用户名: 密码: 验证码:
窑尾预分解系统冷模流场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型干法水泥生产技术是目前水泥生产的先进技术。新型干法水泥生产
    系统的关键设备旋风预热器及分解炉系统的性能优劣直接影响到系统能耗、
    环保排放以及整个系统性能。由于系统内多相流场非常复杂,燃料燃烧和生
    料分解这两个反应是悬浮于气流中进行的,各过程相互制约,使得旋风预热
    器及分解炉系统的研究开发工作具有很大的难度。传统工程开发研究主要采用
    试验方法,依靠试验取得的数据和经验公式以及试验中所发现的问题改进设计。
    然而,由于试验方法和试验测试会受到各种客观条件的限制,很难充分反映预
    热器及分解炉这种热工过程与工艺过程以及结构参数、工艺参数、物理参数等
    相互耦合和相互影响的复杂系统的各种性能。
     以计算流体力学(Computational Fluid Dynamics,简写CFD)为理论基础
    的数值模拟技术能对流动、传热、燃烧、化学反应、多相流等问题进行高精度
    数值预测,因此在工程中得到越来越多的推广和应用。数值模拟可以得到整个
    流场中各变量的时空分布,全面深入地揭示流体的内部结构,不存在因试验
    测试手段的限制而检测不到的“盲区”、仿真模拟能力强。因此,以流场湍流
    数值模拟为主研究预热器与分解炉内流体的流动规律,进而优化预热器与分
    解炉的结构,提高其各项性能,不仅可以节省大量的开发费用,而且可以大
    大缩短研发周期,具有重要的理论意义和工程应用价值。
     本文针对2500t/d五级旋风预热器及分解炉系统,采用冷模试验与数值模
    拟相结合的方法,建立了窑尾预热器与分解炉的计算模型及其相关边界条件,
    数值模拟结果和冷模试验结果具有较好的一致性,为研究开发和设计新型高性
    能的预热器及分解炉系统提供了理论方法。本文主要研究成果如下:
     (1)采用“动力相似”的原则首次成功地完成了2500t/d五级旋风预热器及
    分解炉系统的冷模系统设计、制造、试验以及相关的数据处理等。通过试验研
    究,提出了对多米尼加2500t/d五级旋风预热器及分解炉系统的改进意见。
     (2)根据工程及冷模测试提供的数据,通过计算分析,确定预热器及分解炉
    系统的流体流动属于不可压缩湍流范畴。同时,根据预热器及分解炉系统的具
    体结构,采用混合网格并按照不可压缩湍流流动的问题对系统和单体流场建立
Dry-process precalciner kiln technology is advanced in conctret manufacture at present. The performance of cyclone preheater and precalciner in the precalciner kiln system has great effect on the energy consumption and the discharge of pollutants of the system. The multi-phase flow in the system is complex as well as the reactions of fuel combustion and raw materials decomposing, which are influenced by each other, are taken place in suspension of the flow. For these reasons, it is difficult to research and develop the cyclone preheater and precalciner system. In the traditional way, the improvement of system design was depended on the data from experimentation and empirical formula. But the experimentation method and test which may be limited by different conditions can not sufficiently reflect the pyrology and technical process in the precalciner system as well as the inter-coupling and interaction among system's structure parameters, technical parameters and physical parameters.The numerical simulation based on the computational fluid dynamics (CFD) is applied widely in the engineering field due to its accurate numerical prediction for the flow, heat exchange, chemistry reaction and multiphase flow. In the simulation, the spatio-temporal change of parameters in the whole system can be computerized. In this way, it can reflect the whole internal flow field structure without any "blind spot" which can not be tested by the experiment because of the limits of test methods. So the numerical simulation on the turbulence flow is adopted to investigate the flow character in the preheater and precalciner to optimize system structure and improve system performance. This method can save the R&D cost and time so that it is significant in the engineering application.This dissertation integrates the cold model test with numerical simulation of 2500t/d five-stage preheater and precalciner system to establish the numerical model and relative boundary conditions. The simulation result is accordant to the cold modle test.The research conclusions are:(1) The "dynamic similarity" rule is for the first time to be applied successfully in the design, manufacturing, test and data disposal for the 2500t/d five-stage cyclone preheater and precalciner system cold model test. Improvement suggestions for the system are proposed in this paper.(2) According to the test data from cold model test, the flow in the preheater and
    precalciner is belong to incompressible turbulent flow. In terms of the structure of preheater and precalciner, the mix mesh is adopted to establish the computational model for the flow in the whole system. In this method, the boundary condition and relative solution algorithm of incompressible turbulent flow is determined.(3) By analysis, we get the conclusion that "spiral up flow in the boundary layer and spiral down flow in the center" is the typical flow field structure of cyclone. The flow field structure of outlet pipe of cyclone is "high-speed spiral up flow in the boundary layer and low-speed up small local eddy in the center". The high-speed spiral up flow in the outlet pipe is the main reason for pressure-drop loss. The spiral up flow in the center, especially the flow in the cone part of cyclone is the main cause to affect the preheater efficiency.(4) The pressure-drop reduction effect of pressure-drop board in the preheater is limited by the following two aspects: the increase pressure drop (positive value) caused by the high-speed spiral flow overcoming the pressure-drop reduction board; the decrease pressure drop (negative value) caused by the commutated flow passing through the residual part of outlet pipe of cyclone as well as the other cyclones along the flow direction. The sum of these two values is the real pressure-drop reduction effect.(5) It is the first time that the multiphase flow theory is applied in flow field of precalciner. According to the structure and working parameter of 2500t/d RSP precalciner, the computerized parameters of flow field distribution and particle movement not only reflect the internal flow field of precalciner but also help to improve the precalciner performance.(6) According to the numerical simulation of multi-phase flow in the precalciner, there are several problems in this precalciner: the direction of tertiary air is not appropriate; the velocity of secondary air is too high; the fuel doesn't mix well with the materials in the combustion chamber; the residual time in the combustion chamber is fairly short and the detached high-speed layer and low-speed layer in the ascending flue made against material decomposing. Based on these problems, this dissertation puts forwards corresponding measures to optimize the precalciner structure.
引文
[1] 刘立生.反求工程技术.北京:机械工业出版社,1992.
    [2] 胡道和,徐德龙,蔡玉良.气固过程工程学及其在水泥工业中的应用.武汉:武汉理工大学出版社,2003.
    [3] 徐德龙.水泥悬浮预热预分解技术理论与实践.北京:科学技术文献出版社,2002
    [4] 吴君棋,陆继东,狄东仁,胡芝娟,黄来,罗海岩.旋喷结合分解炉的流场模拟.中国水泥,2002(8).
    [5] 叶旭初,胡道和.CFD技术与工程应用.中国水泥,2003(2).
    [6] 胡烁元,时铭显.涡壳式旋风分离器全空间三维时均匀流场的结构.化工学报,2003(4).
    [7] 王业明,陆林广,谭建荣.泵站肘形流道流场可视化与仿真系统的研究.农业机械学,2002(6).
    [8] 高红,傅新,杨华勇等.球阀阀口气穴流场的数值模拟与试验研究.中国机械工程,2003(4).
    [9] 刘君,徐春光,郭正.多级火箭级间分离流动特性的数值模拟.推进技术,2002(8).
    [10] 郭正,刘君,李晓斌,瞿章华.高超声速验证飞行器助推分离段流场数值研究.推进技术,2002(6).
    [11] 冯喜平,何洪庆,葛李虎,预燃室三维湍流和燃烧过程的数值模拟(Ⅰ)计算模型和方法.推进技术,2002(4).
    [12] 涂尚荣,张杨军,谢今明,杨胜,郑孟伟.汽车外部流场仿真的复杂网格系统生成.汽车工程,2002(5).
    [13] A. Gil, C. Corte's, L.M. Romeo, J. Velilla. Center of Research for Power Plant Efficiency, University ofZaragoza, Mary'a de Luna, 3, 50015 Zaragoza, Spain. Gas-particle flow inside cyclone diplegs with pneumatic extraction, Powder Technology 128 (2002) 78-91.
    [14] Hideto Yoshida. Three-dimensional simulation of air cyclone and particle separation by a revised-type cyclone. Colloids and Surface A: Physicochemical and Engineering Aspects 109 (1996) 1-12.
    [15] Li Xiaodong, Yan Jianhua, Cao Yuchun, Ni Mingjiang, Cen Kefa. Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator. Chemical Engineering Journal 95 (2003) 235-240.
    [16] A.Avci and I.Karagoz. A Mathematical model for the determination of a cyclone performance. Heat Mass Transfer, Vol.27 NO.2 (2000) 263-272.
    [17] Fabio Luys Fassani, Leonardo Goldstein Jr. A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency. Powder Technology 107 (2000) 60-455.
    [18] A.J. Hoekstra, J.J. Derksen, H.E.A. An experimental and numerical study of turbulent swirling flow in gas cyclones. Chemical Engineering Science 54 (1999) 2055-2065.
    [19] W.D.Griffiths and F.Boysan. Computational Fluid Dynamics(CFD) and empirical modeling of a number of cyclone samplers. J.Aerosol Sci., Vol.27 No.2 (1996) 281-304.
    [20] A.C.Hoffmann. An experimental investigation elucidating the nature of the effect of solid loading on cyclone performance. Filtr, 28 (1991) 188-193.
    [21] M.E.Fayed, L.Otten. Handbook of power science and technology. Van Nostrand Reinhold Co., New York.
    [22] K.Tusa, J.C.Chen. performance of a cyclone under high solid loadings. AICHE Symp.Ser.88 (289) (1992) 130-138.
    [23] W.Batel. Dust Extraction: Technology Principle, Methods, Measurement Technique. Stonehouse Technicopy, England, 1976.
    [24] M.L.G.Bloor, D.B.Iagham. Theoretical aspects of hydrocyclone fllow. Elsevier Amsterdam, 1983.
    [25] R.L. Peskin. Turbulent fluid-particle interaction, in: G. Hetsronil (Ed.) Handbook of Multiphase System. Hemisphere Publishing Corporation, Washington DC, 1982.
    [26] K.D. Squires, J.K. Eaton. Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A2 (7) (1990) 1191-1230.
    [27] Boysan, E, Ayers, W. H. and Swithenbank, J.. A. Trans. IchemE, 60 (1982) 222-230.
    [28] Pricleous, K. A.. Appl. Math. Modeling, 11 (1987) 242-255.
    [29] Duggins, R. K. and Frith, P. C. W.. 1987, Filtration & Separation, 394-397.
    [30] Zhou, L. X.; Soo, S.L., Powder Technology, 63 (1990) 45-63.
    [31] Dyakowski, T.; Williams, R. A.. Chem. Eng. Sci., 48 (1993) 1143-1152.
    [32] Madsen, H.J.; Thorstensen, J. H.; Salimi, P.; Hassing, N.H. and Rusaas, J.. Prediction of the Performance of Gas Cyclones. 2nd CFDS International User Conference (1994) 211-227.
    [33] Meier, H.E and Moil, M.. Modeling and Simulation of the Turbulent Gas Flow in a Cyclone Separator. Actas 3er CAIP, Argentiona (1996) 193-198
    [34] Meier, H.E and Mori, M.. Computational Fluid Dynamic Techniques for Gas Flow in Cyclone: A Two Dimensional Approach. 4th CFX International User Conference (1997) Chicago-EUA.
    [35] 陈思维,豆海建,彭建新等.2500t/d五级旋风预热器冷漠试验研究.中国水泥,2004(2)34-37.
    [36] 周光垌,严宗毅,许世雄等.流体力学。北京:高等教育出版社,2000.
    [37] 梁在潮.工程湍流.武汉:华中理工大学出版社,1999.
    [38] 岑可法,樊建人.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1999.
    [39] 张涵信,沈孟育.计算流体力学——差分方法的原理和应用.北京:国防工业出版社,2003.
    [40] 王承尧,王正华,梁剑寒.斜坡增强混合的数值研究.推进技术,1999(2).
    [41] 何洪庆,严红.喷管二维跨声速两相湍流流场的数值模拟.推进技术,1999(2).
    [42] 王新月,张榛,刘陵等. 超声速燃烧室流场的数值模拟研究,推进技术,1999(2).
    [43] 刘兴洲,施发树.一种应用于不规则平面域的网格生成技术.推进技术,1999(1).
    [44] 左光,姜贵庆.喷管内缝隙流场与热环境数值模拟研究.推进技术,1999(1).
    [45] 冯国泰,顾发华,王松涛等.某型两级涡轮变比热容三维定常流场的数值模拟.推进技术,1999(1).
    [46] 德永宏,张君安.贴近墙面移动圆柱体周围的不可压缩流体的数值仿真.JOURNAL OF XI'AN INSTITUTE OF TECHNOLOGY,1999(4).
    [47] 张兆顺,崔桂香.《流体力学》.北京:清华大学出版社,1999.
    [48] W. Peng, A.C. Hoffmann, P.J.A.J. Boot. Flow pattern in reverse-flow centrifugal separators. Powder Technology 127 (2002) 212-222
    [49] 张力,冉景煜,辛明道等.气固两相旋流中气粒两相流场特性数值模拟.热科学与技术,2003(3).
    [50] 徐景洪.旋风分离器流场与浓度场分布.大庆石油学院学报,2002(9).
    [51] 赵蔚琳,李兆峰.F L S分解炉二维流场的数值模拟计算.《工业炉》,2002(5).
    [52] 朱娜.管内流场的计算机仿真系统.计算机仿真,2002(5).
    [53] 严超宇,吴小林,时铭显.旋风分离器非稳态流场的简化分析.流体机械,2002(3).
    [54] 孙文胜,林明.基于神经网络模型的舰面流场仿真算法.中国工程科学,2003(5).
    [55] 高红,傅新,杨华勇等.球阀阀口气穴流场的模拟与可视化研究.农业机械学报第,2003(5).
    [56] 陈军,武晓松,丘光申等. 固冲发动机三维内流场数值计算与应用.推进技术,2000(2).
    [57] Yifang Zhu and K. W. Lee. EXPERIMENTAL STUDY ON SMALL CYCLONES OPERATING AT HIGH FLOWRATES. J. Aerosol Sci. (1999) 1303-1315.
    [58] 赵文涛 王正华 杨晓东.液体发动机燃烧室流场模拟的并行SIMPLE算法.推进技术.1999(12).
    [59] 张力,冉景煜,辛明道,潘良明,伍成波.气固两相旋流中气粒两相流场特性数值模拟.热科学与技术,2003(3).
    [60] 朱娜. 管内流场的计算机仿真系统. 计算机仿真,2002(5).
    [61] 李人宪,杨忠超.流场有限元分析的并行计算.应用力学学报,2002(6).
    [62] 陆传华,陈宝延,赵英等.涡轮喷气发动机抗畸变流场模拟试验研究.推进技术,2001(12).
    [63] 衣同训,姜勇,索沂生.两种多重网格法求解径流叶轮机械可压流动.推进技术,2000(12).
    [64] 蒋晓华.反应堆压力容器下封头三维流场计算.核动力工程,2002(5).
    [65] 邢华伟,邓先和,张亚军.建筑物周围流场格子Boltzmnn仿真.力学与实践,Vol.24.2002.
    [66] Giulio Solero, Aldo Coghe. Experimental fluid dynamic characterization of a cyclone chamber. Experimental Thermal and Fluid Science 27 (2002) 87-96.
    [67] 刘友宏,李立国.有中心锥圆排波瓣喷管引射器内流场模拟.推进技术,2002(4).
    [68] 张涵信,沈孟育.计算流体力学——差分方法的原理和应用.北京:国防工业出版社,2003:419-423.
    [69] 李博,梁德旺.混压式进气道与弹体一体化流场数值模拟.推进技术,2002(8).
    [70] Tomomi Uchiyama. ALE finite element method for gas-liquid two-phase flow including moving boundary based on an incompressible two-fluid model. Nuclear Engineering and Design 205 (2001) 69-82.
    [71] Farhad A.Jaberi, Paul J.Colucci. Large eddy simulation of heat and mass transport in turbulent flows. Part 2: Scalar field. International Journal of Heat and Mass Transfer 46 (2003) 1827-1840.
    [72] A.Molinas. FINITE ELEMENT SURFACE MODEL FOR FLOW AROUND VERTICAL WALL ABUTMENTS. Journal of Fluids and Structures 14 (2000) 711-733.
    [73] 黄琳,刘君.气—固两相自由射流的粒子仿真方法.国防科技大学学报,2002(3).
    [74] 何枫,姚朝晖,谢峻石. 三维亚声速冲击射流流场的数值模拟.推进技术,2002(2).
    [75] H.F.Meier and M.Mori. Gas-solid flow in cyclone: The Eulerian-Eulerian approach. Computer Chem. Engng Vol.22, Suppl., S641,1998.
    [76] Giulio Solero, Aldo Coghe. Experimental fluid dynamic characterization of a cyclone chamber. Experimental Thermal and Fluid Science 27 (2002) 87-96.
    [77] 曾卓雄,姜培正.可压稀相两相流场的数值模拟,推进技术.2002(4).
    [78] Adrin Gharakhani and Ahrned F. Ghoniem. Three-Dimensional Vortex Simulation of Time Dependent Incompressible Internal Viscous Flows. JOURNAL OF COMPUTATIONAL PHYSICS 134 (1997) 75-95.
    [79] 高旭东,姬晓辉,武晓松. 用TVD格式数值分析低阻远程弹丸绕流场.兵工学报,Vol.23 No.2.May2002.
    [80] 张靖周,吉洪湖.旋转盘腔紊流流动的数值研究.推进技术,2002(12).
    [81] 戴梧叶,刘宇,马彬,程显辰,“瓦”状塞式喷管的数值模拟与试验.2002(8)..
    [82] 陈材侃.《计算流体力学》.重庆:重庆出版社,1992.
    [83] Scott M. Murman, Yehia M. Rizk, Lewis B. Schi. Coupled numerical simulation of the extemal and engine inlet flows for the F-18 at large incidence. Aircraft Design 3 (2000) 65-77.
    [84] 司徒明,陆惠萍,王春.双燃式冲压发动机中超燃燃烧室冷态流场数值模拟.推进技术,1999(5).
    [85] 蔡体敏,何国强,李江.固体推进剂裂纹对流燃烧流场的数值模拟.推进技术,1999(3).
    [86] 王承尧,李桦.三维高超声速喷流干扰流场的数值模拟.推进技术,1999(2).
    [87] 王承尧,王正华,梁剑寒.斜坡增强混合的数值研究.推进技术,1999(2).
    [88] 何洪庆,严红.喷管二维跨声速两相湍流流场的数值模拟.推进技术,1999(2).
    [89] 王新月,张榛,刘陵等. 超声速燃烧室流场的数值模拟研究.推进技术,1999(2).
    [90] 刘兴洲,施发树.一种应用于不规则平面域的网格生成技术.推进技术,1999(1).
    [91] 左光,姜贵庆.喷管内缝隙流场与热环境数值模拟研究.推进技术,1999(1).
    [92] 冯国泰,顾发华,王松涛等.某型两级涡轮变比热容三维定常流场的数值模拟.推进技术,1999(1).
    [93] C.H. Kim, Jin W. Lee. A new collection efficiency model for small cyclones considering the boundary-layer effect. Aerosol Science 32 (2001) 251-269.
    [94] 谢金法,徐莹,魏道付等.汽车“风洞”计算机图形仿真系统中的可视化方法研究.中国机械工程,1999(3).
    [95] Rongbiao Xiang, S.H. Park, K.W. Lee. Effects of cone dimension on cyclone performance. Aerosol Science 32 (2001) 549-561.
    [96] Atakan Avci, Irfan Karagoz. Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. Aerosol Science 34 (2003) 937-955.
    [97] Tomasz Chmielniak,.Andrzej Bryczkowski. Method of calculation of new cyclone-type separator with swirling baffle and bottom take off of clean gas—part Ⅰ: theoretical approach. Chemical Engineering and Processing 441 (20000) 441-448.
    [98] L. Ma, H D. B. Ingham and X. Wen. NUMERICAL MODELLING OF THE FLUID AND PARTICLE PENETRATION THROUGH SMALL SAMPLING CYCLONES. J. Aerosol Sci. (2000) 1097-1119.
    [99] L. MA, D. B. INGHAM and X. WEN. Numerical Predictions of the Performance of Small Sampling Cyclones. J. Aerosol Sci. (1998) 294-330.
    [100] E.S. Rosa, F.A. Franca, G.S. Ribeiro. The cyclone gas-liquid separator: operation and mechanistic modeling. Journal of Petroleum Science and Engineering 32 (2001) 87-101.
    [101] A. Avci and I. Karagoz. THEORETICAL INVESTIGATION OF PRESSURE LOSSES IN CYCLONE SEPARATORS. Int. Com.m. Heat Mm Tmmfe& (2001) 107-117.
    [102] S.J.DUNNETT. A numerical study of the flow field in the vicinity ofa buffbody with aspiration oriented to the flow. Atmospheric Environment 22(1997)3745-3752.
    [103] John Abrahamson, Roger Jones, Andy Lau, Simon Reveley. Influence of entry duct bends on the performance of return-flow cyclone dust collectors. Powder Technology 123 (2002) 126-137.
    [104] Madhumita B.Ray, Pouwel E.Luning, Alex C.Hoffmann, Adri Plomp, Maurice I.L.Beumer. Improving the removal efficiency of industrial-scal cyclones for particles smaller than five micrometer. Int. J.Miner. Process. 53 (1998) 39-47.
    [105] O.Molerus, M.Gluckler. Development of a cyclone seprator with new design. Powder Technology 86(1996)37-40.
    [106] Antonia Gil, Luis M. Romeo, Cristobal Cortes CIRCE. Cold flow model of a PFBC cyclone. Powder Technology 117 (2001) 207-220.
    [107] M.K. Mohanty, A. Palit, B. Dube. A comparative evaluation of new .ne particle size separation technologies. Minerals Engineering 15 (2002) 727 - 736.
    [108] X.Dong Chen, John J.J.chen. On gas recycling as a means of improving the operation of cyclones. Chemical Engineering and Processing 34 (1995) 379-383.
    [109] S. HUB, B. FIRTH, A. VINCE and G. LEES. PREDICTION OF DENSE MEDIUM CYCLONE PERFORMANCE FROM LARGE SIZE DENSITY TRACER TEST. Minerals Engineering, 2001 (7) 741-751.
    [110] Zhong-Ming Zhao, Robert Pfeffer. A simplified model to predict the total efficiency of gravity settlers and cyclones. Powder Technology 90 (1997) 273-280.
    [111] Bangxian Wu, Shi Liu, Haigang Wang. A study on advanced concept for .ne particle separation. Experimental Thermal and Fluid Science 26 (2002) 723 - 730.
    [112] Quanhua Sun and Iain D. Boyd. A Direct Simulation Method for Subsonic, Microscale Gas Flows. Journal of Computational Physics 179 (2002) 400-425.
    [113] Timothy F. Miller. A high-pressure, continuous-operation cyclone separator using a water-generated flow restriction. Powder Technology 122 (2002) 61-68.
    [114] Y.C. Guo, C.K. Chan. A multi-fluid model for simulating turbulent gas-particle flow and pulverized coal combustion. Fuel 79 (2000) 1467-1476.
    [115] Wan-Ho Jeon, Duck-Joo Lee. A numerical study on the flow and sound fields of centrifugal impeller located near a wedge. Journal of Sound and Vibration 266 (2003) 785 - 804.
    [116] R.Han and O.R.Moss. FLOW VISUALIZATION INSIDE A WATER MODEL VIRTUAL IMPACTOR. J.Aerosol Sci. 1997 (6) 1005-1014.
    [117] S.C. Xue, N. Phan-Thien, R.I. Tanner. Fully three-dimensional, time-dependent numerical simulations of Newtonian and viscoelastic swirling flows in a confined cylinder Part I. Method and steady flows. J. Non-Newtonian Fluid Mech. 87 (1999) 337-367.
    [118] Biswajit Basu, Sven Enger, Michael Breuer, Franz Durst. Three-dimensional simulation of flow and thermal field in a Czochralski melt using a block-structured finite-volume method. Journal of Crystal Growth 219 (2000) 123-143.
    [119] Joseph P. Morris, Patrick J. Fox, and Yi Zhu. Modeling Low Reynolds Number Incompressible Flows Using SPH. JOURNAL OF COMPUT ATIONAL PHYSICS 136 (1997) 214-226.
    [120] H.L.ZHANG and N.W.KO. Numerical Analysis of Incompressible Flow Over Smooth and Grooved Cylinders. Computer and Fluid, 1996 (3)263-281.
    [121] E. M. SAIKI AND S. BIRINGEN. Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method. JOURNAL OF COMPUTATIONAL PHYSICS 123 (1996)450-465.
    [122] D. Lee, J.Y. Chen. Numerical simulation of flow fields in a tube with two branches. Journal of Biomechanics 33 (2000) 1305-1312.
    [123] D. Lee, J.M. Su, H.Y. Liang. A numerical simulation of steady flow fields in a bypass tube. Journal of Biomechanics 34 (2001) 1407 - 1416.
    [124] D. Lee, J.Y. Chen. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches. Journal of Biomechanics 35 (2002) 1115-1122.
    [125] RALPH M.FORD. Representing and Visualizing Fluid Flow Images and Velocimetry Data by Nonlinear Dynamical systems. GRAPHICAL MODEL AND IMAGE PROCESSING, 1995 (11)462-482.
    [126] L.X. Zhou, Y. Li, T. Chen, Y. Xu. Studies on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-DoppIer particle anemometerO. Powder Technology 112 (2000) 79-86.
    [127] Richard T. Lahey, Jr, Donald A. Drew. The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid model. Nuclear Engineering and Design 204 (2001) 29-44.
    [128] S.-C.Xue, N.Phan-Thien, R.I.Tanner. Three Dimensional Numerical Simulations of Viscoelastic Flows Through Planar Contractions. J.Non-Newtonian Fluid Mech. 74(1998) 195-245.
    [129] W.Frank. Three-dimensional numerical Calculation of the turbulent flow around a sharp-edged body by means of large-eddy-simulation. Journal of Wind Engineering and Industrial Aerodynamics 65(1996) 415-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700