用户名: 密码: 验证码:
基于活性探针分子对代谢型γ-氨基丁酸受体激活机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
G蛋白偶联受体(GPCRs)在体内介导着多种配体引起的生理反应,如激素、神经递质和感官刺激。我们设计并合成了针对GABA_B受体的具有活性和光亲和力的分子探针。以探针为基础,我们能够将GABA_B受体锁定在非活性构象上,然后通过正向变构剂来激活受体。从而能够对与GABA_B受体激活相关的动态事件进行监测。我们发现,GABA_B受体能够调控一个包含有GABA_B受体、IGF-1R及其下游效应物在内的蛋白复合物发生一系列动态变化。其中值得注意的是,G蛋白能够与静息状态下的GABA_B受体预偶联(pre-coupling),并在受体激活后迅速解离。我们还发现,这种复合物的动态变化过程是GABA_B受体激活的关键。我们的研究确定了一系列GABA_B受体与下游型号蛋白间的相互作用,它们对于受体的激活非常关键。
     GABA_(B1)亚基的胞外结构域(GABA_(B1)-VFT)包含有配体结合位点(LBP),是一个非常好的药物治疗靶点。为了对其结构开展进一步的研究,我们大量表达并纯化了GABA_(B1)-VFT重组蛋白。并且用配体亲和层析解决了重组蛋白的低活性问题,成功地分离出了高活性的GABA_(B1)-VFT蛋白。
     同时,为了研究GABA_B受体与配体的结合过程,我们设计了一个采用电喷雾质谱、圆二色谱和荧光光谱等技术来监控蛋白质与配体结合过程中其二级结构和三级结构变化的平台。在这个平台上,我们分析了了肌红蛋白在不同环境下与配体结合和解离的过程。并发现由酸和有机溶剂引起的肌红蛋白的血红素解离现象具有不同的内在机制。
G protein-coupled receptors (GPCRs) mediate physiological responses to variousligands, such as hormones, neurotransmitters and sensory stimuli. We synthesized bothactive and affinity tagged photo-affinity probes specific to GABA_Breceptor. Suchactivity-based probes enabled us to first lock GABA_Breceptor in an inactive state and thenstimulate the receptor with a positive allosteric modulator, thereby permitting monitoringof the dynamic events associated with GABA_Breceptor activation. We found thatactivation of GABA_Breceptor triggered a dynamic assembly and disassembly of a proteincomplex, including GABA_Breceptor, IGF-1R and its downstream effectors. Notably, bothGαi and Gβ s ubunits were pre-assembled with the inactive GABA_Breceptor anddisassembled from the receptor complex upon activation. Our results identify a criticalrole for activity-specified dynamic protein interactions between GABA_Breceptor anddownstream signaling proteins.
     The extracellular domain of GABA_(B1)subunit (GABA_(B1)-VFT) contains the Ligandbinding pocket (LBP) and was an excellent therapeutic target. For the further researches ofthe GABA_(B1)-VFT domain structure, the recombinant GABA_(B1)-VFT was cloned,expressed and purified in large scale. The functional fraction of GABA_(B1)-VFT wasisolated by the ligand affinity chromatography. This fraction has the high activity ofligand binding.
     In order to study the process of GABA_Breceptor ligand bind, we designed a platformconstructed by ESI-MS, Circular Dichroism Spectroscopy and Fluorescence Spectroscopywhich can monitor the Secondary structure and the Tertiary structure changes as well asthe ligands binding or dissociation process. With this platform, we analyzed the Mbconformational changes during its ligand binding or dissociation process in differentconditions, and demonstrated the different mechanism of the heme releasing induced byacid and organic solvents.
引文
[1] Mohler, H., Benke, D.&Fritschy, J.M. GABA(B)-receptor isoforms moleculararchitecture and distribution. Life Sci68,2297-300(2001).
    [2] Hopkins, A.L.&Groom, C.R. The druggable genome. Nat Rev Drug Discov1,727-30(2002).
    [3] Bowery, N.G. et al. International Union of Pharmacology. XXXIII. Mammaliangamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev54,247-64(2002).
    [4] Vacher, C.&Bettler, B. GABA(B) receptors as potential therapeutic targets. CurrDrug Targets CNS Neurol Disord.2,248-259(2003).
    [5] Lipinski, C.A. Drug-like properties and the causes of poor solubility and poorpermeability. J Pharmacol Toxicol Methods44,235-49(2000).
    [6] Rees, S., Morrow, D.&Kenakin, T. GPCR drug discovery through the exploitationof allosteric drug binding sites. Receptors Channels.8,261-268(2002).
    [7] Pin, J.P., Galvez, T.&Prezeau, L. Evolution, structure, and activation mechanism offamily3/C G-protein-coupled receptors. Pharmacol Ther98,325-54(2003).
    [8] Margeta-Mitrovic, M., Jan, Y.N.&Jan, L.Y. A trafficking checkpoint controlsGABA(B) receptor heterodimerization. Neuron27,97-106(2000).
    [9] Pagano, A. et al. C-terminal interaction is essential for surface trafficking but not forheteromeric assembly of GABA(b) receptors. J Neurosci.21,1189-1202(2001).
    [10] Margeta-Mitrovic, M., Jan, Y.N.&Jan, L.Y. Function of GB1and GB2subunits inG protein coupling of GABA(B) receptors. Proc Natl Acad Sci U S A98,14649-54(2001).
    [11] Havlickova, M. et al. The intracellular loops of the GB2subunit are crucial forG-protein coupling of the heteromeric gamma-aminobutyrate B receptor. MolPharmacol62,343-50(2002).
    [12] Kniazeff, J., Galvez, T., Labesse, G.&Pin, J. No ligand binding in the GB2subunitof the GABA(B) receptor is required for activation and allosteric interactionbetween the subunits. J Neurosci.22,7352-7361(2002).
    [13] Galvez, T. et al. Allosteric interactions between GB1and GB2subunits are requiredfor optimal GABA(B) receptor function. EMBO J.20,2152-2159(2001).
    [14] Liu, J. et al. Molecular determinants involved in the allosteric control of agonistaffinity in the GABAB receptor by the GABAB2subunit. J Biol Chem279,15824-30(2004).
    [15] Fritschy, J.M. et al. GABAB-receptor splice variants GB1a and GB1b in rat brain:developmental regulation, cellular distribution and extrasynaptic localization. Eur JNeurosci11,761-8(1999).
    [16] Charles, K.J. et al. Comparative immunohistochemical localisation of GABA(B1a),GABA(B1b) and GABA(B2) subunits in rat brain, spinal cord and dorsal rootganglion. Neuroscience106,447-67(2001).
    [17] Slesinger, P., Stoffel, M., Jan, Y.&Jan, L. Defective gamma-aminobutyric acid typeB receptor-activated inwardly rectifying K+currents in cerebellar granule cellsisolated from weaver and Girk2null mutant mice. Proc Natl Acad Sci U S A.94,12210-12217(1997).
    [18] Bonannoa, G.&Raiteria, M. Multiple GABAB receptors. Trends inPharmacological Sciences14,259-261(1993).
    [19] Cunningham, M.D.&Enna, S.J. Evidence for pharmacologically distinct GABABreceptors associated with cAMP production in rat brain. Brain Res720,220-4(1996).
    [20] Mezler, M., Muller, T.&Raming, K. Cloning and functional expression of GABA(B)receptors from Drosophila. Eur J Neurosci13,477-86(2001).
    [21] Charles, K.J., Calver, A.R., Jourdain, S.&Pangalos, M.N. Distribution of aGABAB-like receptor protein in the rat central nervous system. Brain Res989,135-46(2003).
    [22] Kaupmann, K. et al. Expression cloning of GABA(B) receptors uncovers similarityto metabotropic glutamate receptors. Nature386,239-46(1997).
    [23] Foord, S.M.&Marshall, F.H. RAMPs: accessory proteins for seven transmembranedomain receptors. Trends Pharmacol Sci20,184-7(1999).
    [24] Marshall, F.H., Jones, K.A., Kaupmann, K.&Bettler, B. GABAB receptors-thefirst7TM heterodimers. Trends Pharmacol Sci20,396-9(1999).
    [25] Kitano, J. et al. Tamalin, a PDZ domain-containing protein, links a protein complexformation of group1metabotropic glutamate receptors and the guanine nucleotideexchange factor cytohesins. J Neurosci22,1280-9(2002).
    [26] Andrés Couvea, J.T.K., Julia M. Urena, Andrew R. Calverb, Menelas N. Pangalosb,Frank S. Walshb and Stephen J. Moss. Association of GABAB Receptors andMembers of the14-3-3Family of Signaling Proteins. Molecular and CellularNeuroscience17,317-328(2001).
    [27] Balasubramanian, S., A., J., Teissére, Raju, D.V.&Hall, R.A.Hetero-oligomerization between GABAA and GABAB receptors regulates GABABreceptor trafficking. J Biol Chem279,18840-18850(2004).
    [28] Prosser, H.M. et al. Epileptogenesis and enhanced prepulse inhibition inGABA(B1)-deficient mice. Mol Cell Neurosci17,1059-70(2001).
    [29] Schuler, V. et al. Epilepsy, hyperalgesia, impaired memory, and loss of pre-andpostsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron31,47-58(2001).
    [30] Froestl, W., Cooke, N.G.&Mickel, S.J. Chemistry of GABAB Modulators: inThe GABA Receptors.271-296(2007).
    [31] Graeme Milligan, P.M., Group Leader and Stephen Rees, Group Leader. G16as auniversal G protein adapter: implications for agonist screening strategies. Trends inPharmacological Sciences17,235-237(1996).
    [32] Gasparini, F., Kuhn, R.&Pin, J.P. Allosteric modulators of group I metabotropicglutamate receptors: novel subtype-selective ligands and therapeutic perspectives.Curr Opin Pharmacol2,43-9(2002).
    [33] Urwyler, S. et al. Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analogCGP13501. Mol Pharmacol60,963-71(2001).Stephan Urwyler, M.F.P., Kurt Lingenhoehl, Johannes Mosbacher, ChristinaLampert, Wolfgang Froestl, Manuel Koller and Klemens Kaupmann.N,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783)and structurally related compounds: novel allosteric enhancers ofgamma-aminobutyric acidB receptor function. J Pharmacol Exp Ther.307,322-330(2003).
    [34] Binet, V. et al. The heptahelical domain of GABA(B2) is activated directly byCGP7930, a positive allosteric modulator of the GABA(B) receptor. J Biol Chem.279,29085-29091(2004).
    [35] John F. Cryan, P.H.K., Frederique Chaperon, Conrad Gentsch, Cedric Mombereau,Kurt Lingenhoehl, Wolfgang Froestl, Bernhard Bettler, Klemens Kaupmann, Will P.J. M. Spooren. Behavioral Characterization of the Novel GABAB Receptor-PositiveModulator GS39783(N,N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): Anxiolytic-Like Activity without Side Effects Associated with Baclofenor Benzodiazepines. J. Pharmacol. Exp. Ther.310,952-963(2004).
    [36] Nakagawa, Y., Sasaki, A.&Takashima, T. The GABA(B) receptor antagonistCGP36742improves learned helplessness in rats. Eur J Pharmacol381,1-7(1999).
    [37] Cesare Mondadori, J.J.a.G.P. CGP36742: The first orally active GABAB blockerimproves the cognitive performance of mice, rats, and rhesus monkeys. Behavioraland Neural Biology60,62-68(1993).
    [38] Hosford, D.A. et al. The role of GABAB receptor activation in absence seizures oflethargic (lh/lh) mice. Science257,398-401(1992).
    [39] Marescaux, C., Vergnes, M.&Bernasconi, R. GABAB receptor antagonists:potential new anti-absence drugs. J Neural Transm Suppl35,179-88(1992).
    [40] Vergnes, M., Boehrer, A., Simler, S., Bernasconi, R.&Marescaux, C. Oppositeeffects of GABAB receptor antagonists on absences and convulsive seizures. Eur JPharmacol332,245-55(1997).
    [41] G.D. Smitha, S.M.H., P.J. Birch, P.J. Elliotta, M. Malcangio and N.G. Bowery.Increased sensitivity to the antinociceptive activity of (±)-baclofen in an animalmodel of chronic neuropathic, but not chronic inflammatory hyperalgesia.Neuropharmacology33,1103-1108(1994).
    [42] Febo, M.&Segarra, A.C. Cocaine alters GABA(B)-mediated G-protein activationin the ventral tegmental area of female rats: modulation by estrogen. Synapse54,30-6(2004).
    [43] Jayaram, P.&Steketee, J.D. Effects of repeated cocaine on medial prefrontalcortical GABAB receptor modulation of neurotransmission in the mesocorticolimbicdopamine system. J Neurochem90,839-47(2004).
    [44] Smith, M.A. et al. Effects of positive allosteric modulators of the GABAB receptoron cocaine self-administration in rats. Psychopharmacology (Berl)173,105-11(2004).
    [45] J Wise, J.C. Gastroesophageal reflux disease and baclofen: is there a light at the endof the tunnel? Curr Gastroenterol Rep.6,213-219(2004).
    [46] Dicpinigaitis, P.V.&Dobkin, J.B. Antitussive effect of the GABA-agonist baclofen.Chest111,996-9(1997).
    [47] Pehrson, R., Lehmann, A.&Andersson, K.E. Effects of gamma-aminobutyrate Breceptor modulation on normal micturition and oxyhemoglobin induced detrusoroveractivity in female rats. J Urol168,2700-5(2002).
    [48] Leaney, J.L.&Tinker, A. The role of members of the pertussis toxin-sensitivefamily of G proteins in coupling receptors to the activation of the G protein-gatedinwardly rectifying potassium channel. Proc Natl Acad Sci U S A97,5651-6(2000).
    [49] Odagaki, Y.&Koyama, T. Identification of galpha subtype(s) involved ingamma-aminobutyric acid(B) receptor-mediated high-affinity guanosinetriphosphatase activity in rat cerebral cortical membranes. Neurosci Lett297,137-41(2001).
    [50] Vanhoose, A.M., Emery, M., Jimenez, L.&Winder, D.G. ERK activation byG-protein-coupled receptors in mouse brain is receptor identity-specific. J BiolChem277,9049-53(2002).
    [51] Brady, A.E.&Limbird, L.E. G protein-coupled receptor interacting proteins:emerging roles in localization and signal transduction. Cell Signal14,297-309(2002).
    [52] Hall, R.A.&Lefkowitz, R.J. Regulation of G protein-coupled receptor signaling byscaffold proteins. Circ Res91,672-80(2002).
    [53] Craig C. MALBON, J.T.a.H.-y.W. AKAPs (A-kinase anchoring proteins) andmolecules that compose their G-protein-coupled receptor signalling complexes..Biochem. J.379,1-9(2004).
    [54] Maudsley, S. et al. The beta(2)-adrenergic receptor mediates extracellularsignal-regulated kinase activation via assembly of a multi-receptor complex with theepidermal growth factor receptor. J Biol Chem275,9572-80(2000).
    [55] Liu, G. et al. Assembly of a Ca2+-dependent BK channel signaling complex bybinding to beta2adrenergic receptor. EMBO J23,2196-205(2004).
    [56] Jo l Bockaert, P.M., Aline Dumuis and Laurent Fagni. The ‘magic tail’ of Gprotein-coupled receptors: An anchorage for functional protein networks.. FEBSLett546,65-72(2003).
    [57] Hirbec, H. et al. The PDZ proteins PICK1, GRIP, and syntenin bind multipleglutamate receptor subtypes. Analysis of PDZ binding motifs. J Biol Chem277,15221-4(2002).
    [58] Sala, C. et al. Regulation of dendritic spine morphology and synaptic function byShank and Homer. Neuron31,115-30(2001).
    [59] Mao, L. et al. The scaffold protein Homer1b/c links metabotropic glutamate receptor5to extracellular signal-regulated protein kinase cascades in neurons. J Neurosci25,2741-52(2005).
    [60] Salanova, M. et al. Homer proteins and InsP(3) receptors co-localise in thelongitudinal sarcoplasmic reticulum of skeletal muscle fibres. Cell Calcium32,193-200(2002).
    [61] Westhoff, J.H. et al. Vesl/Homer proteins regulate ryanodine receptor type2functionand intracellular calcium signaling. Cell Calcium34,261-9(2003).
    [62] Fagni, L., Worley, P.F.&Ango, F. Homer as both a scaffold and transductionmolecule. Sci STKE2002, re8(2002).
    [63] Bermak, J.C., Li, M., Bullock, C.&Zhou, Q.Y. Regulation of transport of thedopamine D1receptor by a new membrane-associated ER protein. Nat Cell Biol3,492-8(2001).
    [64] Prezeau, L., Richman, J.G., Edwards, S.W.&Limbird, L.E. The zeta isoform of14-3-3proteins interacts with the third intracellular loop of differentalpha2-adrenergic receptor subtypes. J Biol Chem274,13462-9(1999).
    [65] Couve, A. et al. Association of GABA(B) receptors and members of the14-3-3family of signaling proteins. Mol Cell Neurosci17,317-28(2001).
    [66] Roth, D., Birkenfeld, J.&Betz, H. Dominant-negative alleles of14-3-3proteinscause defects in actin organization and vesicle targeting in the yeast Saccharomycescerevisiae. FEBS Lett460,411-6(1999).
    [67] Benzing, T. et al.14-3-3interacts with regulator of G protein signaling proteins andmodulates their activity. J Biol Chem275,28167-72(2000).
    [68] Fu, H., Subramanian, R.R.&Masters, S.C.14-3-3proteins: structure, function, andregulation. Annu Rev Pharmacol Toxicol40,617-47(2000).
    [69] McPherson, R.A., Harding, A., Roy, S., Lane, A.&Hancock, J.F. Interactions ofc-Raf-1with phosphatidylserine and14-3-3. Oncogene18,3862-9(1999).
    [70] Wang, H., Zhang, L., Liddington, R.&Fu, H. Mutations in the hydrophobic surfaceof an amphipathic groove of14-3-3zeta disrupt its interaction with Raf-1kinase. JBiol Chem273,16297-304(1998).
    [71] Nehring, R.B. et al. The metabotropic GABAB receptor directly interacts with theactivating transcription factor4. J Biol Chem275,35185-91(2000).
    [72] White, J.H. et al. The GABAB receptor interacts directly with the relatedtranscription factors CREB2and ATFx. Proc Natl Acad Sci U S A97,13967-72(2000).
    [73] Vernon, E. et al. GABA(B) receptors couple directly to the transcription factor ATF4.Mol Cell Neurosci17,637-45(2001).
    [74] Liang, G.&Hai, T. Characterization of human activating transcription factor4, atranscriptional activator that interacts with multiple domains of cAMP-responsiveelement-binding protein (CREB)-binding protein. J Biol Chem272,24088-95(1997).
    [75] Karpinski, B.A., Morle, G.D., Huggenvik, J., Uhler, M.D.&Leiden, J.M. Molecularcloning of human CREB-2: an ATF/CREB transcription factor that can negativelyregulate transcription from the cAMP response element. Proc Natl Acad Sci U S A89,4820-4(1992).
    [76] Shimizu, M. et al. Activation of the rat cyclin A promoter by ATF2and Jun familymembers and its suppression by ATF4. Exp Cell Res239,93-103(1998).
    [77] Zhu, H. et al. Global analysis of protein activities using proteome chips. Science293,2101-5(2001).
    [78] Blagoev, B.&Pandey, A. Microarrays go live--new prospects for proteomics.Trends Biochem Sci26,639-41(2001).
    [79] Uetz, P. et al. A comprehensive analysis of protein-protein interactions inSaccharomyces cerevisiae. Nature403,623-7(2000).
    [80] Kozarich, J.W. Activity-based proteomics: enzyme chemistry redux. Curr OpinChem Biol7,78-83(2003).
    [81] Speers, A.E.&Cravatt, B.F. Chemical strategies for activity-based proteomics.Chembiochem5,41-7(2004).
    [82] Singh, A., Thornton, E.R.&Westheimer, F.H. The photolysis ofdiazoacetylchymotrypsin. J Biol Chem237,3006-8(1962).
    [83] Florence Kotzyba-Hibert, I.K., Maurice Goeldner. Recent Trends in PhotoaffinityLabeling. Angewandte Chemie34,1296-1312(1995).
    [84] Hatanaka, Y.&Sadakane, Y. Photoaffinity labeling in drug discovery anddevelopments: chemical gateway for entering proteomic frontier. Curr Top MedChem2,271-88(2002).
    [85] G. W. J. FLEET, R.R.P., J. R. KNOWLES Affinity Labelling of Antibodies with ArylNitrene as Reactive Group. Nature224,511-512(1969).
    [86] Carl R. Kemnitz, W.L.K., Weston Thatcher Borden. Why Are Nitrenes More Stablethan Carbenes? An Ab Initio Study. J Am Chem Soc120,3499–3503(1998).
    [87] Plat, M.S. Comparison of Phenylcarbene and Phenylnitrene. Acc Chem Res28,487–492(1995).
    [88] William L. Karney, W.T.B. Why Does o-Fluorine Substitution Raise the Barrier toRing Expansion of Phenylnitrene? J Am Chem Soc119,3347–3350(1997).
    [89] Kareem A. H. Chehade, H.P.S. Facile and Efficient Synthesis of4-Azidotetrafluoroaniline: A New Photoaffinity Reagent. J Org Chem65,4949–4953(2000).
    [90] Brown, R.L., Gerber, W.V.&Karpen, J.W. Specific labeling and permanentactivation of the retinal rod cGMP-activated channel by the photoaffinity analog8-p-azidophenacylthio-cGMP. Proc Natl Acad Sci U S A90,5369-73(1993).
    [91] Resek, J.F.&Ruoho, A.E. Photoaffinity labeling the beta-adrenergic receptor withan iodoazido derivative of norepinephrine. J Biol Chem263,14410-6(1988).
    [92] Brunner, J., Senn, H.&Richards, F.M.3-Trifluoromethyl-3-phenyldiazirine. A newcarbene generating group for photolabeling reagents. J Biol Chem255,3313-8(1980).
    [93] Yasumaru Hatanaka, E.Y., Hitoshi Nakayama, Yuichi Kanaoka. Chromogenicdiazirine: A new spectrophotometric approach for photoaffinity labeling. BioorgChem17,482-485(1889).
    [94] Nassal, M.4'-(1-Azi-2,2,2-trifluoroethyl)phenylalanine, a photolabilecarbene-generating analog of phenylalanine. J Am Chem Soc106,7540–7545(1984).
    [95] Dorman, G.&Prestwich, G.D. Benzophenone photophores in biochemistry.Biochemistry33,5661-73(1994).
    [96] Prestwich, G.D., Dorman, G., Elliott, J.T., Marecak, D.M.&Chaudhary, A.Benzophenone photoprobes for phosphoinositides, peptides and drugs. PhotochemPhotobiol65,222-34(1997).
    [97] PJ Webe, A.B.-S. Comparison of the photochemical behavior of four differentphotoactivatable probes. J Pept Res49,375-383(1997).
    [98] Wilchek, M.&Bayer, E.A. The avidin-biotin complex in bioanalytical applications.Anal Biochem171,1-32(1988).
    [99] Shah, B.H.&Catt, K.J. GPCR-mediated transactivation of RTKs in the CNS:mechanisms and consequences. Trends Neurosci27,48-53(2004).
    [100] Tu, H. et al. GABAB receptor activation protects neurons from apoptosis via IGF-1receptor transactivation. J Neurosci30,749-59(2010).
    [101] Luttrell, L.M. et al. Role of c-Src tyrosine kinase in G protein-coupled receptor-andGbetagamma subunit-mediated activation of mitogen-activated protein kinases. JBiol Chem271,19443-50(1996).
    [102] Shah, B.H., Farshori, M.P.&Catt, K.J. Neuropeptide-induced transactivation of aneuronal epidermal growth factor receptor is mediated bymetalloprotease-dependent formation of heparin-binding epidermal growth factor. JBiol Chem279,414-20(2004).
    [103] Pin, J.P. et al. Activation mechanism of the heterodimeric GABA(B) receptor.Biochem Pharmacol68,1565-72(2004).
    [104] White, J.H. et al. Heterodimerization is required for the formation of a functionalGABA(B) receptor. Nature396,679-82(1998).
    [105] Kuner, R. et al. Role of heteromer formation in GABAB receptor function. Science283,74-7(1999).
    [106] Galvez, T. et al. Mapping the agonist-binding site of GABAB type1subunit shedslight on the activation process of GABAB receptors. J Biol Chem275,41166-74(2000).
    [107] Tu, H. et al. Dominant role of GABAB2and Gbetagamma for GABABreceptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cell Signal19,1996-2002(2007).
    [108] Tikhonova, I.G. et al. Atomistic insights into rhodopsin activation from a dynamicmodel. J Am Chem Soc130,10141-9(2008).
    [109] Dupre, D.J., Le Gouill, C., Rola-Pleszczynski, M.&Stankova, J. Inverse agonistactivity of selected ligands of platelet-activating factor receptor. J Pharmacol ExpTher299,358-65(2001).
    [110] Yao, X.J. et al. The effect of ligand efficacy on the formation and stability of aGPCR-G protein complex. Proc Natl Acad Sci U S A106,9501-6(2009).
    [111] Gales, C. et al. Real-time monitoring of receptor and G-protein interactions in livingcells. Nat Methods2,177-84(2005).
    [112] Rozengurt, E. Mitogenic signaling pathways induced by G protein-coupled receptors.J Cell Physiol213,589-602(2007).
    [113] Zheng, D. et al. Targeting of the protein interaction site between FAK and IGF-1R.Biochem Biophys Res Commun388,301-5(2009).
    [114] Andersson, S., D'Arcy, P., Larsson, O.&Sehat, B. Focal adhesion kinase (FAK)activates and stabilizes IGF-1receptor. Biochem Biophys Res Commun387,36-41(2009).
    [115] Liu, W. et al. FAK and IGF-IR interact to provide survival signals in humanpancreatic adenocarcinoma cells. Carcinogenesis29,1096-107(2008).
    [116] Simon, G.M.&Cravatt, B.F. Activity-based proteomics of enzyme superfamilies:serine hydrolases as a case study. J Biol Chem285,11051-5(2010).
    [117] Blum, G. et al. Dynamic imaging of protease activity with fluorescently quenchedactivity-based probes. Nat Chem Biol1,203-9(2005).
    [118] Nomura, R., Suzuki, Y., Kakizuka, A.&Jingami, H. Direct detection of theinteraction between recombinant soluble extracellular regions in the heterodimericmetabotropic gamma-aminobutyric acid receptor. J Biol Chem283,4665-73(2008).
    [119] Domon, B.&Aebersold, R. Mass spectrometry and protein analysis. Science312,212-7(2006).
    [120] Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F.&Whitehouse, C.M. Electrosprayionization for mass spectrometry of large biomolecules. Science246,64-71(1989).
    [121] Chen, C.H. Review of a current role of mass spectrometry for proteome research.Anal Chim Acta624,16-36(2008).
    [122] Bantscheff, M., Schirle, M., Sweetman, G., Rick, J.&Kuster, B. Quantitative massspectrometry in proteomics: a critical review. Anal Bioanal Chem389,1017-31(2007).
    [123] Honda, A., Suzuki, Y.&Suzuki, K. Review of molecular modification techniquesfor improved detection of biomolecules by mass spectrometry. Anal Chim Acta623,1-10(2008).
    [124] Choi, M.Y. et al. Mass spectrometry based proteomic analysis of human stem cells: abrief review. Exp Mol Med39,690-5(2007).
    [125] Edmonds, C.G. et al. Application of electrospray ionization mass spectrometry andtandem mass spectrometry in combination with capillary electrophoresis forbiochemical investigations. Biochem Soc Trans19,943-7(1991).
    [126] Loo, J.A. Studying noncovalent protein complexes by electrospray ionization massspectrometry. Mass Spectrom Rev16,1-23(1997).
    [127] Veenstra, T.D. Electrospray ionization mass spectrometry in the study ofbiomolecular non-covalent interactions. Biophys Chem79,63-79(1999).
    [128] Loo, J.A.&Robinson, C.V. Review of the19th Asilomar Conference on MassSpectrometry: bimolecular interactions: identification and characterization of proteincomplexes. J Am Soc Mass Spectrom15,759-61(2004).
    [129] Zhang, S., Van Pelt, C.K.&Wilson, D.B. Quantitative determination of noncovalentbinding interactions using automated nanoelectrospray mass spectrometry. AnalChem75,3010-8(2003).
    [130] Nesatyy, V.J. Gas-phase binding of non-covalent protein complexes between bovinepancreatic trypsin inhibitor and its target enzymes studied by electrospray ionizationtandem mass spectrometry. J Mass Spectrom36,950-9(2001).
    [131] Pramanik, B.N., Bartner, P.L., Mirza, U.A., Liu, Y.H.&Ganguly, A.K. Electrosprayionization mass spectrometry for the study of non-covalent complexes: an emergingtechnology. J Mass Spectrom33,911-20(1998).
    [132] Anichina, J.&Bohme, D.K. Mass-spectrometric studies of the interactions ofselected metalloantibiotics and drugs with deprotonated hexadeoxynucleotideGCATGC. J Phys Chem B113,328-35(2009).
    [133] Feil, S.W., Koyanagi, G.K., Anichina, J.&Bohme, D.K. Chemical stability andreactivity of deprotonated oligonucleotides (DNA) in the gas phase: protonation andsolvation with hydrogen bromide. J Phys Chem B112,10375-81(2008).
    [134] De Vriendt, K. et al. Evaluation of automated nano-electrospray mass spectrometryin the determination of non-covalent protein-ligand complexes. Rapid CommunMass Spectrom18,3061-7(2004).
    [135] Bordini, E.&Hamdan, M. Investigation of some covalent and noncovalentcomplexes by matrix-assisted laser desorption/ionization time-of-flight andelectrospray mass spectrometry. Rapid Commun Mass Spectrom13,1143-51(1999).
    [136] Wendt, S. et al. Quantitative evaluation of noncovalent chorismate mutase-inhibitorbinding by ESI-MS. J Am Soc Mass Spectrom14,1470-6(2003).
    [137] de Brouwer, A.P. et al. Determination of the stability of the noncovalentphospholipid transfer protein-lipid complex by electrospray time-of-flight massspectrometry. Biochemistry41,8013-8(2002).
    [138] Wong, J.W., Maleknia, S.D.&Downard, K.M. Study of theribonuclease-S-protein-peptide complex using a radical probe and electrosprayionization mass spectrometry. Anal Chem75,1557-63(2003).
    [139] Evans, S.V.&Brayer, G.D. High-resolution study of the three-dimensional structureof horse heart metmyoglobin. J Mol Biol213,885-97(1990).
    [140] Bruneaux, M., Rousselot, M., Leize, E., Lallier, F.H.&Zal, F. The structuralanalysis of large noncovalent oxygen binding proteins by MALLS and ESI-MS: areview on annelid hexagonal bilayer hemoglobin and crustacean hemocyanin. CurrProtein Pept Sci9,150-80(2008).
    [141] Griffith, W.P.&Kaltashov, I.A. Protein conformational heterogeneity as a bindingcatalyst: ESI-MS study of hemoglobin H formation. Biochemistry46,2020-6(2007).
    [142] Knapp, J.E., Gibson, Q.H., Cushing, L.&Royer, W.E., Jr. Restricting theligand-linked heme movement in Scapharca dimeric hemoglobin reveals tightcoupling between distal and proximal contributions to cooperativity. Biochemistry40,14795-805(2001).
    [143] Scherlis, D.A.&Estrin, D.A. Hydrogen bonding and O(2) affinity of hemoglobins. JAm Chem Soc123,8436-7(2001).
    [144] Babu, K.R.&Douglas, D.J. Methanol-induced conformations of myoglobin at pH4.0. Biochemistry39,14702-10(2000).
    [145] Konermann, L., Rosell, F.I., Mauk, A.G.&Douglas, D.J. Acid-induced denaturationof myoglobin studied by time-resolved electrospray ionization mass spectrometry.Biochemistry36,6448-54(1997).
    [146] Ostermann, A., Waschipky, R., Parak, F.G.&Nienhaus, G.U. Ligand binding andconformational motions in myoglobin. Nature404,205-8(2000).
    [147] Bourgeois, D. et al. Complex landscape of protein structural dynamics unveiled bynanosecond Laue crystallography. Proc Natl Acad Sci U S A100,8704-9(2003).
    [148] Ansari, A., Jones, C.M., Henry, E.R., Hofrichter, J.&Eaton, W.A. Conformationalrelaxation and ligand binding in myoglobin. Biochemistry33,5128-45(1994).
    [149] Gao, Y. et al. Pathway of information transmission from heme to protein upon ligandbinding/dissociation in myoglobin revealed by UV resonance raman spectroscopy. JBiol Chem281,24637-46(2006).
    [150] Blomberg, L.M., Blomberg, M.R.&Siegbahn, P.E. A theoretical study on thebinding of O(2), NO and CO to heme proteins. J Inorg Biochem99,949-58(2005).
    [151] Nienhaus, K.&Nienhaus, G.U. Influence of distal residue B10on CO dynamics inmyoglobin and neuroglobin. J Biol Phys33,357-70(2007).
    [152] Chait, B.T.&Kent, S.B. Weighing naked proteins: practical, high-accuracy massmeasurement of peptides and proteins. Science257,1885-94(1992).
    [153] Grandori, R., Matecko, I.&Muller, N. Uncoupled analysis of secondary and tertiaryprotein structure by circular dichroism and electrospray ionization massspectrometry. J Mass Spectrom37,191-6(2002).
    [154] Konermann, L.&Douglas, D.J. Equilibrium unfolding of proteins monitored byelectrospray ionization mass spectrometry: distinguishing two-state from multi-statetransitions. Rapid Commun Mass Spectrom12,435-42(1998).
    [155] Mirza, U.A., Cohen, S.L.&Chait, B.T. Heat-induced conformational changes inproteins studied by electrospray ionization mass spectrometry. Anal Chem65,1-6(1993).
    [156] Katta, V.&Chait, B.T. Conformational changes in proteins probed byhydrogen-exchange electrospray-ionization mass spectrometry. Rapid CommunMass Spectrom5,214-7(1991).
    [157] Loo, J.A., Loo, R.R., Udseth, H.R., Edmonds, C.G.&Smith, R.D. Solvent-inducedconformational changes of polypeptides probed by electrospray-ionization massspectrometry. Rapid Commun Mass Spectrom5,101-5(1991).
    [158] Hughson, F.M., Wright, P.E.&Baldwin, R.L. Structural characterization of a partlyfolded apomyoglobin intermediate. Science249,1544-8(1990).
    [159] Gekko, K., Ohmae, E., Kameyama, K.&Takagi, T. Acetonitrile-protein interactions:amino acid solubility and preferential solvation. Biochim Biophys Acta1387,195-205(1998).
    [160] Zhou, S., Prebyl, B.S.&Cook, K.D. Profiling pH changes in the electrospray plume.Anal Chem74,4885-8(2002).
    [161] Wortmann, A. et al. Shrinking droplets in electrospray ionization and their influenceon chemical equilibria. J Am Soc Mass Spectrom18,385-93(2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700