用户名: 密码: 验证码:
航空燃气轮机涡轮级间燃烧技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空燃气轮机性能的提高,需要在提高总增压比的同时,进一步提高涡轮进口温度,但现有技术条件下,压气机总增压比越高,其喘振裕度越小,而涡轮进口总温也受到耐热材料的限制,这都限制着航空发动机技术的发展。在高低压涡轮涡轮之间设置级间燃烧室,通过再热循环提高发动机总体性能被认为是现有技术条件下,增大发动机单位推力的一个有效手段。
     在总结当今航空发动机涡轮级间燃烧技术的基础上,分析了现有研究中存在的问题,采用级间燃烧室后的发动机总体性能计算上存在两种不同的观点,一种观点认为耗油率近似不变即可显著提高发动机单位推力,一种认为单位推力的提高需要相近增量的耗油率,而涡轮级间燃烧室试验中出口温度场也难以匹配涡轮耐热需求,是现有研究中遇到的两个主要问题。
     针对总体性能计算结果的观点分歧问题,本文在非理想循环下编制了带级间燃烧室的航空发动机总体性能计算程序,对比了部分理想循环与非理想循环的总体性能差异,采用加力比、耗油率比等指标分析了级间燃烧室的适用范围,研究了高温升燃烧室发动机与带级间燃烧室发动机的各自优、缺点,指出了主燃烧室与级间燃烧室的热量分配方法,最后进行了带级间燃烧室发动机的优化计算,通过对F100-PW229的计算显示,优化后的发动机耗油率增长7%,单位推力增加30%。
     对某型发动机的过渡段设置级间燃烧室的方案进行了数值模拟研究,研究了过渡段外围周向设置凹腔、叶片径向开凹腔的方案,并在上述方案的基础上在周向凹腔引入冷却气进行了研究,还研究了采用环向的v型稳定器燃烧方案以及多个径向稳定器方案,径向稳定器方案中又研究了单点喷射燃料和多点喷射燃料,最终选取采用多个径向稳定器、在叶片尾缘多点喷射燃料作为下一步试验的方案。
     为开展涡轮流道内的液体燃料喷射特性试验,采用Fraunhofer衍射技术和CCD相机分别测量了涡轮导叶流道内的液滴雾化细度和射流轨迹,试验来流速度56m/s-91m/s,喷嘴压差50kPa~400kPa,在叶片前缘喷射燃料,分别向吸力面、压力面侧喷和流道中心逆喷,研究发现:涡轮叶片流道内液滴轨迹同时受液气动量比、叶片折转角度、稠度的影响,在向吸力面侧喷时,液滴距离叶背太近,容易灼伤叶背,在向压力面侧喷时,液滴会打到叶片尾缘上,容易形成积碳,在中心逆喷时,液滴轨迹距离叶片表面相对较远。涡轮流道内液滴横向喷射的雾化粒径可以满足燃烧室要求。
     在之前研究的基础上,采用径向稳定器进行了燃烧实验,考察了点、熄火特性、燃烧效率和出口温度场,喷油杆结构分为单孔喷射和三孔喷射,V型稳定器尾缘宽度分别为9mm和13mm,共在0.2kg/s、0.25kg/s、0.3kg/s、0.35kg/s/、0.4kg/s五个来流空气流量下进行了试验,来流温度为573K,试验结果显示:采用三孔喷油杆顺喷时的点熄火特性最好,稳定器尾缘宽度13mm,斜侧喷时的燃烧效率最高,温度场最均匀。
     下一步可在过渡段设置全径向稳定器,进行真实工况的环形叶栅燃烧试验。
In order to improve performance of aviation gas turbine, the turbine inlet temperature must be increased while enhancing the compressor over pressure ratio, but under modern technical conditions, the compressor over pressure ratio was confined by its surge margin, and turbine materials limited the turbine inlet temperature, these above conditions limited the development of aero engine technology. Adding a inter-stage turbine burner between high pressure turbine and low pressure turbine was seemed a effective method to increase specific thrust.
     Summarizing today's gas turbine engine inter-stage turbine burner technology, analyzing the existing problem in nowadays research, results show that there are two different views on the engine overall performance calculations, one view is that inter-stage turbine burner significantly enhancing specific thrust while increasing little thrust specific fuel consumption, the other view is that specific thrust increasing need similar incremental fuel consumption, and non-uniform outlet temperature distribution of combustor is also an important problem in the experiment.
     Compiling a program to resolve the opinions differences of engine overall performance, comparing the different performances between partially ideal cycle and non-ideal cycle, using index such as specific thrust increase ratio and fuel consumption increase ratio, to analyze flight target of inter-stage turbine burner engine, researching the advantages and disadvantages of high temperature rise combustor engine and inter-stage turbine burner engine, point out heat distribution methods of the main burner and secondary combustor. Finally the inter-stage turbine burner engine overall performance was optimized calculation, specific thrust increase30%while fuel consumption increase7%under F100-PW229parameters.
     Four cases of adding a inter-stage turbine burner in the engine inter transition duct were investigated by numerical simulation, firstly, the case of setting up a circumferential cavity outside the inter transition duct and a radial cavity on the vane was studied, secondly, based on the first case, cooling gas injecting into circumferential cavity was calculated, thirdly, a case of installing a circumferential V-gutter flame stabilizer in the duct was researched, fourthly, a case of setting up several radical V-gutter flame stabilizer while injecting fuel from a single injector and three injectors was studied, finally, the forth case with three injectors was selected as the experimental case in research program.
     Liquid fuel spray characteristics in blade passage of low pressure turbine was tested, Fraunhofer diffraction technique was used to measure droplet diameter, and the spray trajectory was recorded by CCD camera, the inlet velocity in experiments is56m/s~91m/s and the pressure differential of injector is50kPa-400kPa, fuel was injected to pressure side, suction side and reverse side at the blade leading edge respectively. Results show that spray trajectory in turbine passage is influenced by liquid-air momentum ratio, blade-turning angle as well as blade solidity. Spray trajectory is close to blade surface when injecting to blade passage, and flame is easy to burn out the vane, and droplet will hit the blade trailing edge to form carbon deposit when injecting to pressure side, droplet is far from the blade when reverse injection at the middle of passage. At real working condition, the spray fineness can meet combustor requirement.
     Based on above research, a combustion experiment with radical V-gutter flame stabilizer was tested, the lean blowout, lean light-up characteristics, combustion efficiency and outlet temperature distribution were evaluated. A single hole injector and three-hole injector were used to spray, the trailing edge width of V-gutter was respectively9mm and13mm, the inlet mass flow rate is0.2kg/s,0.25kg/s,0.3kg/s,0.35kg/s/,0.4kg/s, and the temperature of inlet flow is573K. Results show that the three-hole injector spraying along the flow has a better ignition and flameout feature, the trailing edge width of the stabilizer of13mm, lateral and oblique injection has the highest combustion efficiency, and also have a well-distributed temperature.
     An experiment of installing several radical V-gutter stabilizers under real condition should be tested in the future.
引文
[1]张宝诚.航空发动机试验和测试技术[M].北京:北京航空航天大学出版社,2005.
    [2]Hsu K Y, Goss L P, Trump D D. Performance of a trapped-vortex combustor[C]. AIAA-95-0810,1995.
    [3]Hsu K Y, Goss L P, Roquemore W M. Characteristics of a trapped-vortex combustor [J]. Journal of Propulsion and Power,1998,14(1):57-65.
    [4]Katta V R. Roquemore W M. Numerical studies on trapped-vortex concepts for stable combustion [J]. Journal of Engineering for Gas Turbines and Power,1998,120(1):60-68
    [5]Levy Y, Arvind R G, Sherbaum V. chemical kinetic and thermodynamics of flameless combustion methodology for gas turbine combustors[C]. AIAA-2007-5629,2007
    [6]Erwann G, Michael C, Ephraim G. Application of Flameless Combustion for Gas Turbine Engines [C]. AIAA-2009-225,2009.
    [7]Melo M J, Sousa J M M. Experimental Investigation of a Novel Combustor Model for Gas Turbines[J]. Journal of Propulsion and Power,2009,25(3):609-617.
    [8]Cai J, Jeng S M, Tacina R. the structure of a swirl stabilized reacting spray issued from an axial swirler [C]. AIAA-2005-1424,2005.
    [9]Wey T, Liu N S, Assessment of turbulence-chemistry interaction models in the national combustion code[C]. AIAA-2010-1170,2010.
    [10]Blomeyer M, Krautkremer B, Hennecke D K, et al. Optimization of the mixing process in the quenching zone of an RQL-combustor[C]. ISABE-97-7208,1997.
    [11]Mongia H C. TAPS-A 4th generation propulsion combustor technology for low emissions[C]. AIAA-2003-2657,2003
    [12]Bahr D W. Technology for design of high temperature rise combustors [J]. Journal of propulsion and power,1987,3(2):179-186.
    [13]Yokichi S, Rintarou T. Research and development of a 1600C-level combustor with high heat release rate[C]. IASBE 95-7099,1995.
    [14]Wunning J A. Flammenlose Oxidation von Brennstoff mit hochvorgewarmter Luft [J]. Chem. Ing. Tech.1991,63 (12):1243-1245.
    [15]Jochen R K, Thomas S. Lean Blowout Limit and NOx Production of a Premixed Sub-ppm NOx Burner with Periodic Recirculation of Combustion Products [J]. Journal of engineering for gas turbines and power,2006,128(2):247-254
    [16]Gutmark E J, Paschereit C O. Combustion Noise in a Flameless Trapped-Vortex Reheat Burner [C]. AIAA-2007-3697,2007.
    [17]Sirignano W A. Selected challenges in jet and rocket engine combustion research[C]. AIAA-1997-2701
    [18]Sirignano W A, Liu F. Performance increase for gas-turbine engines through combustion inside the turbine [J].Journal of propulsion and power,1999,15(1):111-118.
    [19]Liu F, Sirignano W A. Turbojet and turbofan engine performance increases through turbine burners[C]. AIAA-2000-074,2000
    [20]Liew K H, Urip E, Yang S L, A complete parametric cycle analysis of a turbofan with inter-stage turbine burner[C]. AIAA-2004-3311,2004
    [21]Chiu Y T, King P S. A Performance study of a super-cruise engine with isothermal combustion inside the turbine[C]. AIAA-2005-4197,2005
    [22]Zelina J, Ehret J, Hancock R D. Ultra-compact combustion technology using high swirl for enhanced burning rate[C]. AIAA2002-3725,2002
    [23]Ramohalli K N R. Isothermal combustion for improved efficiencies[C]. AIAA-87-1999, 1987
    [24]Chen G, Gas-turbine performance improvements through the use of multiple turbine Inter-stage burners [J]. Journal of propulsion and power,2004,20(5):828-834.
    [25]Lippert T E, Bachovchin D M. Gas turbine reheat using in-situ combustion[R]. Orlando:U S department of energy technology laboratory,2004
    [26]Lee A S. Two combustors engine for military applications [D]. Cranfield:Cranfield university,2009
    [27]Liew K H, Aero thermo dynamic cycle analysis of a dual-spool separate exhaust turbofan engine with an inter-stage turbine burner [D]. Houghton:Michigan technological University,2006.
    [28]Lee A S, Singh R, Probert S D. Two combustor engine's performance under design and off design conditions [C]. AIAA-2009-4838,2009
    [29]Pachidis V A. Gas-Turbine Performance Simulation [D]. Cranfield:Cranfield University, 2009.
    [30]Lee A S, Singh R, Probert S D. Two-Combustor Engine's Transient Performance[C], AIAA-2009-4837,2009
    [31]潘旭,葛宁.带涡轮燃烧室的涡扇发动机设计点性能分析[J].燃气涡轮试验与研究,2007,20(3):34-38.
    [32]孙泽晖,蔡元虎,屠秋野.带混排涡轮级间燃烧的涡扇发动机循环参数[J].推进技术,2010,31(2): 139-142
    [33]Grammel L P, Penekamp D L, Winslow R H. Segmented trapped vortex cavity. US2008/0019822 A1 [P].2008-1-24
    [34]Sekar B, Thornburg H J, Briones A M. Effect of Trapped Vortex Combustion with Radial Vane Cavity Arrangements on Predicted Inter-Turbine Burner Performance[C]. AIAA-2009-4603,2009
    [35]Sirignano W A, Dunn-Rankin D, Liu F, Turbine burners:turbulent combustion of liquid fuels, FA 9550-06-1-0194[R]. Irvine:University of California,2009.
    [36]Sirignano W A, Dunn-Rankin D, Liu F, Turbine Burners:Flameholding in Accelerating Flow[C]. AIAA 2009-5410,2009
    [37]Sekar B, Thornburg. Inter-turbine burner (ITB) performance with circumferential cavity volume variations for cold and heated fuel injection[C]. AIAA 2008-4566,2008
    [38]Yu G, Li J G, Chang X Y. Investigation of Fuel Injection and Flame Stabilization in Liquid Hydrocarbon-Fueled Supersonic Combustors[C]. AIAA-2001-3608,2001.
    [39]Mawid, M A. Thornburg H J, Sekar B, et al. Performance of an inter-turbine burner concept with three different vane cavity shapes[C]. AIAA-2006-4740.
    [40]Thornburg H J, Sekar B, Zelina J. Geometrical parametric Studies of inter-turbine burner for Improved Performance[C]. AIAA-2007-5099,2007.
    [41]Thornburg H J, Sekar B, Zelina J, et al. Effect of curved radial vane cavity arrangements on predicted inter-turbine burners performance[C]. HPCMP users group conference, 0-7695-3088-5/07,2007.
    [42]Sekar B, Thornburg H J, Briones A M. Effect of trapped vortex combustion with radial vane cavity arrangements on predicted inter-turbine burner performance[C]. AIAA-2009-4603,2009.
    [43]Anderson W S, Radtke J T, King P I. Effects of Main Swirl Direction on High-g Combustion[C]. AIAA-2008-4954,2008.
    [44]Briones A M, Sekar B, Thornburg H J, et al. Effect of vane notch and ramp design on the performance of a rectangular inter turbine burner[C]. AIAA-2010-581,2010
    [45]Briones A M, Sekar B. Characteristics of multi-cavity vortex combustors[C]. GT2010-22151,2010
    [46]Lin C, Sekar B, Zelina J. Numerical simulation of inter turbine burner flows with the inclusion of V gutter flame holders [C].GT2008-50337,2008
    [47]Zelina J, Ehret J, Hancock R D, et al. Ultra compact combustion technology using high swirl for enhanced burning rate[C]. AIAA-2002-3725,2002.
    [48]Zelina J, Sturgess G J, Mansour A. Fuel injection design optimization for an ultra compact combustor[C]. ISABE-2003-1089,2003.
    [49]Zelina J, Shouse D T, Hancock R D. Ultra compact combustors for advanced gas turbine engines[C]. GT2004-53155,2004.
    [50]Zelina J, Sturgess G J, Shouse D T. The behavior of an ultra compact combustor based on centrifugally enhanced turbulent burning rates[C].AIAA-2004-3541,2004
    [51]Zelina J, Greenwood R T, Shouse D T. Operability and efficiency performance of ultra compact high gravity combustor concepts[C].GT2006-90119,2006
    [52]Zelina J, Anderson W, Koch P, et al. Compact combustion systems using a combination of trapped vortex and high-g combustor technologies[C]. GT2008-50090,2008
    [53]Thornburg H J, Zelina J, Lin C, Prediction of inter turbine burner performance with curved radial vane cavity at various equivalence ratios[C]. GT2008-50192,2008.
    [54]Lewis G D. Centrifugal-force effects on combustion[C]. Symposium (international) on combustion,1973,14(1):413-419.
    [55]Lebay K D, Polanka M D, Reeder M F, et al. Time resolved particle image velocimetry investigations within a sectional ultra compact combustor[C]. AIAA-2011-692,2011.
    [56]Lebay K D, Polanka M D, Branam R D. Characterizing the effect of radial vane height on flame migration in an ultra compact combustor[C]. GT2011-45919,2011.
    [57]Bohan B T, Polanka M D. Analysis of flow migration in an ultra compact combustor[C]. GT2011-45916,2011.
    [58]Brown T. Inter turbine burners ignite quest for fuel efficient engines[C/OL]. 2010[2010-12-13]. http://www.wpafb.af.mil/news/story.asp?id=123234654.
    [59]Christopher J. Application of an inter-turbine burner using core driven vitiated air in a gas turbine engine[C]. GT2012-69333,2012.
    [60]Isvoranu D D, Cizmas P G. Numerical simulation and rotor-stator interaction in a turbine combustor [J]. Internationl journal of rotating machinery,2003.(9):363-374.
    [61]Schluter J U, Schonfeld T. LES of jets in cross flow and its application to a gas turbine burner[J]. Flow, turbulence and combustion,2001,65(2):177-203
    [62]Birmaher S, Zeller P W, Wirfalt P, et al. Fuel Injection Scheme for a Compact Afterburner Without Flameholders[C].GT2007-27861,2007
    [63]Birmaher S, Neumeier Y, Zinn B. Development of a Prime and Trigger Concept for Compact Afterburner Combustion[C]. AIAA-2007-562,2007
    [64]Poyyapakkam M, Wood J, Mayers S, et al. Hydrogen combustion within a gas turbine reheat combustor[C]. GT2012-69165,2012
    [65]杨春信.旋转对喷雾的影响[D].西安:西北工业大学,1988
    [66]刘训谦,钟英杰.旋转燃烧室中燃烧性能研究[J].西北工业大学学报,1995,13(2):174-179.
    [67]林宇震,张弛,刘高恩等.切向驻涡燃烧室:中国,CN1858498A[P].2006-11-8.
    [68]郭新华,张弛,林宇震.离心力场下扩散射流火焰的特性[J.航空动力学报,2010,25(9):1978-1983.
    [69]安帅,林宇震,张弛等.离心力场下V型火焰稳定器火焰稳定性研究[J].航空动力学报,2009,24(5):1011-1015.
    [70]吴晋湘,王恩宇,刘联胜.大加速度场中熄火试验研究[J].工程热物理学报,1999,20(6):754-758.
    [71]张荣春,樊未军,邢菲.涡轮级间单涡燃烧室壁温研究[J].航空动力学报,2010,25(7): 1512-1517.
    [72]张荣春,樊未军,邢菲.环形级间驻涡燃烧室壁温分布试验[J].航空动力学报,2010,25(6):1238-1244.
    [73]骆广琦,胡磊,孙东等,无引气式涡轮级间燃烧室设计与数值研究[J].燃气涡轮试验与研究,2012,25(1):1-4
    [74]丁国玉,何小民,金义等,涡轮级间燃烧室性能试验[J].航空动力学报,2012,27(11):2442-2447
    [75]李明,唐豪,张超等,一种新型涡轮叶间燃烧室的数值模拟研究[J].航空动力学报,2012,27(2): 55-62
    [76]李明,唐豪,莫妲等,当量比对涡轮叶间燃烧性能影响的数值模拟[J].燃烧科学与技术,2012,18(2):161-168
    [77]宋耀颖,李锋,杨晖等,不同结构设计对级间燃烧室性能的影响,124109[R].北京,2012年中国工程热物理年会燃烧学分会.
    [78]Hsu K Y, Goss L P, Trump D D. Performance of a trapped vortex combustor[C]. AIAA-95-0810,1995.
    [79]Hsu K Y, Goss L P, Roquemore W M. Characteristics of a trapped vortex combustor[J]. Journal of Propulsion and Power,1998,14(1):57-65.
    [80]Katta V R, Roquemore W M. Numerical studies on trapped vortex concepts for stable combustion [J]. Journal of Engineering for Gas Turbines and Power,1998,120(1):60-68.
    [81]Katta V R, Roquemore W M. Study on trapped vortex combustor effect of injection on flow dynamics [J]. Journal of Propulsion and Power,1998,14(3):273-281.
    [82]Nestler D E, Saydah A R, Auxer W L. Heat transfer to steps and cavities in hypersonic turbulent flow[C]. AIAA-68-0673,1968.
    [83]Davis D L, Bowersox R D. Stirred reactor analysis of cavity flame-holders for scramjets[C]. AIAA-97-3274,1997.
    [84]Davis D L, Bowersox R D. Computational fluid dynamics analysis of cavity flame holders for scramjets[C]. AIAA-97-3270,1997.
    [85]Gruber M R, Baurle R A, Mathur T. Fundamental studies of cavity based flameholder concepts for supersonic combustors [J]. Journal of Propulsion and Power,2001, 17(1):146-153.
    [86]Yu K, Wilson K J, Schadow K C. Effect of flame holding cavities on supersonic combustion performance[J]. Journal of Propulsion and Power,2001,17(6):1287-1295.
    [87]Yu K, Li J G, Chang X Y, et al. Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors[J]. Journal of Propulsion and Power,2001, 17(6):1263-1271.
    [88]Yu K, Li J G, Chang X Y, et al. Fuel injection and flame stabilization in a liquid kerosene fueled supersonic combustors[J]. Journal of Propulsion and Power,2003,19(5):885-893.
    [89]Gruber M R, Donbar J M, Carter C D. Mixing and combustion studies using cavity based flame holders in a supersonic flow [J]. Journal of Propulsion and Power,2004,20(5): 769-778.
    [90]Kim K M, Baek S W, Han C Y. Numerical study on supersonic combustion with cavity based fuel injection[J]. International Journal of Heat and Mass Transfer,2004,47(2): 271-286.
    [91]Oates G C.张逸民,李燕生译.燃气涡轮发动机气动热力学理论及其应用(上册)[M].北京:国防工业出版社,1988.
    [92]Directorate of Propulsion, Headquarter Air Force Logistics Command. The Engine Handbook [M]. Ohio:Wright-Patterson Air Force Base.1991
    [93]廉筱纯,吴虎.航空发动机原理[M].西安:西北工业大学出版社,2005.
    [94]彭泽琰,刘刚,桂幸民,黄勇等.航空燃气轮机原理[M].北京:国防工业出版社,2008
    [95]童凯生,航空涡轮发动机性能变比热计算方法[M].北京:航空工业出版社,1991
    [96]吴仲华,燃气热力性质表[M].北京:科学出版社,1959
    [97]杨开田主编.航空发动机设计手册第十一册,加力燃烧室[M].北京:航空工业出版社,2001
    [98]General Electric CJ805. [EB/OL].[2012-06-05]. http://en.wikipedia.org/wiki/General_Electric_CJ805#Specifications_.28CJ805-3A.29
    [99]毛艳辉,康建雄,杜强等.混排航空发动机:中国,201110131487.3[P].2011-0520
    [100]黄勇.燃烧燃烧室[M].北京:北京航空航天大学出版社,2009.
    [101]Fluent inc. Fluent 6.0 user's guide [M]. Lebanon:Centerra Resource park 10 Cavendish court,2001.
    [102]温正,石良辰,任毅如Fluent流体计算应用教程[M].北京:清华大学出版社,2009.
    [103]Tambe S B, Jeng S M, Mogia H, et al. liquid jets in subsonic crossflow[C]. AIAA-2005-731,2005
    [104]Anisko J F, Anthenien R A, Jr. Numerical investigation of cavity-vane interactions within the ultra compact combustor[C]. AIAA-2006-805,2006.
    [105]林宇震,林培华,许全宏等.复合式收缩套筒空气雾化喷嘴燃烧室点火研究[J].航空动力学报,2007,22(2):342-46
    [106]Hendricks R C, Shouse D T, Roquemore W M et al. Experimental and computational study of trapped vortex combustor sector rig with tri-pass diffuser[R]. NASA/TM-2004-212507, 2004
    [107]Song J W, Jung C, Hwang J, et al. An experimental study on the flame dynamics with V-gutter type flameholder in the model combustor[C]. AIAA-2011-6126,2011
    [108]Wang Hui-ru, Jin Jie. Lean blowout predictions of a non-premixed v-gutter stabilized flame using a damkohler number methodology[C]. GT2011-45958,2011
    [109]侯晓春,季鹤鸣,刘庆国.高性能航空燃气轮机燃烧技术[M].北京:国防工业出版社,2002.
    [110]蒋劲.超燃冲压发动机燃烧室再生冷却研究[D].西北工业大学硕士学位论文.2006.3
    [111]马西芳.超燃冲压发动机燃烧室及其冷却结构的耦合传热研究[D].哈尔滨工业大学硕 士学位论文,2007.7.
    [112]王厚庆,何国强,刘佩进.超燃冲压发动机燃烧室新型热结构的优化设计[J].推进技术,2009,30(3):263-313.
    [1 13]李丽,叶中元,刘兴洲.壁庵稳焰超声速燃烧室流场的数值模拟[J].推进技术,2003,24(6):521-523.
    [114]何小民,王家骅.驻涡火焰稳定器冷态流场特性的初步研究[J].航空动力学报,2002,17(5):567-571.
    [11 5]金如山,索建秦.先进加力燃烧室技术发展[C].中国航空学会第七届动力年会论文摘要集.北京:2010.
    [116]李庆,潘余,谭建国.亚燃冲压发动机中凹腔与V槽火焰稳定器性能对比分析[J].航空动力学报,2010,25(1):35-40.
    [117]天津大学现代光学仪器研究所.LSA-Ⅲ型激光粒度测试仪说明书[M].天津:天津大学,2006年8月
    [118]刘静,徐旭.高速气流中横向液体射流雾化研究进展[J].力学进展,2009,39(3):273-283
    [119]Lin K C, Kennedy P J, Jackson T A. Structures of water jets in a mach 1.94 supersonic crossflow[C] AIAA-2004-971,2004
    [120]Elshamy O M, Tambe S B, Cai J et al,. PIV and LDV measurement for liquid jets in crossflow [C]. AIAA-2007-1338,2007
    [121]Elshamy, O. M, Jeng S M. Study of Liquid Jet in Crossflow at Elevated Ambient Pressures[C]. ILASS Americas,18th Annual Conference on Liquid Atomization and Spray Systems, Irvine, CA,2005:1-11.
    [122]Lefebvre A H, Ballal D R. Gas turbine combustion,3nd Edition [M]. London, New York: Taylor & Francis Group,2010
    [123]杨桂祥,金如山.加热气流中燃油液雾特性[J].航空动力学报,1989,4(1):76-78
    [124]甘晓华.航空燃气轮机燃油喷嘴技术[M].北京:国防工业出版社,2006
    [125]王应时,范维澄,周力行,徐旭常.燃烧过程数值计算[M].科学出版社,1986
    [126]Wu P K, Kirkendall K A, Fuller R P, et al,. Spray structures of liquid jets atomized in subsonic crossflows[C]. AIAA-1998-714,1998
    [127]Lin K C, KirkendallLin K C, Kennedy P J.Spray structures of aerated liquid jets in supersonic crossflows[C]. AIAA-99-2374,1999
    [128]Miller B, Sallam K A, Bingabr M, et al,. Secondary breakup of aerated liquid jets in subsonic crossflow[C]. AIAA-2007-1342,2007
    [129]Trinh H P, Chen C P. Modeling of turbulence effects liquid jet atomization and breakup[C]. AIAA-2005-154,2005
    [130]Ng C L, Sankarakrishnan R, Sallam K A. Bag breakup of nonturbulent liquid jets in crossflow[J]. International journal of multiphase flow.2008,34,241-259
    [131]Lin K C, Kennedy P J, Jackson T A. Penetration heights of liquid jets in high speed crossflows[C] AIAA-2002-873.2002
    [132]Herpfer D C, Jeng S M. Planar measurement of droplet velocities and sizes within a simplex atomizer[J]. AIAA Journal.1997,35(1):127-132
    [133]Chen T Z, Larry A R, Nejad A S. Multifunction Droplet Imaging and Velocimetry System for Spray Jets[J].Journal of propulsion and power,1994,10(6):798-803
    [134]Wu P K, Lin K C, Jackson T A. Effects of flow initial conditions on spray characteristics with and without crossflows[C] AIAA-2006-1506.2006
    [135]Semiao V, Andrade P, Carvalho M G. Spray characterization:numerical prediction of sauter means diameter and droplet size distribution [J]. fuel.1996,75(15):1707-1714
    [136]金如山,航空燃气轮机燃烧室[M].北京:宇航出版社,1998
    [137]胡正义主编.航空发动机设计手册第9册,主燃烧室[M].北京:航空工业出版社,1 998
    [138]林宇震,许全宏,刘高恩,燃气轮机燃烧室[M].北京:国防工业出版社,2008
    [139]侯晓春,季鹤鸣,刘庆国等.高性能航空燃气轮机燃烧技术[M].国防工业出版社,2002
    [140]Mellor A M. Design of modern turbine combustors[M]. London, San Diego, New York: Academic Press.1990
    [141]边寿华.加力燃烧室流场的数值计算及直射喷嘴喷雾的试验研究[C].北京,北航航天航天大学硕士学位论文,1996
    [142]聂加耶夫著,姜树明译.航空燃气涡轮发动机原理[M],国防工业出版社,1984
    [143]张青藩.二元火焰稳定器回流量研究[J].工程热物理学报,1981,2(1):89-91
    [144]杨茂林,黄勇,顾善建等.燃油分布对V型稳定器后燃烧的影响[J].航空动力学报,1996,11(1):48-52
    [145]王立新,朱俊勇,金如山.加力燃烧室火焰稳定器回流区燃油浓度分析[J].1989,2(4):27-33
    [146]郭成富.回流区油气比对加力燃烧燃烧性能的影响[J].燃气涡轮试验与研究,1995,(3):24-29
    [147]傅维标,张永谦,王清安.燃烧学[M].北京:高等教育出版社,1989
    [148]Longwell J P, Weiss M A. High temperature reaction rates in hydrocarbon combustion[J]. Industrial and engineering chemistry,1955(47):1634-1643
    [149]Turns S R著,姚强等译,燃烧学导论:概念与应用[M].北京:清华大学出版社,2009
    [150]Kundu K P, Penko P F, Yang S L. Reduced reaction mechanism for numerical calculations in combustion of hydrocarbon fuels[C]. AIAA-1998-803,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700