用户名: 密码: 验证码:
两亲分子引导下低维半导体纳米材料的低温液相合成和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构的可控合成是纳米科技发展的重要组成部分,是探索纳米材料性能和应用的基础。在纳米材料的化学制备方法中,液相法,尤其是以水为溶剂的液相法因低耗、环保而备受关注。本论文以胶体与界面化学基本原理为基础,利用两亲分子在纳/微米结构材料的合成与组装过程中的巧妙调控作用,制备了一系列低维的半导体纳米材料及其自组装超结构;探讨了两亲分子在半导体纳米材料形貌调控方面的作用机理;对所合成材料的组成、结构及形貌进行了细致的表征;考察了所制备的纳米材料的光学性质和光催化性能。
     利用两亲分子在水溶液中可以形成胶束的特性,以二硫化碳为硫源,在较低温度下(40或50℃),采用不同的两亲分子(PVP或SDBS)分别得到了ZnS纳米空心球和纳米管。所制备的ZnS纳米空心球表现出良好的紫外光催化性能。
     利用两亲分子CTAB可以形成微乳液的特性,以溶剂热法制备了高轴径比的ZnS纳米线,通过改变实验参数获得了纳米棒和竹叶状纳米棒形貌的ZnS。其中竹叶状的纳米棒在电子束辐照下会变成空心结构。
     利用双齿配体乙二胺能够在晶体表面吸附的特性,在水溶液中加入适量乙二胺,通过水热路线制备了毛线球状的六方晶相的ZnS纳米线自组装结构。由于乙二胺较强的配位能力,本方法还可以用来制备多种离子(Eu、Cd、Mn、Co)掺杂的ZnS纳米结构,掺杂后产物的形貌仍旧保持了毛线球状的自组装结构,产物的发光性能因掺杂Eu离子而有很大增强和改变。由于蓬松的ZnS自组装纳米结构具有较大的比表面积,在紫外光催化方面表现出了优异的性能,部分掺杂产物还表现出优良的可见光催化性能。
     利用两亲分子CTAB在不同晶面具有选择性吸附的性能,以水为反应介质,分别在常规条件和水热条件下制备了松针、带、棒、毛绒花等多种形貌的PbS纳米结构以及Ag_2S纳米多面体和立方体。
     利用两亲分子PVP对不同晶面具有选择性吸附的性能,通过在水溶剂中引入生物相容性的甘油共同作溶剂,在室温条件下制备了PbS纳米直角立方体,产量大,重现性好,而且可以在存放了两年之久仍保持良好的形貌和单分散性。在所得到的PbS纳米立方体表面包覆一层SiO_2,可以拓宽其应用范围,而将核壳结构中的核溶解后得到了立方形的SiO_2纳米盒。
     利用层状结构晶体自身强烈的生长成一维结构的特性,通过适当调控反应条件,以水为反应介质,在室温条件下制备了花状的Bi_2S_3纳米自组装结构,在水热条件下得到了Ni(OH)_2纳米带、纳米线和纳米片,煅烧后得到了多孔的NiO纳米带、纳米线和纳米片。
     利用两亲分子PVP对ZnO的(0001)面的优势吸附特性,通过调节PVP的用量分别制备了由尖头纳米棒或平头纳米棒自组装而成的ZnO菊花状纳米结构。利用本体系还制备了Pb、Cu、Co掺杂的ZnO纳米自组装结构,并发现掺杂离子的种类对ZnO的形貌和自组装形式都有一定的影响,尤其是Co离子会减少自组装建筑单元的数目,在高浓度Co存在时得到的是具有三、四或者六臂的ZnO纳米自组装结构。光致发光测试表明掺杂态的ZnO纳米产物发光强度均高于未掺杂的ZnO纳米结构。
     通过本论文的研究,在基于胶体化学方法调控半导体纳米材料的形貌方面,获得了以下具有重要理论和实际意义的认识:
     (1)两亲分子对纳米材料制备的形貌调控作用是不容置疑的,往往通过形成胶束或是对不同晶面的选择性吸附来实现其形貌调控作用,另外还有利于防止纳米粒子的团聚。但两亲分子的作用并不是孤立实现的,制备体系的其他参数的协同作用不能忽视。
     (2)当物质本身具有强烈的生长成一维结构的趋势时,两亲分子的形貌调控作用便不明显,而具有这种强烈的一维生长结构趋势的物质往往具有层状结构,加入体系中的两亲分子容易插入层中而不是吸附在晶体表面,因此其形貌调控作用被减弱。另外,如果体系中存在着具有强配位能力的配体时,如乙二胺,它们与纳米晶表面的金属原子发生螯合从而吸附在纳米晶表面,起到了类似于两亲分子的作用,此时少量的两亲分子的引入也不能对产物形貌起到明显的调控作用。
     (3)通过控制适当的条件和设计适当的制备体系,在水相中实现各种纳米材料的多种形貌的制备是完全可能的。这就为工业批量生产奠定了良好的基础。
The fabrication of nanoparticles is one of the important sections of nanoscience and nanotechnology, and also the base to investigate the distinctive properties and applications of nanostructures. Among all the synthesis methods to nanoparticles, liquid methods, especially the method using water as solvent, have attracted intensive interest because of their low cost and environmental benign characteristic. In this thesis, based on the colloid and interface science, a series of low dimensional semiconductor namomaterials and their self-assembly nanostructures have been synthesized by taking advantage of the morphology modulating effect of amphiphilic molecules. The modulating mechanism of the amphiphilic molecules has been discussed. The optical properties and the photocatalysis performance of the as-obtained products have also been investigated.
     By making use of the property that micelle can be form by amphiphilic molecules, carbon disulfide (CS_2) as sulfur source, at lower temperature (40 or 50 oC), ZnS hollow nanospheres and nanotubes were synthesized by the assistance of different amphiphilic molecules PVP and SDBS, respectively. The as-prepared ZnS hollow nanospheres had good photocatalytic activity.
     By the microemulsion-mediated solvothermal method assisted by amphiphilic molecules CTAB, high-aspect-ratio ZnS nanowires were fabaricated. Moreover, ZnS nanorods and bamboo-leaf-like ZnS nanostructures were also obtained by modulating the reaction parameters. Especially, hollow bamboo-leaf-like ZnS nanostructures formed by radiating those bamboo leaves with electron beam during the TEM investigation.
     As a kind of polydentate ligand, ethylenediamine (en) can interact with the metal ions on the surface of nanocrystals, which make it like a kind of amphiphilic molecule. By introducing a certain amount of ethylenediamine into aqueous solution and adopting hydrothermal treatment, clewlike ZnS self-assembly nanostructure composed of ZnS nanowires were synthesized. Also, this method can produce not only pure ZnS nanostructures but also many kinds of ion doped ZnS nanostructures because of the strong anchor ability of ethylenediamine. And the morphology of the clewlike selfassembly nanostructure was maintained very well by the doped products. By the doping of Eu3+ ions, the photoluminescence emission intensity was much enlarged. For the large specific surface area, the as-obtained products possessed better photocatalysis property and some of them were visible-light responsive. Moreover, this kind of self-assembly nanostructure could be separated from the photocatlysis system easily by simple settlement.
     By taking advantage of the selective adsorption of amphiphilic molecule CTAB on different crystal faces and with water as reaction medium, PbS nanorods, nanobelts, nanovelvet-flowers, dendritic nanostructures and faceted and cubic Ag2S nanocrystals were fabricated.
     A novel water/glycerol/polyvinylpyrrolidone (PVP) ternary system was developed to realize the successful growth of PbS nanocubes with a narrow size distribution and sharp facets and edges using a one-step synthesis at room temperature for the first time. The synthesis was very fast, high yield, environment-friendly, and low cost. The product possessed uniform dimensionality, high crystallinity and better dispersibility. After dispersing the nanocubes in water or ethanol, the as-formed colloidal suspensions can maintain excellent stability for more than two year under ambient conditions. Uniform silica layers were successfully coated onto the nanocubes via a modified St?ber method to enhance their performance for promising applications. Moreover, by soaking the as-prepared PbS/SiO_2 core–shell nanocubes in hydrochloric acid aqueous solution, well-resolved cubic SiO_2 nanoboxes were obtained.
     By making use of the strong tendency toward 1D growth of crystal with lamellar intrinsic crystal structure and modulating the reaction conditions properly, with water as the reaction medium, Bi_2S_3 nanorods bundles as well as three-dimensional flower-like nanostructures were synthesized at room temperature, andα-Ni(OH)_2 nanobelts, nanowires, short nanowires, andβ-Ni(OH)_2 nanoplates were successfully prepared in high yields and purities by a convenient hydrothermal method under mild conditions from very simple systems composed only of NaOH, NiSO_4, and water. Furthermore, porous NiO nanobelts, nanowires, and nanoplates could also be obtained by annealing the as-prepared Ni(OH)_2 products.
     Under the assistance of amphiphilic molecule PVP, flower-like ZnO nanostructures self-assembled by nanorods were fabricated by hydrothermal route. The tip of the nanorods was cuspidal or flat depending on the amount of PVP as used. Pb, Cu, Co doped ZnO flower-like nanostructures self-assembled by nanorods were also prepared by this method. And all the dopants had influence on the morphology and the self-assembly style of the products in various degrees, in which the existence of Co ions resulted in the decreasing of the nanorods number in the self-assembly nanostructures, and three, four or six arms of ZnO nanostructures formed when the Co concentration was higher.
     Based on the research in this thesis, several conclusions are drawn in the following:
     (1) It is no doubt that amphiphilic molecules play important roles in the morphology control during the synthesis of nanomaterials, which is usually realized by the formation of micelles or selective absorption on different crystal faces. Moreover, the adsorption of amphiphilic molecules is helpful to prevent the aggregation of the nanoparticals. But the effect of amphiphilic molecules dose not take place independently, the other parameters of the synthesis system can not be neglected.
     (2) When the crystals have strong tendency toward 1D growth, the morphology control effect of amphiphilic molecules is not obvious. The reason for that is crystals with strong tendency toward 1D growth usually possess lamellar intrinsic crystal structure, the amphiphilic molecules tend to insert into the interbedded space but adsorb on the surface of the crystals, as a result, the morphology control effect of amphiphilic molecules was weakened. Moreover, when ligands with strong coordination ability exist in the synthesis system, such as ethylenediamine, they interact with the metal ions on the surface of nanocrystals, which make it like a kind of amphiphilic molecule, so the addition of a small amount of amphiphilic molecules can not make obvious morphology control effect.
     (3) By controlling suitable conditions and designing proper synthesis systems, it is possible to realize the fabrication of nanomaterials with various morphologies in aqueous medium, which lays better foundation for industry batch production.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001, 51-94.
    [2] Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair [J]. Nature, 2000, 405(6787): 681-685.
    [3] Gao X F, Jiang L. Biophysics: Water-repellent legs of water striders [J]. Nature, 2004, 432(7013): 36-36.
    [4] Vukusic Pete, Hooper I. Directionally controlled fluorescence emission in butterflies [J]. Science, 2005, 310(5751): 1151-1151.
    [5] Vukusic P, Sambles J R, Lawrence C R. Structural colour: colour mixing in wing scales of a butterfly [J]. Nature, 2000, 404(6777): 457-457.
    [6] Vukusic P, Sambles J R, Lawrence C R, et al. Structural colour: Now you see it? Now you don't [J]. Nature, 2001, 410(6824): 36-36.
    [7] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial [J]. Adv Mater, 2002, 14(24): 1857-1860.
    [8] Feynman R P, There is plenty of room at the bottom [J]. Engineering and Science, 1960, 23(5): 22-36.
    [9]胡美凤走进纳米世界[M].上海:学林出版社,2003,8.
    [10]王石泉.纳米硫系化合物的制备及表征[D]:[博士学位论文].杭州:浙江大学理学院,2006.
    [11] AL. L. Efros, A. L. Efros, Interband absorption of light in a semiconductor sphere [J]. Sov Phys Semicond, 1982, 16: 772-775.
    [12] Bawendi M G, Wilson W L, Rothberg L, et al. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters [J]. Phys Rev Lett,1990,65(13): 1623-1626.
    [13] Klabunde K J, SAtark J, KoPer O, et al. Nanocrystals as stoichiometric reagents with unique surface chemistry [J]. J Phys Chem, 1996,100(30): 12142-12153.
    [14] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem Rev, 1989,89(8): 1861-1873.
    [15] Brus L E. Electronic Wave functions in semiconductor clusters: experiment and theory [J]. J Phs. Chem, 1986,90(12): 2555-2560.
    [16] R. E. Cavicchi, R. H. Silsbee, Electronic heat capacity and susceptibility of small metal particles [J]. phys Rev Lett, 1971, 26(12), 707-711.
    [17]柳闽生,杨迈之,蔡生民.半导体纳米粒子的基本性质及光电化学特性[J].化学通报,1997, (1): 20-24.
    [18] Takagahara T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots [J]. Physical Review B: Condensed Matter and Materials Physics,1993, 47(6): 4569-4584.
    [19] Vossmeyer T. Weller H. CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift [J]. J Phys Chem, 1994, 98(31): 7665-7673.
    [20] Brus L E, Quantum crystallites and nonlinear optics [J]. Appl. Phys. A, 1991, 53(6): 465-474.
    [21] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
    [22] Gosvami D Y, A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection Processes [J]. Journal of Solar Energy Engineering, 1997,119(2): 101(7pp).
    [23] Hoffmann M R, Martin S T, Chio W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chem Rev, 1995, 95(1): 69-96.
    [24] Hu J S, Zhong L S, Song W G, Wan L J, Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal [J]. Adv Mater, 2008, 20(15): 2977-2982.
    [25] Zhao Z G, Miyauchi M, Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts [J]. Angew Chem Int Ed, 2008, 47(37): 7051-7055.
    [26] Hagfeldt A, Gratzel M, Light-induced redox reactions in nanocrystalline systems [J]. Chem Rev, 1995, 95(1) 49-68.
    [27] Harada H, Ueda T. Photocatalytic activity of ultra-fine rutile in methanol-water solution and dependence of activity on particle size [J]. Chem Phys Lett, 1984, 106(3): 229-231.
    [28] Nedeljkovic J M, Nenadovic M T, Micic O I, et al. Enhanced photoredox chemistry in quantized semiconductor colloids [J]. J Phys Chem, 1986, 90(1): 12-13.
    [29] Metselear R. Studies in inorganic chemistry [M], Elsevier Amsterdam, 1990, 239-244.
    [30] Li Q S, Domen K, Naito S, et al. Photocatalytic synthesis and photodecomposition of ammonia over SrTiO3 and BaTiO3 based catalysis [J]. Chem Lett, 1983,12(3): 321-324.
    [31] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous Solutions at Semiconductor Powders [J]. J Phys Chem, 1977, 81(15): 1484-1488.
    [32] Leland J K, Bard A J. Photochemistry of colloidal semiconducting iron oxide polymorphs [J]. J Phys Chem, 1987, 91(19): 5076-5083.
    [33] Yoneyama H, Haga S, Yamanaka S. Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay [J]. J Phys Chem, 1989, 93(12): 4833-4837.
    [34] Wu W,Herrman J M,Pichat P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over pure and modified titanium(IV) oxide [J]. Cata1 Lett, 1989, 3(1),73-77.
    [35] Henglein A, Gutlerrez M, Fischer C H,et al. Photochemistry of colloidal metal sulfides, 6. Kinetics of interfacial reactions at ZnS - particles [J]. Ber Bunsenges Phys Chem, 1984,88: 170-175.
    [36]李新勇,李树本.纳米半导体研究进展[J].化学进展, 1999,8(3): 231-239.
    [37] Albery W J, Bartlett P N. The transport and kinetics of photogenerated carriers in colloidal semiconductor electrode particles [J]. J Electrochem Soc,1984, 131(2): 315-325.
    [38] Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates [J]. J Phys Chem, 1987, 91(16): 4305-4310.
    [39]刘正锋,刘守新,李晓辉,等,吸附剂负载TiO2光催化研究进展[J].化学通报,2008,(10):557.
    [40] Rothenberger G, Moser J, Graetzel M, et al. Charge carrier trapping and recombination dynamics in small semiconductor particles [J]. J Am Chem Soc, 1985, 107(26): 8054-8059.
    [41] Howe R F, Gratzel M. EPR Study of hydrated anatase under UV irradiation [J]. J Phys Chem, 1987, 91(14): 3906-3909.
    [42] Brian O, Michael G. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737-740.
    [43] Leon R, Petroff P M, Leonard D, et al. Spatially resolved visible luminescence of self-assembled semiconductor quantum dots [J]. Science, 1995, 267(5206): 1966-1968.
    [44] Dag ?., Kuperman A, Ozin G A. Nanostructures: New forms of luminescent silicon [J]. Adv Mater, 1995, 7(1): 72-78.
    [45] Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature, 1994, 370(6488): 354-357.
    [46] Ozin G A. Nanochemistry: Synthesis in diminishing dimensions [J]. Adv Mater, 1992, 4(10): 612-649
    [47] Jie J S, Zhang W J, Jiang Y, et al. Photoconductive characteristics of single-crystal CdS nanoribbons [J]. Nano lett, 2006, 6(9):1887-1892.
    [48] Fonzo F D, Casari C S, Russo V, et al. Hierarchically organized nanostructured TiO2 for photocatalysis applications [J]. Nanotechnology, 2009, 20(1) 015604 (7pp).
    [49] Wang P, Huang B B, Zhang X Y, et al. Composite semiconductor H2WO4·H2O/AgCl as an efficient and stable photocatalyst under visible light [J]. Chem Eur J, 2008, 14(34), 10543-0546.
    [50] Jiang Z, Yang F, Luo N J, et al. Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis [J]. Chem Commun, 2008, (47): 6372–6374
    [51] Klein D L, Roth R, Lim A K L, A. et al. A single-electron transistor made from a cadmium selenide nanocrystal [J]. Nature, 1997, 389(6652): 699-701.
    [52] Andres R P, Bein T, Dorogi M, et al.“Coulomb staircase”at room temperature in a self-assembled molecular nanostructure [J]. Science, 1996, 272 (5266): 1323-1325.
    [53] Nirmal M, Dabbousi B O, Bawendi M G, et al. Fluorescence intermittency in single cadmium selenide nanocrystals, Nature, 1996, 383(6603), 802-804.
    [54] Hu P A, Xiao K, Liu Y Q, et al. Multiwall nanotubes with intramolecular junctions (CNx/C): Preparation, rectification, logic gates, and application [J]. Appl Phys Lett, 2004, 84(24): 4932 .
    [55] Fonoberov V A, Balandin A A. Giant enhancement of the carrier mobility in silicon nanowires with diamond coating [J]. Nano Lett, 2006, 6(11): 2442–2446.
    [56] Pan A, Zhou W, Leong E S P, et al. Continuous alloy-composition spatial grading and superbroadwavelength-tunable nanowire lasers on a single chip [J]. Nano Lett, 2009, 9 (2): 784–788.
    [57] Richard N?tzel, Temmyo J, Tamamura T. Self-organized growth of strained InGaAs quantum disks [J]. Nature, 1994, 369(6476): 131-133.
    [58] Gao P X, Ding Y, Mai W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices [J]. Science, 2005, 309(5741): 1700-1704.
    [59] Zuruzi A S, MacDonald N C, Moskovits M, et al. Metal oxide“nanosponges”as chemical sensors: highly sensitive detection of hydrogen with nanosponge titania [J]. Angew Chem Int Ed, 2007, 46 (23), 4298–4301
    [60] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279(5348): 208-211.
    [61]Yu D P, Lee C S, Bello I, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature [J]. Solid State Commun, 1998, 105(6): 403-407.
    [62]Yu D P, Bai Z G, Ding Y, et al. Nanoscale silicon wires synthesized using simple physical evaporation [J]. Appl Phys Lett, 1998, 72(26): 3458-3460.
    [63]Huang M H, Wu Y Y, Feick H, Yang P D, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv Mater, 2001, 13(2): 113-116.
    [64]He R R ,Law M, Fan R, Yang P D, et al. Functional bimorph composite nanotapes [J]. Nano Lett, 2002, 2(10): 1109-1112.
    [65] Pan Z. W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001, 291(5510): 1947-1949.
    [66] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts [J]. Nano lett, 2003, 3(12): 1625-1631.
    [67] Kong X Y, Ding Y, Yang R, Wang Z L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts [J]. Science, 2004, 303(5662): 1348-1351.
    [68] Gao P X, Ding Y, Wang Z L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst [J]. Nano lett, 2003, 3(9): 1315-1320.
    [69] Wang X D, Summers C J, Wang Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays [J]. Nano lett, 2004, 4(3): 423-426.
    [70] Wang X D, Song J H, Li P, et al. Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al0.5Ga0.5N Substrates [J]. J Am Chem Soc, 2005, 127(21): 7920-7923.
    [71] Song J. H, Wang X. D, Riedo E, Wang Z L. Systematic study on experimental conditions for large-scale growth of aligned ZnO nanwires on nitrides [J]. J Phys Chem B, 2005, 109(20): 9869-9872.
    [72] Benjamin J S. The mechanical alloying process [J]. Mod Dev Powder Metall, 1988, 21: 397-414.
    [73] Su Z X, Zhou W Z. Formation mechanism of porous anodic aluminium and titanium oxides [J]. Adv Mater, 2008, 20(19): 3663–3667.
    [74] Michailowski A, AlMawlawi D, Cheng G S, Moskovits M. Highly regular anatase nanotubule arrays fabricated in porous anodic templates [J]. Chem Phys Lett, 2001, 349(1): 1-5.
    [75]Xia,Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: synthesis, characterization, and applications [J]. Adv Mater, 2003, 15(5): 353-389.
    [75] Oh J, Jung Y, Lee J, Tak Y. Nanoporous alumina formation using multi-step anodization and cathodic electrodeposition of metal oxides on its structure [J]. Nanotechnology in Mesostructured Materials, 2003, 146: 205-208.
    [76] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J Am Chem Soc, 1993, 115(18): 8706-8715.
    [77] Katari J E B, Colvin V L, Alivisatos A P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface [J]. J Phys Chem, 1994, 98(15): 4109-4117.
    [78] Mokari T, Rothenberg E, Popov I, et al. Selective growth of metal tips onto semiconductor quantum rods and tetrapods [J]. Science, 2004, 304(5678): 1787-1790.
    [79] Sun J W, Wang L W, Buhro W E. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots [J]. J Am Chem Soc, 2008, 130(25): 7997–8005.
    [80] Liu J H, Fan J B, Gu Z, et al. Green chemistry for large-scale synthesis of semiconductor quantum dots [J]. Langmuir, 2008, 24(10): 5241-5244.
    [81] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. (CdSe)ZnS core?shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. J Phys Chem B,1997, 101(46): 9463-9475.
    [82] Talapin D V, Rogach A L, Kornowski A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine?trioctylphosphine oxide?trioctylphospine mixture [J]. Nano Lett, 2001, 1(4): 207-211.
    [83] Sapra S, Mayilo S, Klar T A, et al. Bright white-light emission from semiconductor nanocrystals: by chance and by design [J]. Adv Mater, 2007, 19(4): 569-572.
    [84] Chattopadhyay S, Nag A, Kumar A, et al. White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio [J]. Nanotechnology, 2007, 18(7): 075401-075401.
    [85] Zou L, Gu Z Y, Zhang N, et al. Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase [J]. J Mater Chem, 2008, 18(24): 2807–2815.
    [86] Zhang H, Wang D Y, Yang B, et al. Manipulation of aqueous growth of CdTe nanocrystals To fabricate colloidally stable one-dimensional nanostructures [J]. J Am Chem Soc, 2006, 128(31): 10171-10180.
    [87] Zheng Y G, Yang Z C, Ying J Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1-XCdXSe alloyed quantum dots [J]. Adv Mater, 2007, 19(11): 1475–1479.
    [88] Rogach A L, Franzl T, Klar T A, et al. Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art [J]. J Phys Chem C, 2007, 111(40): 14628-14637.
    [89] Liu L P, Peng Q, Li Y D. Preparation of CdSe quantum dots with full color emission based on a roomtemperature injection technique [J]. Inorg Chem, 2008, 47(11): 5022-5028.
    [90] Liu Y, Shen Q H, Yu D D, et al. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature [J]. Nanotechnology, 2008, 19(24): 245601-245601.
    [91] Xiong Y J, Xie Y, Li Z Q, et al. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires [J]. Chem Eur J, 2004, 10(3): 654-660.
    [92] Lu C H, Qi L M, Yang J H, et al. One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route [J]. Adv Mater, 2005, 17(21): 2562–2567.
    [93] Ma Y R, Qi L M, Ma J M, Cheng H M. Facile synthesis of hollow ZnS nanospheres in block copolymer solutions [J]. Langmuir, 2003, 19(9): 4040-4042.
    [94] Zhao N N, Qi L M. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants [J]. Adv Mater, 2006, 18(3): 359–362.
    [95] Zhuang Z B, Peng Q, Wang X, Li Y D. Tetrahedral colloidal crystals of Ag2S nanocrystals [J]. Angew Chem Int Ed, 2007, 46(43): 8174–8177.
    [96] Peng Q, Xu S, Zhuang Z B, et al. A general chemical conversion method to various semiconductor hollow structures [J]. Small, 2005, 1(2): 216-221.
    [97] Li Y D, Li X L, He R R, et al. Artificial lamellar mesostructures to WS2 nanotubes [J]. J Am Chem Soc, 2002, 124(7): 1411-1416.
    [98] Wang X, Zhuang J, Peng Q, Li Y D. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437(7055): 121-124.
    [99] Wang D S, Xie T, Peng Q, Li Y D. Ag, Ag2S, and Ag2Se nanocrystals: synthesis, assembly, and construction of mesoporous structures [J]. J Am Chem Soc, 2008, 130(12): 4016-4022.
    [100] Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors [J]. Chem Mater, 2006, 18(4): 867-871.
    [101] Peng Q, Dong Y, Li Y. Synthesis of uniform CoTe and NiTe semiconductor nanocluster wires through a novel coreduction method [J]. Inorg Chem, 2003, 42(7): 2174-2175.
    [102] Dong Y J, Li Y D, Wang C, et al. Preparation of cuprous oxide particles of different crystallinity [J]. J Colloid Interf Sci, 2001, 243(1): 85–89.
    [103] Xu H L, Wang W Z. Template synthesis of multi-shelled Cu2O hollow spheres with a single-crystalline shell wall [J]. Angew Chem Int Ed, 2007, 46(9): 1489–1492.
    [104] Xu H L, Wang W Z, Zhou L. A growth model of single crystalline hollow spheres: oriented attachment of Cu2O nanoparticles to the single crystalline shell wall [J]. Cryst Growth Des, 2008, 8(10): 3486-3489.
    [105] Wang W Z, Poudel B, Wang D Z, Ren Z F. Synthesis of PbTe nanoboxes using a solvothermal technique [J]. Adv Mater, 2005, 17(17): 2110-2114.
    [106] Wang W Z, Poudel B, Yang J, et al. High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach [J]. J Am Chem Soc, 2005, 127(40): 13792-13793.
    [107] He T, Chen D R, Jiao X L, et al. Co3O4 nanoboxes: surfactant-templated fabrication andmicrostructure characterization [J]. Adv Mater, 2006, 18(8): 1078–1082.
    [108] He T, Chen D R, Jiao X L, et al. Solubility-controlled synthesis of high-quality Co3O4 nanocrystals [J]. Chem Mater, 2005, 17(15): 4023-4030.
    [109] Li H B, Chai L L, Wang X Q, et al. Hydrothermal growth and morphology modification ofα-NiS three - dimensional flowerlike architectures [J]. Cryst Growth Des, 2007, 7(9): 1918-1922.
    [110] Wang X Q, Xi G C, Xiong S L, et al. Solution-phase synthesis of single-crystal CuO nanoribbons and nanorings [J]. Cryst Growth Des, 2007, 7(5): 930-934.
    [111] Liang J B, Liu J W, Xie Q, et al. Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles [J]. J Phys Chem B, 2005, 109(19): 9463-9467.
    [112] He Z B, Yu S H, Zhu J P. Amino acids controlled growth of shuttle-like scrolled tellurium nanotubes and nanowires with sharp tips [J]. Chem Mater, 2005, 17(11): 2785-2788.
    [113]Yu S H, Yoshimura M. Fabrication of powders and thin films of various nickel sulfides by soft solution-processing routes [J]. Adv Mater, 2002, 12(4): 277-285.
    [114] Zhang D F, Sun L D, Yin J L, Yan C H. Low-temperature fabrication of highly crystalline SnO2 nanorods [J]. Adv Mater, 2003, 15(12): 1022-1025.
    [115] Yan Z G, Yan C H. Controlled synthesis of rare earth nanostructures [J]. J Mater Chem, 2008, 18(42): 5046–5059.
    [116] Song X F, Gao L. Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties [J]. J Phys Chem C, 2008, 112(39): 15299–15305.
    [117] Yang S W, Gao L. Controlled synthesis and self-assembly of CeO2 nanocubes [J]. J Am Chem Soc, 2006, 128(29): 9330-9331.
    [118] Xu X X, Zhuang J, Wang X. SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties [J]. J Am Chem Soc, 2008, 130(37), 12527–12535.
    [119] Hu S, Wang X. Single-walled MoO3 nanotubes [J]. J Am Chem Soc, 2008, 130(26): 8126–8127.
    [120] Wang Y, Zhu J, Han J. Guo R. Modification of MnO2 nanoparticles with rutin synthesized by triton X-100 aggregations template [J]. Nanotechnology, 2008, 19(40): 405606 (8pp).
    [121] Du N, Zhang H, Chen B D, et al. One-pot, large-scale synthesis of SnO2 nanotubes at room temperature [J].Chem Commun, 2008, (26) 3028–3030.
    [122] Ye L N, Guo W, Yang Y, et al. Directing the architecture of various MoS2 hierarchical hollow cages through the controllable synthesis of surfactant/molybdate composite precursors [J]. Chem Mater, 2007, 19(25): 6331–6337.
    [123] Zhao Qi R, Xie Y, Dong Ting, et al. Oxidation-crystallization process of colloids: An effective approach for the morphology controllable synthesis of SnO2 hollow spheres and rod bundles [J]. J Phys Chem C, 2007, 111(31): 11598-11603.
    [124] Du W M, Qian X F, Yin J, et al. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy [J]. ChemEur J, 2007, 13(31): 8840-8846.
    [125] Qian X F, Yin J, Feng S, et al. Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles [J]. J Mater Chem, 2001, 11(10): 2504–2506.
    [126] Liu Q, Liu H J, Liang Y Y, et al. Large-scale synthesis of single-crystalline CuO nanoplatelets by a hydrothermal process [J]. Mater Res Bull, 2006, 41(4): 697–702.
    [127] Wang Y L, Jiang X Cn, Xia Y N. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions [J]. J Am Chem Soc, 2003, 125(52): 16176-16177.
    [128] Li F, Ding Y, Gao P X, et al. Single-crystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism [J]. Angew Chem Int Ed, 2004, 43(39), 5238–5242
    [129] Zhang T R, Dong W J, Keeter-Brewer M, et al. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites [J]. J Am Chem Soc, 2006, 128(33): 10960-10968.
    [130] Mo M S, Yu J C, Zhang L Z, et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres [J].Adv Mater, 2005, 17(6): 756-760.
    [1] Chen R, Lockwood D J. Developments in luminescence and display materials over the last 100 years as reflected in electrochemical society publications [J]. J Electrochem Soc, 2002, 149(1): 69-69.
    [2] Xu J F, Ji W. Characterization of ZnS nanopartieles prepared by new route [J]. J Mater Sci Lett, 1999, 18(2): 115-117.
    [3] Sun L, Liu C, Liao C, Yan C. ZnS nanopartieles doped with Cu(I) by controlling coordination and precipitation in aqueous solution [J]. J Mater Chem,1999, 9(8): 1655-1657.
    [4] Prevenslik T V. Aeoustoluminescence and sonoluminescence [J]. J Lumin, 2000,87: 1210-1212.
    [5] Calandra P, Goffredi M, Liveri V T. Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy [J]. Colloid Surface A, 1999, 160(1): 9-13.
    [6] Shen G Z, Bando Y, Golberg D. Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires [J]. Appl Phys Lett, 2006, 88(12): 1231071-1231073.
    [7] Wang X, Li Q W, Liu Z B, et al. Low-temperature growth and properties of ZnO nanowires [J]. Appl Phys Lett, 2004, 84(24): 4941-4943.
    [8] Ahn S E, Lee J S, Kim H, et al. Photoresponse of sol-gel synthesized ZnO nanorods [J]. Appl Phys Lett, 2004, 84(24): 5022-2024.
    [9] Lin B X, Fu Z X, Jia Y B, et al. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Appl Phys Lett, 2001, 79(7): 943-945.
    [10] Salcm L. Recent studies on the catalytic activity of titanium, zirconium, and hafnium oxides [J]. Catal Rev Sci Eng, 2003, 45(2): 205-296.
    [11] Hu J S, Ren L L, Guo Y G, et al. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles [J]. Angew Chem Int Ed, 2005, 44(8): 1269-1273.
    [12] Zhao Y, Zhang Y, Zhu H, et al. Low-temperature synthesis of hexagonal (Wurtzite) ZnS nanocrystals [J]. J Am Chem Soc, 2004, 126(22): 6874-6875.
    [13] Xie Y, Huang J, Li B, et al. A novel peanut-like nanostructure of II-VI semiconductor CdS and ZnS [J]. Adv Mater, 2000, 12(20): 1523-1526.
    [14] Xu J, Li Y. Formation of zinc sulfide nanorods and nanoparticles in ternary W/O microemulsions [J]. J Colloid Interface Sci, 2003, 259(2): 275-281.
    [15] Wu Q, Zheng N, Ding Y, Li Y. Micelle-template inducing synthesis of winding ZnS nanowires [J]. Inorg Chem Commun, 2002, 5(9): 671-673.
    [16] Lv R, Cao C, Zhu H. Synthesis and characterization of ZnS nanowires by AOT micelle-template inducing reaction [J]. Mater Res Bull, 2004, 39(10): 1517-1524.
    [17] Li J, Xu Y, Wu D, Sun Y. Novel lamellar mesostructured zinc sulfide nanofibers [J]. Chem Lett, 2004, 33(6): 718-719.
    [18] Langer R. New methods of drug delivery [J]. Science, 1990, 249(4976): 1527-1533.
    [19] Donath E, Sukhorukov G B, Caruso F, et al. Novel hollow polymer shells by colloid-tTemplated assembly of polyelectrolytes [J]. Angew Chem Int Ed, 1998, 37(16): 2201-2205.
    [20] Morris C A, Anderson M L, Stroud R M, et al. Silica sol as a nanoglue: flexible synthesis of composite aerogels [J]. Science, 1999, 284(5439): 622-624.
    [21] Caruso F, Caruso R A, M?hwald H. Production of hollow microspheres from nanostructured composite particles [J]. Chem Mater, 1999, 11(11): 3309-3314.
    [22] Jang J, Oh J H. Facile fabrication of photochromic dye-conducting polymer core-shell nanomaterials and their photoluminescence [J]. Adv Mater, 2003, 15(12): 977-980.
    [23] Thayer A M. Science/technology concentration [J]. Chem Eng News, 1999, 77: 23-26.
    [24] Caruso F, Trau D, M?hwald H, et al. Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules [J]. Langmuir, 2000, 16(4): 1485-1488.
    [25] Gill L, Ballesteros A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol?gel polymers: an efficient and generic approach [J]. J Am Chem Soc, 1998, 120(34): 8587-8598.
    [26] Tartaj P, Gonzálz-Carrěno T, Sema C J. Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties [J]. Adv Mater, 2001, 13(21): 1620-1624.
    [27] Yang Y, Chu Y, Yang F Y, Zhang Y P. Uniform hollow conductive polymer microspheres synthesized with the sulfonated polystyrene template [J]. Mater Chem Phys, 2005, 92(1): 164-171.
    [28] Yang F Y, Chu Y, Huo L, et al. Fabrication of polyaniline/ethylcellulose composite microspheres by microencapsulation [J]. Chem Lett, 2005, 34(3): 388-389.
    [29] Braun P V, Stupp S L. CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals [J]. Mater Res Bull, 1999, 34(3): 463-469.
    [30] Lootens D, Vautrin C, Damme H V, et al. Facetted hollow silica vesicles made by templating catanionic surfactant vesicles [J]. J Mater Chem, 2003, 13(9): 2072-2074.
    [31] Ma Y R, Qi L M, Ma J M, et al. Synthesis of submicrometer-sized CdS hollow spheres in aqueous solutions of a triblock copolymer [J]. Langmuir, 2003, 19(21): 9079-9085.
    [32] Jang J, Lee K. Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization [J]. Chem Commun, 2002,(10): 1098-1099.
    [33] Velikov K P, Blaaderen A V. Synthesis and characterization of monodisperse core?shell colloidal spheres of zinc sulfide and silica [J]. Langmuir, 2001, 17(16): 4779-4786.
    [34] Breen M L, Donsmore A D, Pink R H, et al. Sonochemically produced ZnS-coated polystyrene core?shell particles for use in photonic crystals [J]. Langmuir, 2001, 17(3): 903-907.
    [35] Ma Y R, Qi L M, Ma J M, et al. Facile synthesis of hollow ZnS nanospheres in block copolymer solutions [J]. Langmuir, 2003, 19(9): 4040-4042.
    [36] Zhang H, Zhang S Y, Pan S, et al. A simple solution route to ZnS nanotubes and hollow nanospheresand their optical properties [J]. Nanotechnology, 2004, 15(8): 945-948.
    [37] Huang J X, Xie Y, Li B, et al. In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres [J]. Adv Mater, 2000, 12(11): 808-811.
    [38] Torres-Martínez C L, Kho R, Mian O I, et al. Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals [J]. J Colloid Interface Sci, 2001, 240(2): 525-532.
    [39] Calandra P, Goffredi M, Turco Liveri V. Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy [J]. Colloids Surf A, 1999, 160(1): 9-13.
    [40]Hu J M, Bando Y, Zhan J H, Golberg D. Sn-filled single-crystalline Wurtzite-type ZnS nanotubes [J]. Angew Chem Int Ed, 2004, 43(35): 4606-4609.
    [41] Hu J, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes [J]. Acc Chem Res, 1999, 32(5): 435-445.
    [42] Xiang J, Lu W, Hu Y J, et al. Ge/Si nanowire heterostructures as highperformance field-effect transistors [J]. Nature, 2006, 441(7092): 489-493
    [43] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279(5387): 208-211.
    [44] Li Y, Liao H, Ding Y, et al. Nonaqueous synthesis of CdS nanorod semiconductor [J]. Chem Mater, 1998, 10(9): 2301-2303.
    [45] Yu S. Wu Y, Yang J, et al. A novel solventothermal synthetic route to nanocrystalline CdE (E = S, Se, Te) and morphological control [J]. Chem Mater, 1998, 10(9): 2309-2312.
    [46] Cho K, Talapin D V, Gaschler W, Murray C B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles [J]. J Am Chem Soc, 2005, 127(19): 7140-7147.
    [47] Yang C, Awschalom D D, Stucky G D. Growth of CdS nanorods in nonionic amphiphilic triblock copolymer systems [J]. Chem Mater, 2002, 14(3): 1277-1284.
    [48] Cui Y, Zhong Z, Wang D, et al. High performance silicon nanowire field effect transistors [J]. Nano Lett, 2003, 3(2): 149-152.
    [49] Duan X, Niu C, Sahi V, et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J]. Nature, 2003, 425(6955): 274-278.
    [50] Huang Y, Duan X, Cui Y, et al. Logic gates and computation from assembled nanowire building blocks [J]. Science, 2001, 294(5545): 1313-1317.
    [51] Duan X, Huang Y, Lieber C M. Nonvolatile memory and programmable logic from molecule-gated nanowires [J]. Nano Lett, 2002, 2(5): 487-490.
    [52] Patolsky F, Zheng G, Hayden O, et al. Electrical detection of single viruses [J]. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 14017-14022.
    [53] International Technology Road Map for Semiconductors, 2003 edition.
    [54] Moore D F, Ding Y, Wang Z L. Crystal orientation-ordered ZnS nanowire bundles [J]. J Am Chem Soc, 2004, 126(44): 14372-14373.
    [55] Kar S, Chaudhuri S. Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons [J]. J Phys Chem B, 2005, 109(8): 3298-3302.
    [56] Zhang H, Zhang S Y, Zuo M, et al. Synthesis of ZnS nanowires and assemblies by carbothermal chemical vapor deposition and their photoluminescence [J]. Eur J Inorg Chem, 2005, 2005(1): 47-50.
    [57] Fang X S, Ye C H, Zhang L D, et al. Temperature-controlled catalyticgrowth of ZnS nanostructures by the evaporation of ZnS nanopowders [J]. Adv Funct Mater, 2005, 15(1): 63-68.
    [58] Limaye M V, Gokhale S, Acharya S A, et al.Template-free ZnS nanorod synthesis by microwave irradiation [J]. Nanotechnology, 2008, 19(41): 415602 (5pp).
    [59] Cao M H, Hu C W, Wang E B. The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers [J]. J Am Chem Soc, 2003, 125(5): 11196-11197.
    [60] Cao M H, Wang Y H, Guo C X, et al. Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions [J]. Langmuir, 2004, 20(11): 4784-4786.
    [61] Cao M H, Wu X L, He X Y, Hu C W. Microemulsion-mediated solvothermal synthesis of SrCO3 nanostructures [J]. Langmuir, 2005, 21(13): 6093-6096.
    [62] Liu Y, Chu Y. Surfactant-assisted synthesis of single crystal BaWO4 octahedral microparticles [J]. Mater Chem Phys, 2005, 92(1): 59-63.
    [63] Qi L M, Ma J M, Cheng H M, et al. Reverse micelle based formation of BaCO3 nanowires [J]. J Phys Chem B, 1997, 101(18): 3460-3463.
    [64] Zhu Y C, Bando Y, Xue D F, et al. Nanocable-aligned ZnS tetrapod nanocrystals [J]. J Am Chem Soc, 2003, 125(52): 16196-16197.
    [65] D. Chen, A. K. Ray, Removal of toxic metal ions from wastewater by semiconductor photocatalysis [J]. Chem. Eng. Sci. 2001 56 (4) 1561-1570.
    [66] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
    [67] Gosvami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes [J]. Journal of Solar Energy Engineering, 1997, 119(2): 101(7pp).
    [68] Hoffmann M R, Martin S T, Chio W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chem Rev, 1995, 95(1): 69-96.
    [69] Hu J S, Zhong L S, Song W G, Wan L J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal [J]. Adv Mater, 2008 20(15): 2977-2982.
    [70] Zhao Z G, Miyauchi M. Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts [J]. Angew Chem Int Ed, 2008, 47(37): 7051-7055.
    [71] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem Rev, 1995, 95(1): 49-68.
    [72] Salem I. Recent studies on the catalytic activity of titanium, zirconium, and hafnium Oxides [J]. Catal Rev Sci Eng, 2003, 45(2): 205-296.
    [73] Linsebigler A L, Lu G, Yates J T, et al. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem Rev, 1995, 95(3): 735-758.
    [74] Yanagida S, Mizumoto K, Pac C J. Semiconductor photocatalysis. Part 6. Cis-trans photoisomerization of simple alkenes induced by trapped holes at surface states [J]. J Am Chem Soc, 1986, 108(4): 647-654.
    [75] Yanagida S, Azuma T, Midori Y, et al. Semiconductor photocatalysis. Part 4. Hydrogen evolution and photoredox reactions of cyclic ethers catalysed by zinc sulphide [J]. J Chem Soc Perkin Trans 2, 1985, (9): 1487-1493.
    [76] Shangguan W F, Yoshida A. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer [J]. J Phys Chem B, 2002, 106(47): 12227-12230.
    [77] Guan G Q, Kida T, Kusakabe K, et al. Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite [J]. Chem Phys Lett, 2004, 385(3-4): 319 -322.
    [78] Fujiwara H, Hosokawa H, Murakoshi K, et al. Surface characteristics of ZnS nanocrystallites relating to their photocatalysis for CO2 reduction [J]. Langmuir, 1998, 14(18): 5154-5159.
    [79] Koca A, Sahin M. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution [J]. Int J Hydrogen Energy, 2002, 27(4): 363-367.
    [80] Yanagida S, Kawakami H, Midori Y, et al. Semiconductor photocatalysis. ZnS-nanocrystallite-catalyzed photooxidation of organic compounds [J]. Bull Chem Soc Jpn, 1995, 68(7): 1811-1823.
    [81] Kanemoto M, Shiragami T, Pac C J, et al. Semiconductor photocatalysis. 13. Effective photoreduction of carbon dioxide catalyzed by zinc sulfide quantum crystallites with low density of surface defects [J]. J Phys Chem, 1992, 96(8): 3521-3526.
    [82] Shiragami T, Ankyu H, Fukami S, et al. Semiconductor photocatalysis: visible light induced photoreduction of aromatic ketones and electron-deficient alkenes catalysed by quantised cadmium sulfide [J]. J Chem Soc Faraday Trans, 1992, 88(24): 1055-1061.
    [83] Marinkovi? S, Hoffmann N. Diastereoselective radical tandem addition-cyclization reactions of aromatic tertiary amines by semiconductor-sensitized photochemical electron transfer [J]. Eur J Org Chem, 2004, 2004(14): 3102-3107.
    [84] Hrner G, Johne P, Kunneth R, et al. Semiconductor type a photocatalysis: role of substrate adsorption and the nature of photoreactive surface sites in zinc sulfide catalyzed C-C coupling reactions [J]. Chem Eur J, 1999, 5(1): 208-217.
    [85] Yanagida S, Ishimaru Y, Miyake Y, et al. Semiconductor photocatalysis. 8. Zinc sulfide-catalyzed photoreduction of aldehydes and related derivatives: two-electron-transfer reduction and relationship with spectroscopic properties [J]. J Phys Chem, 1989, 93(6): 2576-2582.
    [86] Yanagida S, Kizumoto H, Ishimaru Y, et al. Zinc sulfide-catalyzed photochemical conversion of primary amines to secondary amines [J]. Chem Lett, 1985, 14(1): 141-144.
    [87] Tsuji I, Kudo A. H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts [J]. J Photochem Photobiol A, 2003, 156(1-3): 249-252.
    [88] Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst [J]. Chem Commun, 2000, (15): 1371-1372.
    [89] Hamanoi O, Kudo A. Reduction of nitrate and nitrite ions over Ni-ZnS photocatalyst under visible light irradiation in the presence of a sacrificial reagent [J]. Chem Lett, 2002, 31(8): 838-839.
    [90] Hu J Q, Bando Y, Zhan J H, et al. Growth of wurtzite ZnS micrometer-sized diskettes and nanoribbon arrays with improved luminescence [J]. Adv Mater, 2005, 15(5): 757-762.
    [91] Yang J, Xue C, Yu S. H, et al. General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller [J]. Angew Chem, 2002, 114(24): 4891-4894.
    [92] Yang J, Zheng J H, Yu S H, et al. Formation process of CdS nanorods via solvothermal route [J]. Chem Mater, 2000, 12 (11): 3259-3263.
    [93] Yu S H, Yoshimura M, Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH2CH2CH2NH2)0.5 [J]. Adv Mater, 2002, 14(4): 296-300.
    [1] Machol J L, Wise F W, Patel R C, et al. Vibronic quantum beats in PbS microcrystallites [J]. Phys Rev B, 1993, 48(4): 2819-2822.
    [2] Hirata H, Higashiyama K. Analytical study of the lead ion-selective ceramic membrane electrode [J]. Bull Chem Soc Jpn, 1971, 44(9): 2420-2423.
    [3] Nair P K, Gomezdaza O, Nair M T S. Metal sulphide thin film photography with lead sulphide thin films [J]. Adv Mater Opt Electron, 1992, 1(1): 139-145.
    [4] Gadenne P, Yagil Y, Deutscher G. Transmittance and reflectance in situ measurements of semicontinuous gold films during deposition [J]. J Appl Phys, 1989, 66(7): 3019.
    [5] Kane R S, Cohen R E, Silbey R. Theoretical study of the electronic structure of PbS nanoclusters [J]. J Phys Chem, 1996, 100(19): 7928-7932.
    [6] Olshavasky M A, Goldstein A N, Alivisators A P. Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement [J]. J Am Chem Soc, 1990, 112(26): 9438-9439.
    [7] Mcdonald S A, Konstantatos G, Zhang S. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J]. Nature Mater, 2005, 4(2): 138-142.
    [8] Zhao P T, Wang J M, Cheng G. Fabrication of symmetric hierarchical hollow PbS microcrystals via a facile solvothermal process [J]. J Phys Chem B, 2006, 110(45): 22400-22406.
    [9] Wan J X, Chen X Y, Wang Z H, et al. Synthesisi of uniform PbS nanorod bundles via a surfactant-assisted interface reaction route [J]. Mater Chem Phys,2004,88(1): 217-220.
    [10] Ge J P, Wang J, Zhang H X,er al. Orthogonal PbS nanowire arrays and networks and their raman seattering behavior [J]. Chem Eur J, 2005, 11(6): 1889-1894.
    [11] Zhang H, Zuo M, Tan S, et al. Carbothermal reduction/sulfidation synthesis and structural charaeterization of PbS nanobelts and nanowires [J]. Nanotechnology, 2006,17(12): 2931.
    [12] Wu C, Shi J B, Chen C J, et al. Synthesis and optical properties of ordered 30 nm PbS nanowire arrays fabricated into sulfuric anodic alumina membrane [J]. Mater Lett, 2006,60(1): 29-30.
    [13] Yong K T, Sahoo Y, Choudhury K R, et al. Control of the morphology and size of PbS nanowires using gold nanopartieles [J]. Chem Mater, 2006, 18(23): 5965-5972.
    [14] Lee S M, Jun Y W, Cho S N, Cheon J. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks [J]. J Am Chem Soc, 2002, 124(38): 11244-11245.
    [15] Zhao N N, Qi L M. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solution of mixed cationic/anionic surfactants [J]. Adv Mater, 2006, 18(3): 359-362.
    [16] Kuang D B, Xu A W, Fang Y P, et al. Surfactant-assisted growth of Novel PbS dendritic nanostructures via facile hydrothermal proeess [J]. Adv Mater, 2003, 15(20): 1747-1750.
    [17] Zhou G J, Lu M K, Xiu Z L, et al. Controlled synthesis of high-quality PbS star-shaped dendrites,multipods, truneated nanoeubes, and nanocubes and their shape evolution process [J]. J Phys Chem B, 2006, 110(13): 6543-6548.
    [18] Cao H L, Gong Q, Qian X F, et al. Synthesis of 3D hierarchical dendrites of lead chalcogenides in large scale via microwave-assistant Method [J]. Cryst Growth Des, 2007, 7(2): 425-429.
    [19] Wang S F, Gu F, Lu M K. Sonochemical synthesis of hollow PbS nanospheres [J]. Langmuir, 2006, 22(1): 398-401.
    [20] Eastoe J, Cox A R. Formation of PbS nanoclusters using reversed micelles of lead and sodium aerosol-OT [J]. Colloids Surf A, 1995, 101(1): 63-76.
    [21] Yu D B, Wang D B, Meng Z Y, et al. Synthesis of closed PbS Nanowires with regular geometric morphologies [J]. J Mater Chem, 2002, 12: 403-405.
    [22] Xiang J H, Yu S H, Liu B H, et al. Shape controlled synthesis of PbS nanocrystals by a solvothermal–microemulsion approach [J]. Inorg Chem Commun, 2004, 7(4): 572-575.
    [23] Feng Y Y, Zhang J, Zhou P, et al. A facile method to prepare PbS nanorods [J]. Mater Res Bull, 2004, 39(13): 1999-2005.
    [24] Chen M, Xie Y, Yao Z Y, et al. A novel solvent-directed shape control technique for preparation of rod-shaped PbS crystals [J]. Mater Res Bull, 2002, 37(2): 247-253.
    [25] Wang Y L, Cai L, Xia Y N. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles [J]. Adv Mater, 2005, 17(4): 473-477.
    [26] Huang Q, Gao L. Simple route for synthesis of PbS dendritic nanostructured materials [J]. Chem Lett, 2004, 33(10): 1338-1339.
    [27] Wang D B, Yu D B, Shao M W, et al. Dendritic growth of PbS crystals with different morphologies [J]. J Cryst Growth, 2003, 257(3-4): 384-389.
    [28] Ma Y R, Qi L M, Ma J M, et al. Hierarchical, star-shaped PbS crystals formed by a simple solution route [J]. Cryst Growth Des, 2004, 4(2): 351-354.
    [29] Ni Y H, Liu H J, Wang F, et al. Shape controllable preparation of PbS crystals by a simple aqueous phase route [J]. Cryst Growth Des, 2004, 4(4): 759-764.
    [30] Fan D, Thomas P J, O’Brien Paul. Pyramidal lead sulfide crystallites with high energy {113} facets [J]. J Am Chem Soc, 2008, 130(33): 10892–10894.
    [31] Ni Y H, Liu H J, Wang F, et al. PbS crystals with clover-like structure: preparation, characterization, optical properties and influencing factors [J]. Cryst Res Technol, 2004, 39(3): 200-206.
    [32] Wang S, Yang S. Preparation and characterization of oriented PbS crystalline nanorods in polymer films [J]. Langmuir, 2000, 16(2): 389-397.
    [33] Vroege G J, Lekkerkerker H N W. Phase transitions in lyotropic colloidal and polymer liquid crystals [J]. Rep Prog Phys, 1992, 55(8): 1241-1310.
    [34] Kwan S, Kim F, Akana J, Yang P D. Synthesis and assembly of BaWO4 nanorods [J]. Chem Commun, 2001, (5): 447-448.
    [35] Kowshik M, Vogel W, Urban J, et al. Microbial synthesis of semiconductor PbS nanocrystallites [J]. Adv Mater, 2002, 14(11): 815-818.
    [36] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: synthesis, characterization, and applications [J]. Adv Mater, 2003, 15(5): 353-389.
    [37] Xiao Z L, Han C Y, Kwok W K, et al. Tuning the architecture of mesostructures by electrodeposition [J]. J Am Chem Soc, 2004, 126(8): 2316-2317.
    [38] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J Am Chem Soc, 1993, 115(19): 8706-8715.
    [39] Hu J, Li L, Yang W, et al. Linearly polarized emission from colloidal semiconductor quantum rods [J]. Science, 2001, 292(5524): 2060-2063.
    [40] Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2001, 409(6816): 66-69.
    [41] Joo J, Na H, Yu T, et al. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals [J]. J Am Chem Soc, 2003, 125(36): 11100-11105.
    [42] Hao E C, Yang B, Yu S, et al. Formation of orderly organized cubic PbS nanoparticles domain in the presence of TiO2 [J]. Chem Mater, 1997, 9(7): 1598-1600.
    [43] Cao H Q, Wang G Z, Zhang S C, et al. Growth and photoluminescence properties of PbS nanocubes [J]. Nanotechnology, 2006, 17(14): 3280-3287.
    [44] Liu Z P, Peng S, Xie Q, et al. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process [J]. Adv Mater, 2003, 15(11): 936-940.
    [45] Zhang Z, Zhao B, Hu L. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes [J]. J Solid State Chem, 1996, 121(1): 105-110.
    [46] Bonet F, Tekaia-Elhsissen K, Sarathy K V. Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process [J]. Bull Mater Sci, 2000, 23(3): 165-168.
    [47] Zhang Y H, Guo L, Yin P G, et al. A highly regular hexapod structure of lead sulfide: solution synthesis and raman spectroscopy [J]. Chem Eur J, 2007, 13(10): 2903-2907.
    [48] Tian L, Tan H Y, Vittal J J. Morphology-controlled synthesis of Bi2S3 nanomaterials via single- and multiple-source approaches [J]. Cryst Growth Des, 2008, 8(2): 734-738.
    [49] Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002, 298(5601): 2176-2179.
    [50] Chen J Y, Herricks T, Xia Y N. Polyol synthesis of platinum nanostructures: control of morphology through the manipulation of reduction kinetics [J]. Angew Chem Int Ed, 2005, 44(17): 2589-2592.
    [51] Lee Y T, Im S H, Willey B, Xia Y. Quick formation of single-crystal nanocubes of silver through dual functions of hydrogen gas in polyol synthesis [J]. Chem Phys Lett, 2005, 411(4-6): 479-483.
    [52] Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J]. J Phys Chem B, 2000, 104(6): 1153-1175.
    [53] Lamer V K, Barnes M D. Monodispersed hydrophobic colloidal dispersions and light scattering properties. I. preparation and light scattering properties of monodispersed colloidal sulfur [J]. J Colloid Sci, 1946, 1(1): 71-77.
    [54] Ma D, Li M, Patil A J, Mann S. Fabrication of protein/silica core-shell nanoparticles by microemulsion-based molecular wrapping [J]. Adv Mater, 2004, 16(20): 1838-1841.
    [55] Liu X M, Zhang X G, Fu S Y. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors [J]. Mater Res Bull, 2006, 41(3): 620-627.
    [56] Vaseem M, Umar A, Kim S H, Hahn Y B. Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties [J]. J Phys Chem C, 2008, 112(15): 5729-5735.
    [57] Botterhuis N E, Sun Q, Magusin P C M M, et al. Hollow silica spheres with an ordered pore structure and their application in controlled release studies [J]. Chem Eur J, 2006, 12(5): 1448-1456.
    [58] Wang J W, Xia Y D, Wang W X, et al. Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems [J]. J Mater Chem, 2006, 16(18): 1751-1756.
    [59] Yang J, Lee J, Kang J, et al. Hollow silica nanocontainers as drug delivery vehicles [J]. Langmuir, 2008, 24(7): 3417-3421.
    [1] Hu J, Li L S, Yang W, et al. Linearly polarized emission from colloidal semiconductor quantum rods [J]. Science, 2001, 292 (5524): 2060-2063.
    [2] Jin R, Cao Y, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science, 2001, 294 (5548): 1901-1903.
    [3] Tang Z, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires [J]. Science, 2002, 297 (5579): 237-240.
    [4] Peng X, Manna L, Yang W, et al. Shape control of CdSe nanocrystals [J]. Nature, 2000, 404(6773): 59-61.
    [5] Jun Y, Casula M F, Sim J, et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals [J]. J Am Chem Soc, 2003, 125(51): 15981-15985.
    [6] Ma Y, Qi L, Shen W, et al. Selective synthesis of single-crystalline selenium nanobelts and nanowires in micellar solutions of nonionic surfactants [J]. Langmuir, 2005, 21(14): 6161-6164.
    [7] Shi H, Qi L, Ma J, et al. Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles [J]. J Am Chem Soc, 2003, 125(12): 3450-3451.
    [8] Zhang D, Qi L, Ma J, et al. Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer [J]. Chem Mater, 2001, 13(9): 2753-2755.
    [9] Zhao N N, Qi L M. Low-Temperature synthesis of star-shaped PbS nanocrystals in aqueous dolutions of mixed cationic/anionic surfactants [J]. Adv Mater, 2006, 18(3): 359-362.
    [10] Dong L H, Chu Y, Liu Y, et al. Surfactant-assisted fabrication PbS nanorods, nanobelts, nanovelvet-flowers and dendritic nanostructures at lower temperature in aqueous solution [J]. Journal of Colloid and Interface Science, 2006, 301(2): 503-510.
    [11] Akamatsu K, Takei S, Mizuhata M, et al. Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles [J]. Thin Solid Films, 2000, 359(1): 55-60.
    [12] Sun Y P, Riggs J E, Rollins H W, et al. Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions [J]. J Phys Chem B, 1999, 103(1): 77-82.
    [13] Hodes G, Manassen J, Cahen D. Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes [J]. Nature, 1976, 261(5559): 403-404;
    [14] Hull S, Keen D A, Sivia D S, et al. The high-temperature superionic behaviour of Ag2S [J]. J Phys Condens Matter, 2002, 14(1): L9.
    [15] Minami T, Recent progress in superionic conducting glasses [J]. J Non-Cryst Solids, 1987, 95(1): 107-118.
    [16] DeRycke G L, Henderickx F. European Patent Application [M]. No. 89202613, 9, 1990.
    [17] Mitchell J W. On the role of sulfide molecules in photographic sensitivity [J]. J. Imaging Sci Technol, 1998, 42(3): 215-221.
    [18] Charlier E, Doorselaer M. V, Gijbels R, et al. Unveiling the composition of sulfur sensitization specks by their interaction with TAI [J]. J Imaging Sci Technol, 2000, 44(3): 235-241.
    [19] Baetzold R, Proc. IS&T/SPSTJ's International Symposium on Silver Halide Imaging: "Silver Halide in a New Millennium"[M]. Sainte-Adele, Quebec, Canada, 2000, p. 82.
    [20] Faraday M. On a new law of electric conduction. On conducting power generally [J]. Philos Trans Royal Soc, 1833, 123: 507-522.
    [21] R. Sadanaga, S. Sueno, X-ray study on theα-βtransition of Ag2S [J]. Mineral J (Japan), 1967, 5: 124-143.
    [22] Junod P, Hediger H, Kilch?r B, et al. Metal-non-metal transition in silver chalcogenides [J]. Philos Mag, 1977, 36: 941-958.
    [23] Brühwiler D, Seifert R, Calzaferri G. Quantum-sized silver sulfide clusters in zeolite A [J]. J Phys Chem B, 1999, 103(31): 6397-6399.
    [24] Brelle M C, Zhang J Z, Nguyen L, et al. Synthesis and ultrafast study of cysteine- and glutathione-capped Ag2S semiconductor colloidal nanoparticles [J]. J Phys Chem A, 1999, 103(49): 10194-10201.
    [25] Gao F, Lu Q Y, Zhao D Y. Controllable assembly of ordered semiconductor Ag2S nanostructures [J]. Nano lett, 2003, 3(1): 85-88.
    [26] Brühwiler D, Leiggener C, Glaus S, et al. Luminescent silver sulfide clusters [J]. J Phys Chem B, 2002, 106(15): 3770-3777.
    [27] Peng X S, Meng G W, Zhang J, et al. Electrochemical fabrication of ordered Ag2S nanowire arrays [J]. Mater Res Bull, 2002, 37(7): 1369-1375.
    [28] Wen X G, Wang S H, Xie Y T, et al. Low-temperature synthesis of single crystalline Ag2S nanowires on ailver aubstrates [J]. J Phys Chem B, 2005, 109(20): 10100-10106.
    [30] Gou L F, Murphy C J. Solution-phase synthesis of Cu2O nanocubes [J]. Nano lett, 2003, 3(2): 231-234.
    [31] Wang D B, Mo M S, Yu D B, et al. Large-scale growth and shape evolution of Cu2O cubes [J]. Crystal Growth & Design, 2003, 3(5): 717-720.
    [32] Lee S M, Jun Y, Cho S N, et al. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks [J]. J Am Chem Soc, 2002, 124(38): 11244-11245.
    [33] Hao Y F, Meng G W, Ye C H, et al. Controlled synthesis of In2O3 octahedrons and nanowires [J]. Crystal Growth & Design, 2005, 5(4): 1617-1621.
    [34] Seo W S, Shim J H, Oh S J, et al. Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals [J]. J Am Chem Soc, 2005, 127(17): 6188-6189 .
    [35] Yu D B, Yam V W. Controlled synthesis of monodisperse silver nanocubes in water [J]. J Am ChemSoc, 2004, 126(41): 13200-13201.
    [36] Lu W G, Fang J Y, Ding Y, et al. Formation of PbSe nanocrystals: a growth toward nanocubes [J]. J Phys Chem B, 2005, 109(20): 19219-19222.
    [37] Tang Q, Zhou W J, Zhang W, et al. Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes [J]. Crystal Growth & Design, 2005, 5(1): 147-150.
    [38] Zhou M, Chen S H, Zhao S Y. Synthesis of icosahedral gold nanocrystals: a thermal process strategy [J]. J Phys Chem B, 2006, 110(10): 4510-4513.
    [39] Im S H, Lee Y T, Wiley B, Xia Y N. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity [J]. Angew Chem Int Ed, 2005, 44(14): 2154-2157.
    [40] Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: the case of silver [J]. Chem Eur J, 2005, 11(2): 454-463.
    [41] Lim W P, Zhang Z H, Low H Y, et al. Preparation of Ag2S nanocrystals of predictable shape and size [J]. Angew Chem Int Ed, 2004, 43(42): 5685-5689.
    [42] Wang X B, Liu W M, Hao J C, et al. Simple large-scale synthesis of well-defined silver sulfide semiconductor nanoparticles with adjustable sizes [J]. Chem Lett, 2005, 34(12): 1664-1665.
    [43] Peng X. Green chemical approaches toward high-quality semiconductor nanocrystals [J]. Chem Eur J, 2002, 8(2): 334-339.
    [44] Lee S M, Cho S N, Cheon J. Anisotropic shape control of colloidal inorganic nanocrystals [J]. Adv Mater, 15 (2003)5 441-444.
    [45] Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J]. J Phys Chem B, 2000, 104(6): 1153-1175.
    [46] Peng Z A, Peng X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth [J]. J Am Chem Soc, 2002, 124(13): 3343-3353.
    [47] Yu W W, Wang Y A, Peng X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals [J]. Chem Mater, 2003, 15(22): 4300-4308.
    [48] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles Using a surfactant template [J]. Adv Mater, 2001, 13(18): 1389-1393.
    [49] Cava R J, McWhan D B. Diffuse-X-ray-scattering study of the fast-ion conductorβ-Ag2S [J]. Phys Rev Lett, 1980, 45(25): 2046-2050.
    [50] Allen R L, Moore E J. Diffusion of silver in silver sulfide [J]. J Phys Chem, 1959, 63(2): 223-226.
    [51] Thomas K G, Barazzouk S, Ipe B I, et al. Uniaxial plasmon coupling through longitudinal self-Assembly of gold nanorods [J]. J Phys Chem B, 2004, 108(35): 13066–13068.
    [52] Chang Y, Zeng H C. Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons [J]. Cryst Growth Des, 2004, 4(2): 397–402.
    [53] Zhu J M, Yang K, Zhu J J, et al. The microstructure studies of bismuth sulfide nanorods prepared by sonochemical method [J]. Opt Mater, 2003, 23(1-2): 89–92.
    [54] Chen R, So M H, Che C M, et al. Controlled synthesis of high crystalline bismuth sulfide nanorods: using bismuth citrate as a precursor [J]. J Mater Chem, 2005, 15(42): 4540–4545.
    [55] Liu Z P, Peng S, Xie Q, et al. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process [J]. Adv Mater, 2003, 15(11): 936–941.
    [56] Sigman M B, Korgel B A. Solventless synthesis of Bi2S3 (Bismuthinite) nanorods, Nanowires, and nanofabric [J]. Chem Mater, 2005, 17(7): 1655–1660.
    [57] Ye C H, Meng G W, Jiang Z, et al. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors [J]. J Am Chem Soc, 2002, 124(51): 15180–15181.
    [58] Jiang J, Yu S H, Yao W T, et al. Morphogenesis and crystallization of Bi2S3 nanostructures by an ionic liquid-assisted templating route: synthesis, formation mechanism, and properties [J]. Chem Mater, 2005, 17(24): 6094–6100.
    [59] Shen G Z, Chen D, Tang K B, et al. Large-scale synthesis of uniform urchin-like patterns of Bi2S3 nanorods through a rapid polyol process [J]. Chem Phys Lett, 2003, 370(3-4): 334–337.
    [60] Zhang B, Ye X C, Hou W Y, et al. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods [J]. J Phys Chem B, 2006, 110(18): 8978–8985.
    [61] Zhang H, Yang D R, Li S Z, et al. Hydrothermal synthesis of flower-like Bi2S3 with nanorods in the diameter region of 30 nm [J]. Nanotechnology, 2004, 15(9): 1122–1125.
    [62] Zhou X D, Shi H Q, Zhang B, et al. Facile synthesis and electrochemical application of surface-modified Bi2S3 urchin-like nano-spheres at room temperature [J]. Mater Lett, 2008, 62(17-18): 3201–3204.
    [63] Peng X. Green Chemical approaches toward high-Quality semiconductor nanocrystals [J]. Chem Eur J, 2002, 8(2): 334–339.
    [64] Black J, Conwell E M, Seigle L, et al. Electrical and optical properties of some M2V-BN3VI-B semiconductors [J]. J Phys Chem Solids, 1957, 2(3): 240–251.
    [65] Liu Z P, Liang J B, Li S, et al. Synthesis and growth mechanism of Bi2S3 nanoribbons [J]. Chem Eur J, 2004, 10(3): 634–640.
    [66] Tang J, Alivisatos A P. Crystal splitting in the growth of Bi2S3 [J]. Nano Lett, 2006, 6(12): 2701–2706.
    [67] Zhao W B, Zhu J J, Zhao Y, et al. Temperature dependence of the electric field gradient parameters at 19F lattice sites in semiconducting and insulating diamonds [J]. Mater Sci Eng B, 2004, 11(11): 307–312.
    [1]张建英,杨合情,杨瑞丽,等.金属镍基质上直立六边形NiO纳米片的制备与光催化性能[J].科学通报,2007,52(17): 2015-2020.
    [2]王军伟,曹国英,胡伟全. CuO-NiO/SiO2催化氧化1-甲氧基-2-丙醇合成甲氧基丙酮[J].催化学报,2002,23(4): 349-351.
    [3]赵惠忠,李轩科.纳米NiO/ SiO2催化剂的制备及其在碳纳米管合成中的应用[J].武汉科技大学学报,2001,24(4): 334-337.
    [4]阳霞,张高科,胡波,刘颖.纳米NiO粉体的制备及其应用[J].中国非金属矿工业导刊,2002,4: 21-24.
    [5] Shukla A K, VenugoPalan S, HariPrakash B. Nickel based rechargeable batteries [J]. Journal of Power Sources, 2001, 100(122): 125-148.
    [6] Wartena R, Winniek J, Pfromm P H. Recycling wood Pulping chemicals by molten salt electrolysis: cyclic voltammetry of mixtures containing Na2CO3 and Na2SO4 [J]. Journal of Applied Electrochemistry, 2002, 32(4): 415-424.
    [7]闪星,张密林.纳米氧化镍在超大容量电容器中的应用[J].功能材料与器件学报,2002,8(l): 35-39.
    [8]傅铁祥,王正显. ZrO2-NiO陶瓷气敏特性研究[J].吉首大学学报(自然科学), 1990,11(5): 35-38.
    [9] Park J, Kang E, Son S U, et al. Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction [J]. Adv Mater, 2005, 17(4): 429-434.
    [10] Han D Y, Yang H Y, Shen C B, et al. Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion [J]. Powder Technol, 2004, 147(1-3): 113-116.
    [11] Dharmaraj N, Prabu P, Nagarajan S, et al. Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor [J]. Mater Sci Eng B, 2006, 128(1-3): 111-114.
    [12] Li X L, Zhang X X, Li Z R, et al. Synthesis and characteristics of NiO nanoparticles by thermal decomposition of nickel dimethylglyoximate rods [J]. Solid State Commun, 2006, 137(11): 581-584.
    [13] Wang Y G, Xia Y Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15 [J]. Electrochim Acta, 2006, 51(16): 3223-3227.
    [14] Lin Y, Xie T, Cheng B C, et al. Ordered nickel oxide nanowire arrays and their optical absorption properties [J]. Chem Phys Lett, 2003, 380(5-6): 521-525.
    [15] Xu C K, Hong K Q, Liu S, et al. A novel wet chemical route to NiO nanowires [J]. J Cryst Growth, 2003, 255(3-4): 308-312.
    [16] Needham S A, Wang G X, Liu H K. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries [J]. J Power Sources, 2006, 159(1): 254-257.
    [17] Wang W Z, Liu Y K, Xu C K, et al. Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach [J]. Chem Phys Lett, 2002, 362(1-2): 119-122.
    [18] Matsui K, Pradhan Bhabendra K, Kyotani T, et al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes [J]. J Phys Chem B, 2001, 105(24): 5682-5688.
    [19] Ni X M, Zhao Q B, Zhou F, et al. Synthesis and characterization of NiO strips from a single source [J]. J Cryst Growth, 2006, 289(1): 299-302.
    [20] Liu X H, Qiu G Z, Wang Z, et al. Rationally synthetic strategy: From nickel hydroxide nanosheets to nickel oxide nanorolls [J]. Nanotechnology, 2005, 16: 1400-1405.
    [21] Liang J H, Li Y D. Synthesis and characterization of Ni(OH)2 single nanorods [J]. Chem Lett, 2003, 32(12): 1126-1127.
    [22] Wang X, Li L, Zhang Y G, et al. High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance [J]. Cryst Growth Des, 2006, 6(9): 2163-2165.
    [23] Sun X M, Liu J F, Li Y D. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres [J]. Chem Eur J, 2006, 12(7): 2039-2047.
    [24] Titirici M M, Antonietti M, Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach [J]. Chem Mater, 2006, 18(16): 3808-3812.
    [25] Wang D B, Song C X, Hu Z S, et al. Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures [J]. J Phys Chem B, 2005, 109(3): 1125-1129.
    [26] Wang Y, Zhu Q S, Zhang H G. Fabrication ofβ-Ni(OH)2 and NiO hollow spheres by a facile templatefree process [J]. Chem Commun, 2005, 5231-5233.
    [27] Liu J, Du S F, Wei L Q, et al. Template-free synthesis of NiO hollow microspheres covered with nanoflakes [J]. Mater Lett, 2006, 60(29-30): 3601-3604.
    [28] Ovshinsky S R, Fetcenko M A, Ross J. A nickel metal hydride battery for electric vehicles [J]. Science, 1993, 260(5105): 176-181.
    [29] Dresselhaus M S, Thomas I L. Alternative energy technologies [J]. Nature, 2001, 414(6861): 332-337.
    [30] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367.
    [31] J. McBreen in Modern Aspects of Electrochemistry [M]. Vol. 21 (Eds.: R. E. White, J. OJM. Bockris, B. E. Conway), Plenum, New York, 1990, pp. 29.
    [32] Linden D. Handbook of Batteries [M]. 3rd ed., McGraw-Hill, New York, 2002.
    [33] Bernard M C, Cortes R, Keddam M, et al. Structural defects and electrochemical reactivity ofβ-Ni(OH)2 [J]. J. Power Sources, 1996, 63(2): 247-254.
    [34] Watanabe K, Kikuoka T, Kumagai N. Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries [J]. J Appl Electrochem, 1995, 25(3): 219-226.
    [35] Reisner D E, Salkind A J, Strutt P R, et al. Nickel hydroxide and other nanophase cathode materials for rechargeable batteries [J]. J Power Sources, 1997, 65(1-2): 231-233.
    [36] Han X J, Xie X M, Xu C Q, et al. Morphology and electrochemical performance of nano-scale nickel hydroxide prepared by supersonic coordination–precipitation method [J]. Opt Mater, 2003, 23(1-2): 465-470.
    [37] Rubinsteina M, Kodamab R H, Makhlouf S A. Electron spin resonance study of NiO antiferromagnetic nanoparticles [J]. J Magn Magn Mater, 2001, 234(2): 289-293.
    [38] Biju V, Khadar M A. DC conductivity of consolidated nanoparticles of NiO [J]. Mater Res Bull 2001, 36(1-2): 21-33.
    [39] Tos t R M, González J S, Torres P M, et al. Nickel oxide supported on zirconium-doped mesoporous silica for selective catalytic reduction of NO with NH3 [J]. J Mater Chem, 2002, 12(11): 3331-3336.
    [40] Huang B, Yu Q C, Wang H M, et al. Study of LiFeO2 coated NiO as cathodes for MCFC by electrochemical impedance spectroscopy [J]. J Power Sources, 2004, 137(2): 163-174.
    [41] Hotovy I, Rehacek V, Siciliano P, et al. Sensing characteristics of NiO thin films as NO2 gas sensor, Thin Solid Films, 2002, 418(1): 9-15.
    [42] Mille E L, Rocheleau R E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide [J]. J Electrochem Soc, 1997, 144(9): 3072-3077.
    [43] Makkus R C, Hemmes K, Dewit J H. A comparative study of NiO(Li), LiFeO2, and LiCoO2 porous cathodes for molten carbonate fuel cells [J]. J Electrochem Soc, 1994, 141(12): 3429-3438.
    [44] Xu Z, Li Y M, Zhang J Y, et al. Ultrafine NiO–La2O3–Al2O3 aerogel: a promising catalyst for CH4/CO2 reforming [J]. Appl Catal A, 2001, 213(1): 65-71.
    [45] Wang Y, Zhu Q S, Zhang H G. Fabrication ofβ-Ni(OH)2 and NiO hollow spheres by a facile template-free process [J]. Chem Commun, 2005, (41): 5231-5233.
    [46] Wang D B, Song C X, Hu Z S, et al. Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures [J]. J Phys Chem B, 2005, 109(3): 1125-1129.
    [47] Liu B H, Yu S H, Chen S F, et al. Hexamethylenetetramine directed synthesis and properties of a new family ofα-nickel hydroxide organic?inorganic hybrid materials with high chemical stability [J]. J Phys Chem B, 2006, 110(9): 4039-4046.
    [48] Qi J Q, Zhang T, Lu M, et al. Conversion of conventional NiO powders into nanostructures by a simple chemical method [J]. Chem Lett, 2005, 34(2): 180-181.
    [49] Cao M H, He X Y, Chen J, et al. Self-assembled nickel hydroxide three-dimensional nanostructures: A Nanomaterial for alkaline rechargeable batteries [J]. Crystal Growth & Design, 2007, 7(1): 170-174.
    [50] Liu J, Du S F, Wei L Q, et al. Template-free synthesis of NiO hollow microspheres covered with nanoflakes [J]. Mater Lett, 2006, 60(29-30): 3601-3604.
    [51] Matsui K, Kyotani T, Tomita A. Hydrothermal synthesis of single-crystal Ni(OH)2 nanorods in a carbon-coated anodic alumina film [J]. Adv Mater, 2002, 14(17): 1216-1219.
    [52] Cai F S, Zhang G Y, Chen J, et al. Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries [J]. Angew Chem Int Ed, 2004, 43(32): 4212-4216.
    [53] Yang D N, Wang R M, Zhang J, et al. Synthesis of nickel hydroxide nanoribbons with a new phase: A solution chemistry approach [J]. J Phys Chem B, 2004, 108(23): 7531-7533.
    [54] Yang D N, Wang R M, He M S, et al. Ribbon- and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties [J]. J Phys Chem B, 2005, 109(16), 7654-7658.
    [55] Tang Y W, Jia Z Y, Jiang Y, et al. Simple template-free solution route for the synthesis of Ni(SO4)0.3(OH)1.4 nanobelts and their thermal degradation [J]. Nanotechnology, 2006, 17(22): 5686-5690.
    [56] Liang Z H, Zhu Y J, Hu X L.β-Nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets [J]. J Phys Chem B, 2004, 108(11): 3488-3491.
    [57] Wang X, Li L, Zhang Y G, et al. High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance [J]. Crystal Growth & Design, 2006, 6(9): 2163-2165.
    [58] Durand-Keklikian L, Haq I, Matijievic E. Preparation and characterization of well-defined colloidal nickel compounds [J]. Colloids Surfaces A, 1994, 92(3): 267-275.
    [59] Cronan C L, Micale F J, Topic M, et al. Surface properties of Ni(OH)2 and NiO. II. Mechanism for the thermal decomposition of Ni(OH)2 and other metal hydroxides [J]. J Colloid Interface Sci, 1976, 55(3): 546-557.
    [60] Carpenter C J C, Wronski Z S. Nanocrystalline NiO and NiO-Ni(OH)2 composite powders prepared by thermal and mechanical dehydroxylation of nickel hydroxide [J]. Nanostruct Mater, 1999, 11(1): 67-80.
    [61] Oliva P, Leonardi J, Laurent J F, et al. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides [J]. J Power Sources, 1982, 8(2): 229-255.
    [62] Kurmoo M, Day P, Derory A, et al. 3D Long-range magnetic ordering in layered metal–hydroxide triangular lattices 25 ? apart [J]. J Solid State Chem, 1999, 145(2): 452-459.
    [63] Portemer F, Delahyde-Vidal A, Figlarz M. Characterization of active material deposited at the nickel hydroxide electrode by electrochemical impregnation [J]. J Electrochem Soc, 1992, 139(3): 671-678.
    [64] Kamath P V, Therese G H A, Gopalakrishnan J. On the existence of hydrotalcite-like phases in the absence of trivalent cations [J]. J Solid State Inorg Chem, 1997, 128(1): 38-41.
    [65] Mullin J W, Crystallization [M], Butterworth-Heinemann, Woburn, MA, 1997.
    [66] Deng Z T, Chen D, Tang F Q, et al. Orientated attachment assisted self-assembly of Sb2O3 nanorods and nanowires: end-to-End versus side-by-side [J]. J Phys Chem C, 2007, 111(14): 5325-5330.
    [67] Liu J P, Huang X T, Li Y Y, et al. Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability [J]. J. Mater. Chem. 2006, 16(45): 4427-4434.
    [68] Fan W L, Song X Y, Bu Y X, et al. Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals [J]. J Phys Chem B, 2006, 110(46): 23247-23254.
    [69] Xu H L, Wang W Z, Zhu W. Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route [J]. Mater Lett, 2006, 60(17-18): 2203-2206.
    [1] Gao P X, Lao C S, Ding Y, et al. Metal/semiconductor core/shell nanodisks and nanotubes [J]. Adv Funct Mater, 2006, 16(1): 53-62.
    [2] Huang M H, Mao S, Feick H, et al. Room- temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292(5523): 1897-1899.
    [3] Johnson J, Yan H, Yang P, et al. Optical cavity effects in ZnO nanowire lasers and waveguides [J]. J Phys Chem B, 2003, 107(34): 8816-8828.
    [4] Shibata T, Unno K, Makino E, et al. Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe [J]. Sens Actuators A, 2002, 102(1-2): 106-113.
    [5] Yumoto H, Inoue T, Li S J, et al. Application of ITO films to photocatalysis [J]. Thin Solid Films, 1999, 345(1): 38-41.
    [6] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts [J]. Nano Lett, 2003, 3(12): 1625-1631.
    [7] Hara K, Horiguchi T, Kinoshita T, et al. Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells [J]. Sol Energy Mater Sol Cells, 2000, 64(2): 115-119.
    [8] Zhu Y W, Zhang H Z, Sun X C, et al. Efficient field emission from ZnO nanoneedle arrays [J]. Appl Phys Lett, 2003, 83(1): 144-146.
    [9] Zhou J, Xu N S, Wang Z L. Dissolving behavior and stability of ZnO wires in biofluids OA study on biodegradability and biocompatibility of ZnO nanostructures [J]. Adv Mater, 2006, 18(18): 2432–2435.
    [10] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001, 291(5510): 1947–1949.
    [11] Kong, X Y, Ding Y, Yang R S, Wang Z L. Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts [J]. Science, 2004, 303(5662): 1348–1351.
    [12] Hughes W L, Wang Z L. Formation of piezoelectric single-crystal nanorings and nanobows [J]. J Am Chem Soc, 2004, 126(21): 6703– 6709.
    [13] Gao P X, Ding Y, Mai W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices [J]. Science, 2005, 309(5741): 1700–1704.
    [14] Wu Y Y, Yan H Q, Huang M, et al. Inorganic semiconductor nanowires: rational growth, assembly, and novel properties [J]. Chem Eur J, 2002, 8(6): 1260-1268.
    [15] Greene L E, Law M, Goldberger J, et al. Low-temperature wafer-scale production of ZnO nanowire arrays [J]. Angew Chem Int Ed, 2003, 42(26): 3031-3034.
    [16] Li Z Q, Ding Y, Xiong Y J, et al. Room-temperature surface-erosion route to ZnO nanorod arrays andurchin-like assemblies [J]. Chem Eur J, 2004, 10(22): 5823-5828.
    [17] Qian H S, Yu S H, Gong J Y, et al. Growth of ZnO crystals with branched spindles and prismatic whiskers from Zn3(OH)2V2O7·H2O nanosheets by a hydrothermal route [J]. Crystal Growth & Design, 2005, 5(3): 935-939.
    [18] Wang Z L. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology [J]. ACS nano, 2008, 2(10): 1987-1992.
    [19] She J C, Xiao Z M, Yang Y H, et al. Correlation between resistance and field emission performance of individual ZnO one-dimensional nanostructures [J]. ACS nano, 2008, 2(10): 2015-2022.
    [20] Hu X L, Gong J M, Zhang L Z, et al. Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing [J]. Adv Mater, 2008, 20(24): 4845-4850.
    [21] Djuri?i? A B, Leung Y H. Optical properties of ZnO nanostructures [J]. Small, 2006, 2(8-9): 944-961.
    [22] Norton D P, Heo Y W, Ivill M P, et al. ZnO: growth, doping & processing [J]. Mater Today, 2004, 7(6): 34-40.
    [23] Schwartz D A, Norberg N S, Nguyen Q P, et al. Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals [J]. J Am Chem Soc, 2003, 125(43): 13205-13218.
    [24] Kittilstved K R, Gamelin D R. Activation of high-TC ferromagnetism in Mn2+-doped ZnO using amines [J]. J Am Chem Soc, 2005, 127(15): 5292-5293.
    [25] Minami T. Transparent conducting oxide semiconductors for transparent electrodes [J]. Semicond Sci Technol, 2005, 20(4): S35-S44.
    [26] Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl Phys Lett, 2002, 81(10): 1830-1832.
    [27] Nakano Y, Morikawa T, Ohwaki T, et al. Electrical characterization of p-type N-doped ZnO films prepared by thermal oxidation of sputtered Zn3N2 films [J]. Appl Phys Lett, 2006, 88(17): 172103(3 pages).
    [28] Xiang B, Wang P W, Zhang X Z, et al. Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition [J]. Nano Lett, 2007, 7(2): 323-328.
    [29] Lin C C, Chen H P, Chen SY. Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film/Si wafer in aqueous solutions [J]. Chem Phys Lett, 2005, 404(1-3): 30-34.
    [30] Xu C K, Yang K K, Liu Y Y, et al. Buckling and ferromagnetism of aligned Cr-doped ZnO nanorods [J]. J Phys Chem C, 2008, 112(49): 19236-19241.
    [31] Yuan G D, Zhang W J, Jie J S, et al. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays [J]. Adv Mater, 2008, 20(1): 168-173.
    [32] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat Mater, 2005, 4(1): 42-46.
    [33] Gautam U K, Panchakarla L S, Dierre B, et al. Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets [J]. Adv Funct Mater, 2009, 19(1): 131-140.
    [34] Cong C J, Hong J H, Zhang K L. Effect of atmosphere on the magnetic properties of the Co-doped ZnO magnetic semiconductors [J]. Mater Chem Phys, 2009, 113(1): 435-440.
    [35] Barick K C, Aslam M, Dravid V P, et al. Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals [J]. J Phys Chem C, 2008, 112(39): 15163-15170.
    [36] WuY L, Fu S, Tok A I Y, et al. A dual-colored bio-marker made of doped ZnO nanocrystals [J]. Nanotechnology, 2008, 19(34): 345605 (9pp).
    [37] Guo Y, Cao X B, Lan X M, et al. Solution-based doping of manganese into colloidal ZnO nanorods [J]. J Phys Chem C, 2008, 112(24): 8832-8838.
    [38] Li Y J, Wang C Y, Lu M Y, et al. Electrodeposited hexagonal ringlike superstructures composed of hexagonal co-doped ZnO nanorods with optical tuning and high-temperature ferromagnetic properties [J]. Crystal Growth & Design, 2008, 8(8): 2598-2602.
    [39] Schwartz D A, Norberg N S, Nguyen Q P, et al. Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals [J]. J Am Chem Soc, 2003, 125(43): 13205-13218
    [40] Chu D W, Zeng Y P, Jiang D L. Synthesis and growth mechanism of Cr-doped ZnO single-crystalline nanowires [J]. Solid State Communications, 2007, 143(6-7): 308-312.
    [41] Wu D W, Yang M, Huang Z B, et al. Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution [J]. Journal of Colloid and Interface Science, 2009, 330(2): 380-385.
    [42] Wang X F, Zheng R K, Liu Z W, et al. Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases [J]. Nanotechnology, 2008, 19(45): 455702 (8pp).
    [43] Zeng X Y, Yuan J L, Zhang L D. Synthesis and photoluminescent properties of rare earth doped ZnO hierarchical microspheres [J]. J Phys Chem C, 2008, 112(10): 3503-3508.
    [44] Du Y P, Zhang Y W, Sun L D, et al. Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents [J]. J Phys Chem C, 2008, 112(32): 12234-12241.
    [45] Zeng X Y, Yuan J L, Wang Z Y,et al. Nanosheet-based microspheres of Eu3+-doped ZnO with efficient energy transfer from ZnO to Eu3+ at room temperature [J]. Adv Mater, 2007, 19(24): 4510-4514.
    [46] Qiu X Q, Li L P, Zheng J, et al. Origin of the enhanced photocatalytic activities of semiconductors: a case study of ZnO doped with Mg2+ [J]. J Phys Chem C, 2008, 112(32): 12242-12248.
    [47] Zhou S Min, Zhang X H, Meng X M, et al. Synthesis and optical properties of Pb-doped ZnO nanowires [J]. phys stat sol, (a) 2005, 202( 3): 405-410.
    [48] Sonawane Y S, Kanade K G, Kale B B, et al. Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles [J]. Materials Research Bulletin, 2008, 43(10): 2719-2726.
    [49] Chu D W, Zeng Y P, Jiang D L. Controlled growth and properties of Pb2+ doped ZnO nanodisks [J]. Materials Research Bulletin, 2007, 42(5): 814-819.
    [50] Liu B, Zeng H C. Fabrication of ZnO“dandelions”via a modified kirkendall process [J]. J Am Chem Soc, 2004, 126(51): 16744-16746.
    [51] Zhang N, Yi R, Shi R R, et al. Novel rose-like ZnO nanoflowers synthesized by chemical vapordeposition [J]. Mate Lett, 2009, 63(3-4): 496-499.
    [52] Bai P, Wu P P, Yan Z F, et al. Self-assembly of clewlike ZnO superstructures in the presence of copolymer [J]. J Phys Chem C, 2007, 111(27): 9729-9733.
    [53] Fang Z, Tang K B, Shen G Z, et al. Self-assembled ZnO 3D flowerlike nanostructures [J]. Mater Lett, 2006, 60(20): 2530-2533.
    [54] Liu J P, Huang X T, Li Y Y, et al. Large-scale synthesis of flower-like ZnO structures by a surfactant-free and low-temperature process [J]. Materials Chemistry and Physics, 2006, 98(2-3): 523-527.
    [55] Gao X D, Li X M, Yu W D. Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex [J]. J Phys Chem B, 2005, 109(3): 1155-1161.
    [56] Wahab R, Ansari S G, Kim Y S, et al. Low temperature solution synthesis and characterization of ZnO nano-flowers [J]. Materials Research Bulletin 2007, 42(9): 1640-1648.
    [57] Jang J M, Kim S D, Choi H M, et al. Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process [J]. Materials Chemistry and Physics, 2009, 113(1): 389-394.
    [58] Jang J M, Kim C R, Ryu H, et al. ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process [J]. Journal of Alloys and Compounds, 2008, 463(1-2): 503-510.
    [59] Jiang P, Zhou J J, Fang H F, et al. Hierarchical shelled ZnO structures made of bunched nanowire arrays [J]. Adv Funct Mater, 2007, 17(8): 1303-1310.
    [60] Jiang L, Li G C, Ji Q M, et al. Morphological control of flower-like ZnO nanostructures [J]. Materials Letters, 2007, 61(10): 1964-1967.
    [61] Kale R B, Hsu Y J, Lin Y F, et al. Synthesis of stoichiometric flowerlike ZnO nanorods with hundred per cent morphological yield [J]. Solid State Communications, 2007, 142(5): 302-305.
    [62] Zhang Y Y, Mu J. Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate [J]. Nanotechnology, 2007, 18(7): 075606 (6pp)
    [63] Li X L, Duan T L, Zhu X Y , et al. Long-chain polymer-assisted hydrothermal route to synthesize flowerlike ZnO nanostructures [J]. Materials Letters, 2006, 60(28): 3350-3353.
    [64] Krishnakumar T, Jayaprakash R, Pinna N, et al. Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures [J]. Materials Letters, 2009, 63(2): 242-245.
    [65] Xie J, Li P, Wang Y J, et al. Synthesis of needle- and flower-like ZnO microstructures by a simple aqueous solution route [J]. Journal of Physics and Chemistry of Solids, 2009, 70(1): 112-116.
    [66] Yi R, Zhang N, Zhou H F, et al. Selective synthesis and characterization of flower-like ZnO microstructures via a facile hydrothermal route [J]. Materials Science and Engineering B, 2008, 153(1-3): 25-30.
    [67] Wu Q Z, Chen X, Zhang P, et al. Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities [J]. Crystal Growth & Design, 2008, 8( 8): 3010-3018.
    [68] Movahedi M, Kowsari E, Mahjoub A R, et al. A task specific basic ionic liquid for synthesis offlower-like ZnO by hydrothermal method [J]. Materials Letters, 2008, 62(23): 3856-3858.
    [69] Li P, Liu H, Zhang Y F, et al. Synthesis of flower-like ZnO microstructures via a simple solution route [J]. Materials Chemistry and Physics, 2007, 106(1) 63-69.
    [70] Zhang H, Yang D R, Ji Y J, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium Bromide-assisted hydrothermal Process [J]. J Phys Chem B, 2004, 108(13): 3955-3958.
    [71] Krotan A R, Hull R, Opila R L, et al. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media [J]. J Am Chem Soc, 1990, 112(4): 1327-1332.
    [72] Gunneriusson L, Baxter D, Emteborg H. Complexation at low concentrations of methyl and inorganic mercury(II) to a hydrous goethite (α-FeOOH) surface [J]. J Colloid Interface Sci, 1995, 169(2): 262-266.
    [73] Ludwig C, Schindler P W. Surface Complexation on TiO2: I. Adsorption of H+ and Cu2+ Ions onto TiO2 (Anatase) [J]. J Colloid Interface Sci, 1995, 169(2): 284-290.
    [74] Hao E C, Yang B, Yu S, et al. Formation of orderly organized cubic PbS nanoparticles domain in the presence of TiO2 [J]. Chem Mater, 1997, 9(7): 1598-1600.
    [75] Pala R G S, Metiu H. Modification of the oxidative power of ZnO (1010) surface by substituting some surface Zn atoms with other metals [J]. J Phys Chem C, 2007, 111(24): 8617-8622.
    [76] Feng L, Cheng C, Lei M, et al. Spatially resolved photoluminescence study of single ZnO tetrapods [J]. Nanotechnology, 2008, 19 (40): 405702 (5pp).
    [77] Li J Y, Peng H Y, Liu J, et al. Facile gram-scale growth of single-crystalline nanotetrapod-assembled ZnO through a rapid process [J]. Eur J Inorg Chem, 2008, 2008(20): 3172-3176.
    [78] Wan C F, Tan H R, Jin S M, et al. Highly conductive Al-doped tetra-needle-like ZnO whiskers prepared by a solid state method [J]. Materials Science and Engineering B, 2008, 150(3): 203-207.
    [79] Huang Y, Yu K, Cui Q Y, et al. Low-temperature and two-step evaporation growth of ZnO nanotetrapods and their field emission properties [J]. Materials Letters, 2008, 62(8-9): 1342-1344.
    [80] Yu W D, Li X M, Gao X D. Catalytic synthesis and structural characteristics of high-quality tetrapod-like ZnO nanocrystals by a modified vapor transport process [J]. Crystal Growth & Design, 2005, 5(1): 151-155.
    [81] Yu K, Zhang Y S, Xu R L, et al. Efficient field emission from tetrapod-like zinc oxide nanoneedles [J]. Materials Letters, 2005, 59(14-15): 1866-1870.
    [82] Zhang J H, Liu H Y, Wang Z L, et al. Polyvinylpyrrolidone-directed crystallization of ZnO with tunable morphology and bandgap [J]. Adv Funct Mater, 2007, 17(18): 3897-3905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700