工业出版社,北京,2001.
    [91].曹楚南,张鉴清.电化学阻抗谱导论.[M],科学出版社,北京,2002.
    [92].Giaever I, Keese CR.Micromotion of mammalian cells measured electrically.[M], Proc.Natl.Acad.Sci.USA, 1991, 88:7896-7900.
    [93].Tiruppathi C, Malik AB, Del Vecchio PJ, et al.Electrical method for detection of endothelial cell shape change in real time: Assessment of endothelial barrier function.[M],Proc.Natl.Acad.Sci.USA, 1992, 89: 7919-7923.
    [94].Giaever I, Keese CR.A morphological biosensor for mammalian cells.[J], Nature, 1993, 366: 591-592.
    [95].Giaever I, Keese CR.Use of electric fields to monitor the dynamical aspect of cell behavior in tissute culture.[J], IEEE Proc Biomed Eng, 1986, 33: 242-247.
    [96].Wegener J, Keese CR, Giaever I.Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces.[J], Exp Cell Res, 2000, 259: 158-166.
    [97].Xiao C, Lachance B, Sunahara G, et al.An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells.[J], Anal Chem, 2002, 74: 1333-1339.
    [98].Luong JHT, Habibi-Rezaei M, Meghrous J, Xiao C, Male KB, Kamen A.Monitoring motility, spreading, and mortality of adherent insect cells using an impedance sensor.Anal Chem 2001, 73: 1844-1848.
    [99].Xiao C, Lachance B, Sunahara G, Luong JHT.Assessment of cytotoxicity using electric cell-substrate impedance sensing: concentration and time response function approach.Anal Chem 2002, 74: 5748-5753.
    [100].Xiao C, Luong JHT.On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). [J], Biotechnol Prog, 2003, 19: 1000-1005.
    [101]. Wegener J, Sieber M, Galla HJ. Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. [J], J Biochem Biophys Methods, 1996, 32: 151-170.
    [102]. Wegener J, Zink S, R(?)sen P, et al. Use of electrochemical impedance measurements to monitor beta-adrenergic stimulation of bovine aortic endothelial cells [J], Pflugers Arch,1999,437:925-934.
    [103]. Hiromoto S, Noda K, Hanawa T. Electrochemical properties of an interface between titanium and fibroblasts L929. [J], Electrochim Acta, 2002,48: 387-396.
    [104]. Hiromoto S, Noda K, Hanawa T. Development of electrolytic cell with cell-culture for metallic biomaterials. [J], Corrosion Sci, 2002,44:955-965.
    [105]. Huang HH. In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells. [J], Biochem Biophys Res Commun, 2004, 314:787-792.
    [1].Lifshin E主编.叶恒强等译.材料的特征检测.[M],科学出版社,北京,1998.
    [2].司徒镇强吴军正主编.细胞培养.[M],世界图书出版公司,西安,1996.
    [3].鄂征主编.组织培养和分子细胞学技术.[M],北京出版社,北京,1994.
    [4].王洪复主编.骨细胞图谱与骨细胞体外培养技术.[M],上海科学技术出版社,上海,2001.
    [5].凌诒萍俞彰主编.细胞超微结构与电镜技术.[M],上海医科大学出版社,上海,2000.
    [1].Benhayoune H, Laquerriere P, Jallot E, et al.Micrometer level structural and chemical evaluation of electrodeposited calcium phosphate coatings on TA6V substrate by STEM-EDXS.[J],J Mater Sci Mater Med, 2002, 13: 1057-1063.
    [2].Cheng XL, Filiaggi M, Roscoe SG.Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy.[J], Biomaterials, 2004, 25(23): 5395-403.
    [3].Zhang JM, Lin CJ, Feng ZD, et al.Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in situ pH-microsensor technique.[J], J Electroanal Chem, 1998, 452(2): 235-240.
    [4].张建民.金属表面生物陶瓷材料的电化学研究.[D],厦门大学出版社,厦门,1997.
    [5].Ban S, Maruno S.Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid.[J], Biomaterials, 1995, 16: 977-981.
    [6].Kuo MC, Yen SK.The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature.[J], Mater Sci Eng C, 2002, 20(1-2): 153-160.
    [7].Shirkhanzadeh M.Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes.[J],J Mater Sci Mater Med, 1998, 9(2):67-72
    [8].Hu HB, Lin CJ, Hu R, et al.A study on hybrid bioceramic coatings of HA/poly(vinyl acetate) co-deposited electrochemically on Ti-6Al-4V alloy surface.[J], Mater Sci Eng C, 2002, 20:209-214.
    [9].Hu R, Hu HB, Lin CJ.Preparation and characterization for a co-deposited hybrid coating of calcium phosphate/chitosan on Ti alloy surface.[J],Chem J Chinese U, 2002, 23(11):2142-2146.
    [10].王振林,闫玉华,万涛.羟基磷灰石/胶原类骨仿生复合材料的制备方法及机理.[J],生物技术通讯,2004, 15: 530-533.
    [11].Pohunkova H, Adam M.Reactivity and the fate of some composite bioimplants based on collagen in connective tissue.[J], Biomaterials, 1995, 16: 67.
    [12].冯庆玲,崔福斋,张伟.纳米羟基磷灰石/胶原骨修复材料.[J],中国医学科学院学报2002, 24: 124-128.
    [13].Kikuchi M, Ikoma T, Itoh S, et al.Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite an collagen.[J], Composites Sci Technol,2004,64:819.
    [14].Itoh S, Kikuchi M, Koyama Y, et al.Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite.[J], Biomaterials, 2002, 23: 3919.
    [15].Bigi A, Gandolfi M, Koch MHJ, et al.X-ray diffraction study of in vitro calcification of tendon collagen.[J],Biomaterials, 1999, 20: 191.
    [16].Fan YW,Duan K,Wang RZ.A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization.[J], Biomaterials 2005, 26: 1623-1632.
    [17].黄立业,憨勇,徐可为.电化学沉积-水热合成法制备羟基磷灰石生物涂层的工艺研究[J],硅酸盐学报,1998, 26(1): 87-91.
    [18].Kumar M, Xie J, Chittur K, et al.Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution.[J], Biomaterials, 1999, 20(15):1389-1399.
    [19].Helen Annal Therese G, Vishnu Kamath P, Subbanna GN.Novel electrosynthetic route to calcium phosphate coatings.[J], J Mater Chem, 1998, 8(2): 405-408.
    [20].Lu X, Zhao ZF, Leng Y.Calcium phosphate crystal growth under controlled atmosphere in electrochemical deposition.[J], J Cryst Growth, 2005, 284(3-4): 506-516.
    [21].Ban S, Maruno S.Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid.[J], Biomaterials, 1998, 19(14): 1245-1253.
    [22].Wang J, Layrolle P, Stigter M, et al.Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment.[J], Biomaterials,2004, 25(4): 585-92.
    [23].胡皓冰,林昌健,冷杨.电化学共沉积制备有机高聚物/钙磷复合陶瓷膜层—ⅠXRD、SEM表征及生物活性研究.[J],生物医学工程学杂志,2003, 20(1: 4-7.
    [24].黄立业,憨勇,徐可为电结晶法制备羟基磷灰石生物涂层的研究材料科学与工程1996; 15(3):55—57
    [25].黄立业,徐可为.纳米针状羟基磷灰石涂层的制备及其性能的研究.[J],硅酸盐学报,1999, 27(3: 351-356.
    [26].Hu R,Shi HY, Lin LW, et al.The crystal growth behavior of hydroxyapatite coating on titanium substrate under electrochemical deposition conditions.[J],Acta Phys-Chim Sin,2005, 21(2): 197-201.
    [27].Stoch A, Jastrzebski W, Brozek A, et al.FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids.[J],J Mol Struct, 1999, 512:287-94.
    [28].Li H, Ng BS, Khor KA,et al.Raman spectroscopy determination of phases within thermal sprayed hydroxyapatite splats and subsequent in vitro dissolution examination.[J], Acta Mater, 2004, 52(2): 445-53.
    [29].Narasaraju TSB, Phebe DE.Some physico-chemical aspects of hydroxyapatite.[J], J Mater Sci, 1996,31:1-21.
    [30].Liang FH, Zhou L, Wang KG.Apatite formation on porous titanium by alkali and heat-treatment.[J], Surface and Coatings Technology 2003, 165(2): 133-139.
    [31].Lin FH, Hsu YS, Lin SH, et al.The growth of hydroxyapatite on alkaline treated Ti-6Al-4V soaking in higher temperature with concentrated Ca~(2+)/HPO_4~(2-)simulated body fluid.[J], Materials Chemistry and Physics, 2004, 87: 24-30.
    [32]. Yen SK, Lin CM. Characterization of electrolytic Al_2O_3/CaP composite coatings on pure titanium. [J], J Electrochem Soc, 2002,149: D79-D87.
    [1]. Redepenning J, McIsaac JP. Electrocrystallization of brushite coatings on prosthetic alloys. [J], Chem Mater, 1990, 2(6): 625-627.
    [2]. Shirkhanzadeh M. Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes. [J], J Mater Sci Mater Med, 1995, 6: 90-93.
    [3]. Shirkhanzadeh M. Electrochemical preparation of bioactive calcium phosphates coatings on porous substrates by the periodic pulse technique. [J], J Mater Sci Lett, 1993, 12: 16-19.
    [4]. Shirkhanzadeh M. Bioactive calcium phosphate coatings prepared by electrodeposition on titanium and titanium alloy. [J], J Mater Sci Lett, 1991, 10: 1415-1417.
    [5]. Ban S, Maruno S. Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. [J], Biomaterials, 1995, 16: 977-981.
    [6]. Ban S, Maruno S. Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. [J], Biomaterials, 1998,19(14): 1245-1253.
    [7]. LeGeros JP, Lin SJ, Mijares D, et al. Electrochemically deposited calcium phosphate coating on titanium alloy substrates. [J], Key Eng Mater, 2005, 17: 247-50.
    [8]. Manso M, Jimenez C, Morant C, et al. Electrodeposition of hydroxyapatite coatings in basic conditions. [J], Biomaterials, 2000,21: 1755-1761.
    [9]. Benhayoune H, Laquerriere P, Jallot E, et al. Micrometer level structural and chemical evaluation of electrodeposited calcium phosphate coatings on TA6V substrate by STEM-EDXS. [J], J Mater Sci Mater Med, 2002, 13: 1057-1063.
    [10]. Hou X, Liu X, Xu J, et al. A self-optimizing electrodeposition process for fabrication of calxium phosphate coatings. [J], Mater Lett, 2001, 50: 103-107.
    [11]. da Silva MHP, Soares GDA, Elias CN, et al. In vitro cellular response to titanium electrochemically coated with hydroxyapatite compared to titanium with three different levels of surface roughness. [J], J Mater Sci Mater Med, 2003,14(6): 511-519.
    [12]. Zhang JM, Lin CJ, Feng ZD, et al. Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in situ pH-microsensor technique. [J], J Electroanal Chem, 1998,452(2): 235-240.
    [13]. da Silva MHP, Lima JHC, Soares GA, et al. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. [J], Surf Coat Tech, 2001, 137(2-3): 270-276.
    [14]. Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. [J], J Mater Sci Mater Med, 1998, 9(2): 67-72.
    [15]. Narasaraju TSB, Phebe DE. Some physico-chemical aspects of hydroxyapatite. [J], J Mater Sci, 1996, 31: 1-21.
    [16]. Yen SK, Lin CM. Characterization of electrolytic Al_2O_3/CaP composite coatings on pure titanium.[J], J Electrochem Soc, 2002, 149: D79-D87.
    [17].Hu HB, Lin CJ, Hu R, et al.A study on hybrid bioceramic coatings of HA/poly(vinyl acetate) co-deposited electrochemically on Ti-6Al-4V alloy surface.[J], Mater Sci Eng C,2002, 20(1-2): 209-214.
    [18].Hu R, Hu HB, Lin CJ.Preparation and characterization for a co-deposited hybrid coating of calcium phosphate/chitosan on Ti alloy surface.[J], Chem J Chinese U, 2002, 23(11):2142-2146.
    [19].Cheng XL, Filiaggi M, Roscoe SG.Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy.[J], Biomaterials, 2004, 25(23):5395-403.
    [20].Hench LL.Bioceramics: from concept to clinic.[J], J Am Ceram Soc, 1991, 74(7):1487-1510.
    [21].Kuo MC, Yen SK.The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature.[J], Mater Sci Eng C, 2002, 20(1-2): 153-60.
    [22].Wu W, Nancollas GH.Kinetics of nucleation and crystal growth of hydroxyapatite and fluorapatite on titanium oxide surfaces.[J], Colloid Surface B, 1997, 10: 87-94.
    [1].Redepenning J, McIsaac JP.Electrocrystallization of brushite coatings on prosthetic alloys.[J], Chem Mater, 1990, 2(6): 625-627.
    [2].Zhang JM, Lin CJ, Feng ZD, et al.Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in situ pH-microsensor technique.[J], J Electroanal Chem, 1998, 452(2): 235-240.
    [3].Kuo MC, Yen SK.The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature.[J], Mater Sci Eng C, 2002, 20(1-2): 153-60.
    [4].Shirkhanzadeh M.Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes.[J], J Mater Sci Mater Med, 1998, 9(2): 67-72.
    [5].Hench LL.Bioceramics: from concept to clinic.[J], J Am Ceram Soc, 1991, 74(7):1487-1510.
    [6].魏俊发编译.兰氏化学手册.[M],科学出版社,北京,2003.
    [7].Koutsopoulos S, Dalas E.The calcification of fibrin in vitro.[J], J Crystal Growth, 2000,216: 450-458.
    [8].Nancollas GH, Tomazic B.Growth of calcium phosphate on hydroxyapatite crystals.[J], J Phys Chem, 1974, 78(22): 2218-2225.
    [9].Boskey AL, Posner AS.Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite.[J], J Phys Chem, 1973, 77(19): 2313-2317.
    [10].Wu W, Nancollas GH.Kinetics of nucleation and crystal growth of hydroxyapatite and fluorapatite on titanium oxide surfaces.[J], Colloid Surface B, 1997, 10: 87-94.
    [11].De Groot K.Bioceramics of calcium phosphate.[M], CRC Press, Inc.Boca Raton, Florida,1983.
    [12].Schleede A, Schmidt W, Kindt H.Zur Kenntnis der Calciumphosphate und apatite.[J], Z Elektrochem 1932, 38: 633.
    [13].McDowell H, Gregory TM, Brown WE.[J], J Res Natl Bur Srand (U.S.), 1977, 81A:273-381.
    [14].Kumar R, Prakash KH, Cheang P, et al.Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles.[J], Langmuir, 2004, 20: 5196-5200.
    [15].Johansson L, Gustafsson JP.Phosphate removal using blast furnace slags and opoka-mechanisms.[J], Wat Res, 2000, 34(1): 259-265.
    [16].胡维杰编.结晶过程.[M],大连理工大学出版社,大连,1991.
    [17].潘兆橹编.结晶学及矿物学.[M],地质出版社,北京,1994.
    [18].仲维卓华素坤编.晶体生长形态学.[M],科学出版社,北京,1999.
    [19].Ban S, Maruno S.Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. [J], Biomaterials, 1998,19(14): 1245-1253.
    [1].张文杰,钟国赣,张保国等.测定培养心肌细胞的输入阻抗.[J],白求恩医科大学学报,1992, 18(1): 15-17.
    [2].马青.频域阻抗法研究细胞介电特性.[J],中国医学物理学杂志,2004, 21(4): 187-195,199.
    [3].彭承琳,郭兴明.人体细胞内外液分布阻抗测量仪的研究.[J],仪器仪表学报,1996,17(6): 612-617.
    [4].陈安宇,王锐.血液细胞阻抗的测量与临床意义的探索.[J],中国医学物理学杂志,2004, 21(1): 33-35.
    [5].Giaever I, Keese CR.Micromotion of mammalian cells measured electrically.[J], Proc.Natl Acad.Sci.USA, 1991, 88: 7896-7900.
    [6].Tiruppathi C, Malik AB, Del Vecchio PJ, et al.Electrical method for detection of endothelial cell shape change in real time: Assessment of endothelial barrier function.[J],Proc.Natl.Acad.Sci.USA, 1992, 89: 7919-7923.
    [7].Giaever I, Keese CR.A morphological biosensor for mammalian cells.[J], Nature, 1993, 366: 591-592.
    [8].Giaever I, Keese CR.Use of electric fields to monitor the dynamical aspect of cell behavior in tissute culture.[J], IEEE Proc Biomed Eng, 1986, 33: 242-247.
    [9].Wegener J, Keese CR, Giaever I.Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces.[J], Exp Cell Res, 2000, 259: 158-166.
    [10].Xiao C, Lachance B, Sunahara G et al.An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells.[J], Anal Chem, 2002, 74: 1333-1339.
    [11].Luong JHT, Habibi-Rezaei M, Meghrous J, et al.Monitoring motility, spreading, and mortality of adherent insect cells using an impedance sensor.[J], Anal Chem, 2001, 73:1844-1848.
    [12].Xiao C, Lachance B, Sunahara G, et al.Assessment of cytotoxicity using electric cell-substrate impedance sensing: concentration and time response function approach.[J],Anal Chem, 2002, 74: 5748-5753.
    [13].Xiao C, Luong JHT.On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS).[J], Biotechnol Prog, 2003, 19: 1000-1005.
    [14].Wegener J, Sieber M, Galla HJ.Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces.[J], J Biochem Biophys Methods, 1996, 32: 151-170.
    [15].Wegener J, Zink S, R(o|¨)sen P, et al.Use of electrochemical impedance measurements to monitor beta-adrenergic stimulation of bovine aortic endothelial cells.[J], Pflugers Arch,1999, 437: 925-934.
    [16].Hiromoto S, Noda K, Hanawa T.Electrochemical properties of an interface between titanium and fibroblasts L929.[J], Electrochim Acta, 2002, 48: 387-396.
    [17].Hiromoto S, Noda K, Hanawa T.Development of electrolytic cell with cell-culture for metallic biomaterials.[J], Corrosion Science, 2002, 44: 955-965.
    [18].Huang HH.In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells.[J], Biochem Biophys Res Commun, 2004, 314:787-792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700