用户名: 密码: 验证码:
颗粒级配优化及界面改性提高褐煤成浆浓度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立了堆积效率指标E的计算方法,可以有效地指导多级级配制浆。利用微波、氮气保护流化床和水热法对褐煤煤样进行了处理,探讨了三种方法提质后煤样的特性变化以及对成浆性的影响效果。利用扫描电镜对微波处理后的煤样颗粒进行了分析,并观察了不同形貌特性颗粒随微波辐照时间的变化,发现颗粒经微波后趋于规整和平滑。通过图像分析方法,观察了颗粒经破碎和磨矿后形貌的变化,发现随粒度的减小颗粒形状有变得更不规整的趋势,将影响堆积效率。在研究基础上建立了连续粒径颗粒紧密接触堆积的最小空隙率堆积模型,以各窄粒级最小空隙率作为参数,用于表征不同分散体系的堆积模式。
A parameter E was calculated to evaluate the system’s packing efficiency. Theexperiment results indicated that E performs a good effect on designing CWSpreparation. The coal samples were treated by microwave radiation, N2protectedfluidized bed, and hydrothermal reactor for comparing the effect and enhauncingproperties of the three treatment method on CWS preparation. Through SEM analysis,the changes of porosity and fractures were found to reduce under microwave radiation.The particles' shapes were found to become more irregular after crushing and grinding,that is not similar to the common knowledge. Upon all the research and theoreticalanalysis, a packing model, called “Minimum Voidage Model”(MVM) was built torepresent close contact particle’s packing. In this model, the minimum void ratio ofnarrow size grade was used to represent the real particles’ packing pattern.Keyword: lignite; continuous size; packing; CWS; microwave
引文
[1] BP公司.2012年BP世界能源统计年鉴[DB/OL]. http://www. bp. com/statisti calreview,2012.
    [2] Chen Y. Energy Science&Technology in China: A Roadmap to2050[M]. Beijing:Science Press Beijing:2010.
    [3]国际能源署.中国洁净煤战略[DB/OL].中国煤炭信息研究院译.http://www.iea.org/publications/freepublications/publication/Cleaner_Coal_China_Chinese.pdf.
    [4]姚强,陈超.洁净煤技术[M].北京:化学工业出版社,2005.
    [5]朱书全,戚家伟,崔广文.我国洁净煤技术发展现状及其发展意义[J].选煤技术,2003(6):47-51.
    [6]国家自然科学基金委员会,中国科学院.未来10年中国学科发展战略:能源科学[M].北京:科学出版社,2012.
    [7]阎维平.洁净煤发电技术的发展前景分析[J].华北电力大学学报,2008,35(6):67-71.
    [8]唐庆杰,王育华,吴文荣,等.洁净煤技术中国能源发展的必然选择[J].中国矿业,2007,16(11):24-26.
    [9]张荣曾.水煤浆制备技术[M].北京:科学出版社,1996.
    [10]郝临山,彭建喜.水煤浆制备与应用[M].北京:煤炭工业出版社,2003.
    [11]陈震,段清兵,肖卫兵,等.脱硫型水煤浆的制备及特性[J].煤炭加工与综合利用,2005(6):40-43.
    [12]黄波,朱书全,章丽萍,等.影响水煤浆燃烧固硫的主要因素[J].选煤技术,2004,8(4):60-63.
    [13]范浩杰.煤粉/水煤浆燃烧脱硫的研究[M].杭州:浙江大学出版社,1997.
    [14]曾凡.水煤浆添加剂[J].选煤技术,1995(1):41-45.
    [15]吴家珊,宋永玮,张春爱,等.煤的性质对水煤浆特性的影响[J].燃料化学学报,1987,15(4):298-304.
    [16]张春爱,吴家珊,宋永玮.煤的最高内在水分的研究[J].燃料化学学报,1987,15(4):378-384.
    [17]孙成功,吴家珊.水煤浆应用基础研究现状及发展趋势[J].煤炭转化,1993,16(1):90-98.
    [18]Xu Z, Chong L, Wang W, etc. Coal water mixture preparation technology andapplication in replacing oil to generate electricity [C].2009Asia-PacificPower and Energy Engineering Conference,2009:5.
    [19]Wang W, Xu Z, Zhang C. Study of Coal Water Slurry Particle Size Distributionwith Ultrasonic Testing Theory [C]. Asia-Pacific Power and Energy EngineeringConference (APPEEC2010),2010.
    [20]Chong L, Xu Z, Zhang R. Coal Qualities`Influences on Traits of Coal Water Mixture[C]. Twenty-third Annual Meeting of the Society for organic Petrology (Beijing,China),2006-9-15.
    [21]Wang W, Wang L, Zhang C. Particle size distribution control of coal-water slurrywith effective medium model [C]. The2ndInternational Workshop on DatabaseTechnology and Applications (DBTA2010),2010.
    [22]Wang R,Zhang R,Xu Z. Theoretical Models of Light Scattering Applied in SizingParticles in Coal Water Slurry [C]. Journal of China University of Mining&technology,2004,14(1):64-66.
    [23]Xu Z, Zhang R. The Monitoring Coefficients and Control by Computer in CWMFactory[C]. The19thInternational Pittsburgh Coal Conference Pittsburgh, USA,2002-9-22.
    [24]周德悟,崔玉玲,张勤,等.褐煤成浆性能的评价[J].煤气与热力,1991(1):4-8,32.
    [25]肖保清,李佩君,朱友益.褐煤浆的研制[J].中国煤炭,1996(8):46-47.
    [26]袁钧卢,赵建刚,颜涌捷,等.扎贵诺尔褐煤水煤浆流变性能的研究[J].燃料化学学报,1990,18(l):51-56.
    [27]付晓恒,朱书全,王祖讷,等.煤在水中的润湿热与水煤浆成浆性的关系[J].选煤技术,1997(1):45-47.
    [28]刘旭光,李保庆.褐煤的热处理改质研究[J].煤炭转化,2000,23(1):39-43.
    [29]郝爱民,李新生,宋永玮.煤的改性提质对水煤浆成浆性的影响[J].煤炭转化,2001,24(3):47-50.
    [30]孙成功,吴家珊,李保庆.低温热改质煤表面性质变化及其对浆体流变特性的影响[J].燃料化学学报,1996,24(2):174-180.
    [31]吴晓华.聚丙烯酸系列水煤浆添加剂的合成及应用机理研究[D].北京:中国矿业大学(北京),2009.
    [32]杨纯,朱书全,张华文,等.聚丙烯酸系水煤浆分散剂合成工艺改进及应用[J].煤炭科学技术,2011(4):121-124.
    [33]李凤起,朱书全.水煤浆添加剂改性木质素磺酸钠结构与性能的研究[J].煤炭学报,2000(4):439-442.
    [34]宋金梅,张玉秀,张继勇,等.改性木质素分散剂对褐煤水煤浆流变性的影响[J].选煤技术,2012(1):18-22.
    [35]李海华.内蒙褐煤成浆性试验的研究[D].中国矿业大学(北京),2009.
    [36]Nakagawa H, Namba A, Bohlmannetal M. Hydrothermal dewatering of brown coal andcatalytic hydrothermal gasification of theorganic compounds dissolving in thewater using a novel Ni/carbon analyst [J]. Fuel,2004(83):719-725.
    [37]Favas G, Jackson W R. Hydrothermal dewatering of lower rank coals,1. Effectsof Process conditions on the properties of dried product [J]. Fuel,2003(82):53-57.
    [38]Favas G, Jackson W R. Hydrothermal dewatering of lower rank coals,2. Effectsof coal characteristics for arrange of Australian and international coa1s[J].Fuel,2003(82):59-69.
    [39]Favas G, Jackson W R, Maohall M. Hydrothermal dewatering of lower rank coal,3.High-concentration slurries from hydrothermally treated lower rank coals [J].Fuel,2003(82):71-79.
    [40]Racovalis L, Hobday M D, Hodges S. Effect of Processing conditions on organicsin wastewater from hydrothermal dewatering of low-rank coal[J]. Fuel,2002(81):1369-1378.
    [41]Yi F, Jan A, Chaffee L, Marshall M, et al. Brown coal-water interactions studiedby phase Transition-differential scanning calorimetry[J]. Fuel,2005(84):1557-1562.
    [42]Svoboda K, Pohorely M, Jeremia M, et al. Fluidized bed gasification of coal-oiland coal-water-oil slurries by oxygen-steam and oxygen-CO2mixtures[J]. FuelProcessing Technology,2012,95:16-26.
    [43]Allardice D J, Clemow L M, Favas G, et al. The characterization of differentforms of water in low rank coals and some hydrothermally dried products [J].Fuel,2003(82):661-667.
    [44]Atesok G,Boylu F, Sirkeci A A, et al.. The effect of properties on the viscosityof coal-water-slurries [J]. Fuel,2002(81):1855-1858.
    [45]Sato Y, Kushiyama S, Tatsumoto K, et al. Upgrading of low rank coal with solvent[J]. Fuel Processing Technology,2004,85(14):1551-1564.
    [46]Shigehisa T. Advanced technology news. Development of UBC process: Upgradingof low rank coal by frying it in oil [J]. Niho Enerugi Gakkaishi/Journal of theJapan Institute of Energy,2003,82(10):799-800.
    [47]Umar D F, Usui H, Komod Y, et al. Preparation of carbonized biomass water mixtrueand upgraded coal water mixture [J]. Journal of Chemical Engineering of Japan,2006,39(11):1206-1212.
    [48]Vostrikov A A, Fedyaeva O N, Dubov D Y, et al. Conversion of brown coal insupercritical water without and with addition of oxygen at continuous supplyof coal-water-slurry [J]. Energy,2011,36(4):1948-1955.
    [49]Morimoto M, Nakagawa H, Miura K. Low rank coal upgrading in a flow of hot water[J]. Energy and Fuels,2009,23(9):4533-4539.
    [50]吕运江,潘荣,吕传磊,等.德士古气化工艺运行方式总结[J].化肥工业,2008,35(1):42-45.
    [51]谢书胜,邹佩良,史瑾燕.德士古水煤浆气化、Shell气化和GSP气化工艺对比[J].当代化工,2008,37(6):666-668.
    [52]韩承结.德士古气化工艺的优劣比较[J].安徽化工,2007,33(1):45-46.
    [53]沈国娟,张明旭,王龙贵.浅谈褐煤的利用途径[J].煤炭加工与综合利用,2005(6):25-27.
    [54]戴少康.选煤工艺设计实用技术手册[M].北京:煤炭工业出版社,2010.
    [55]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1999.
    [56]尹立群.我国褐煤资源及其利用前景[J].煤炭科学技术,2004,32(8):12-13.
    [57]任瑞晨,徐志强,等.煤炭资源综合开发与利用[M].徐州:中国矿业大学出版社,2008.
    [58]魏廷锐.褐煤高浓度水煤浆应用技术急待开发[J].云南化工,1987,(3):11-14.
    [59]王艳柳,张晓惠.影响煤的可磨指数测定的因素探讨[J].洁净煤技术,2009,15(3):87-88.
    [60]张妮妮.煤的可磨性指数变化及破碎机理研究[D].杭州:浙江大学,2006.
    [61]曾凡,胡永平.矿物加工颗粒学[M].徐州:中国矿业大学出版社,1995.
    [62]苑东杰,朱大敏.湿磨和干磨及其选用[J].化工装备技术,2002,23(3):12-15.
    [63]苏勇.干磨与湿磨对粒配及粒形的影响[J].化工矿物与加工,2001(10):1-4.
    [64]赵坚志,隋良志.降低入磨物料水分的必要性[J].水泥技术,1998(1):45-46.
    [65]张骐.物料含水量对干法粉磨的影响及适应物料水分偏高的措施[J].江苏建材,1996(3):36-39.
    [66]沃尔特·H·杜达.国际水泥工艺资料集[M].华新水泥厂,译.北京:中国建筑工业出版社,1983.
    [67]任俊,沈健,卢寿慈.颗粒分散科学与技术[J].北京:化学工业出版社,2005:102-104.
    [68]Hans Rumf. Particles Technology [M]. London:Chapman and Hall,1990:116-120
    [69]Kawashima Y. Adhesion and Cohesion of Powder. Particles Technology Handbook.New York:Marcel Dekker Inc.,1991:100-103.
    [70]季联.水分对物料易磨性及粉磨效率的影响[N].中国建材报,2008-5-6(B02).
    [71]马煜,李希国,李洪胜,等.大型风扇磨煤机磨制高水分褐煤运行特性研究[J].矿山机械,2011,15(9):60-62.
    [72]阎学治.干磨湿选改为湿磨湿选工艺的生产实践[J].河北冶金,1981(1):56-60
    [73]班丽君,刘鸣,田文莉.对哈式法测定煤的可磨性问题探讨[J].陕西煤炭,2006(2):21,33.
    [74]Delagrammatikas G, Tsimas S. Grinding process simulation based on Rosin-Rammlerequation [J]. Chemical Engineering Communications,2004,191(10):1362-1378
    [75]Macias-Garcia A, Cuerda-Correa E M, Diaz-Diez M A. Application of theRosin-Rammler and Gates-Gaudin-Schuhmann models to the particle sizedistribution analysis of agglomerated cork [J]. Materials Characterization,2004,52(2):159-164.
    [76]Grafman S M, Dement'Ev V M, Luk'Yanchenko L F, et al. K VOPROSU OTSENKI PROCHNOSTIZHELEZORUDNYKH OKATYSHEI S ISPOL'ZOVANIEM URAVNENIYA ROZINA-RAMMLERA.Problemof Estimating the Strength of Iron Ore Pellets with the Aid of the Rosin-RammlerEquation.[J]. Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya,1978(4):22-25.
    [77]Dimofte C, Mihut L, Baltog I. Rosin-Rammler window for ground powder sizeanalysis [J]. Journal de physique. III,1994,4(12):2617-2625.
    [78]Djamarani K M, Clark I M. Characterization of particle size based on fine andcoarse fractions [J]. Powder Technology,1997,93(2):101-108.
    [79]Lacroix P. LA GRANULOMETRIE DE L'AGGLOMERE: CARACTERISATION PAR LA LOI DEROSIN-RAMMLER, PREVISION.Characterization and Prediction of the Sinter GrainSize by the Rosin-Rammler Law [J]. Revue de Metallurgie. Cahiers D'InformationsTechniques,1987,84(6):429-441.
    [80]Gonzalez-Tello P, Camacho F, Vicaria J M, et al. A modified Nukiyama-Tanasawadistribution function and a Rosin-Rammler model for the particle–size-distribution analysis [J]. Powder Technology,2008,186(3):278-281.
    [81]Chen Z, Liang X, Xu X, et al. Approximate conversion between two conventionaldistribution functions for water spray[J]. Journal of Tsinghua University,2011,51(4):467-470.
    [82]Sellens R W, Brzustowski T A. SIMPLIFIED PREDICTION OF DROPLET VELOCITYDISTRIBUTIONS IN A SPRAY.[J]. Combustion and Flame,1986,65(3):273-279.
    [83]Terblanche R, Reuter H C R, Kroger D G. Drop size distribution below differentwet-cooling tower fills [J]. Applied Thermal Engineering,2009,29(8-9):1552–1560.
    [84]赵三银,赵旭光,余其俊. RRB分布模型特征粒径和均匀性系数的准确计算[J].水泥,2006(5):1-3.
    [85]谢友均,刘宝举,龙广成.水泥符合凝胶材料体系密实填充性能研究[J].硅酸盐学报,2001,29(6):512-517.
    [86]Furnas C C. Grading Agregates-I.–Mathematical Relations for Beds of BrokenSolids of Maximum Density [J]. Industrial and Engineering Chemistry,1931,23(9):1052-1058.
    [87]Westman A E R, Hugill H R. The packing of particles [J].1930,12(10):767-779
    [88]Suzuki M, Oshima T. Co-ordination number of a multi-component randomly packedbed of spheres with size distribution [J]. Powder Technology,1985,44(3):213-218.
    [89]王维邦.耐火材料工艺学[M].北京:冶金工业出版社,1984.
    [90]Gotoh K, Masuda H, Higashitani K. Powder Technology Handbook [M]. New York:Marcel Dekker Inc.,1997.
    [91]Andreasen A H M, Andersen J.Ueber die beziehung zwischen kornabstufung undzwischenraum in produkten aus losen k rnern (mit einigen experimenten)[J].Kolloid-Zeitschrift,1930,50:217-228.
    [92]Horsfiled H T. Strength of asphalt mixtures [J]. Journal of the Chemical Society,1934(53):107-115.
    [93]Fuller W B, Thompson S E. The laws of proportioning concrete [J]. Transactionsof the American Society of Civil Engineering,1906,57(2):67-143.
    [94]乔龄山.水泥的最佳颗粒分布及其评价方法[J].水泥,2001(8):1-5.
    [95]陈鸿.沥青混合料级配理论分析与探讨[J].城市道桥与防洪,2009(8):191-194.
    [96]吴成宝,段百涛.水泥粒度分布的分维评价研究[J].水泥,2007(5):8-11.
    [97]刘广厚,韦淑英.混凝土混合骨料级配优化试验研究[J].内蒙古水利,2012(4):157-158.
    [98]张育才,林宗寿,周惠群,等.不同粉磨方式矿粉颗粒特性的研究[J].武汉理工大学学报,2008(5):42-46.
    [99]王燕民,李竟先, Forssberg E.颗粒堆积现象的计算机模拟[J].硅酸盐学报,2003,31(2):169-178.
    [100] Dinger D R, Funk J R. Particle-size analysis routines available on cerabull[J]. American Ceramic Society Bulletin,1989,68(88):1406-1408.
    [101] Dinger D R, Funk J R. Particle packing. V: Computational methods appliedto experimental distributions [J]. Interceram,1994,43(3):150-154.
    [102]张荣曾,刘炯天,徐志强,等.连续粒度分布的充填效率[J].中国矿业大学学报,2002,31(6):552-556.
    [103] Stovall T, de Larrard F, Buil M. Linear packing density model of grainmixtures [J]. Powder Technology,1986(48):1-12.
    [104] Schuwanda F. On the correlation of minimum porosity with particle sizedistribution [J]. Powder Technology,1085,42:113-121.
    [105] Reschke T. Schriftenreihe der zementindustrie62/2000[M]. Dusseldorf:Verlag Bau Technik Gmbh,2000.
    [106]黄新,朱宝林,郭晔,等.连续粒径粉体在浆体中的堆积密度[J].北京航空航天大学学报,2006,32(4):461-465.
    [107]吴成宝,胡小芳,段白涛.粉体堆积密度的理论计算[J].中国粉体技术,2009,15(5):76-81.
    [108]叶大年,张金民.非等大球体的任意堆积[J].地质科学,1990(2):127-126.
    [109]郭晔,朱宝林,黄新,等.浆体中连续粒径粉体的堆积密度计算方法[J].混凝土,2005(6):20-23.
    [110] Brown G G. Unit Operation [M]. New York:Jorn Wiley&Sons Inc.,1950
    [111]新浪科技.美军研制微波武器可让目标瘫痪产生灼痛感[EB/OL].http://tech.sina.com.cn/d/2012-09-17/08547624794.shtml.
    [112] Weinberger S.微波武器前景黯淡[J].王栋,译.环球科学,2012(83):54-58.
    [113]黄桂春,李一民,廖建和,等.微波辐射凝固天然橡胶硫化胶热氧降解动力学的研究[J].热带农业科学,2011(4):55-59.
    [114]常玉礼.微波煤水分快速测定仪[J].机械工程师,1985(4):32.
    [115] Beuerman Donald R,鲍世齐.用微波加热法测定年轻煤水份[J].煤炭分析及利用,1988(2):52-56.
    [116]朱志卿,高静芳,朱德书.煤块的微波对流脱水研究[J].镇江船舶学院学报,1991(3):36-43.
    [117]崔平,王知彩,胡政平,等.微波作用下的细粉煤脱水研究[J].燃料化学学报,2002(2):178-181.
    [118]崔平,朱静,王知彩.微波作用下化学助剂在细粉煤脱水中的应用研究[J].矿物学报,2002(4):375-378.
    [119] Seehra M S, Kalra A, Manivannan A. Dewatering of fine coal slurries byselective heating with microwaves [J]. Fuel,2007,86(5-6):829-834.
    [120]赵景联,张银元,陈庆云,等.微波辐射氧化法联合脱除煤中有机硫的研究[J].微波学报,2002(2):80-84.
    [121]米杰,任军,王建成,等.超声波和微波联合加强氧化脱除煤中有机硫[J].煤炭学报,2008(4):435-438.
    [122] Meikap B C, Purohit N K, Mahadevan V. Effect of microwave pretreatment ofcoal for improvement of rheological characteristics of coal-water slurries[J].Journal of Colloid and Interface Science,2005,281(1):225-235.
    [123]高向阳,高岐,石杰,等.微波加热—压力消解快速测定风化煤中的游离腐植酸[J].河南科学,1993(4):269-273.
    [124]秦华,吴大青,徐岩.微波加热—密闭消解法快速测定煤中的硫含量[J].煤质技术,1999(4):32-35.
    [125]郭欣,贾小红,郑楚光,等.采用微波消解原子荧光光谱法测定煤中的汞[J].华中科技大学学报(自然科学版),2003(11):66-68.
    [126]刘晶,郑楚光,陆晓华.微波消解和氢化物发生ICP-AES法测定煤中痕量砷[J].分析科学学报,2004(1):23-25.
    [127]刘晶,郑楚光,张军营,等.微波消解和氢化物发生——电感耦合等离子体发射光谱法测定煤中痕量硒[J].光谱学与光谱分析,2004(3):351-353.
    [128]孙启文,周标.微波消解-ICP-AES测定煤制油催化剂中的杂质钠[J].光谱实验室,2005(2):389-391.
    [129]李晓燕,李凌燕.微波消解电感耦合等离子体发射光谱法同时测定煤飞灰中15种元素的研究[J].内蒙古石油化工,2007(8):13-16.
    [130]陈广志,苏明跃,王昊云.微波消解-电感耦合等离子体发射光谱法测定煤中磷[J].岩矿测试,2011(4):477-480.
    [131] Meikap B C. M. Tech., IIT Kharagpur,1992:36.
    [132] Meikap B C. Ind. Chem. Eng. Cong.1994:78.
    [133] Meikap B C. Proc. of National Seminar on Prospects of Chemical,Mining andAllied Industries for Natural Resource Utilization, India,2002:47.
    [134]王爱英.微波辐照提高褐煤成浆性能的促进机理[D].浙江大学:2012.
    [135]李艳昌.煤炭成浆特性的非线性理论和波能量改性机理的研究[D].浙江大学,2007.
    [136] Fayed M E, Otten L.粉体工程手册[M].卢寿慈,王佩云,译.北京:化学工业出版社,1992.
    [137]赵卫东.低阶煤水热改性制浆的微观机理及燃烧特性研究[D].杭州:浙江大学,2009
    [138]尉迟唯,李保庆,李文,等.煤孔结构特性对水煤浆性质的影响分析[J].燃料化学学报,2006,34(1):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700