用户名: 密码: 验证码:
温压炸药固体化及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为指导固体温压炸药设计,采用理论分析、数值模拟和实验测试相结合的方法对温压炸药固体化的相关技术进行了系统研究。主要内容包括配方设计方法、粘结剂对黑索今(RDX)颗粒的包覆情况、固体化制备工艺和固体化后温压炸药的性能,以及固体化温压炸药的后燃反应释能规律等。
     在现有研究成果的基础上,提出了固体温压炸药配方设计原则和设计方法。根据lkg温压炸药静爆试验结果,采用灰色关联方法分析了5种主体组分原材料对冲击波超压的关联程度。结果表明,与距爆心3m处冲击波超压正相关的因素从大到小依次为:高能炸药(RDX)、超细高氯酸铵(AP,D50为3μm);而与距爆心9m处冲击波超压正相关的则为:特细铝粉Ⅱ(D5o为6μmm)、特细铝粉Ⅰ(D5o为25μm)、工业AP(D50为120μmm)。说明高能炸药和超细AP对较近距离冲击波超压具有主要贡献,而对较远距离冲击波超压贡献作用较小;两种粒度的特细铝粉和工业AP对不同距离上冲击波超压的作用则与之相反。该研究成果可用于指导固体温压炸药主体组分及颗粒级配的初步选择。
     为进一步研究主体组分配比对爆炸场超压的影响,建立了固体温压炸药爆炸场性能预测的遗传-神经网络模型,并根据设定的冲击波参数反推较好的药剂配方。首先,针对实验测量数据存在误差和人工神经网络在训练预测时对样本数据依赖性大的缺点,借鉴Whittaker修匀思想对原始数据进行预处理,从而建立了基于遗传算法的人工神经网络模型并用于不同配方的温压炸药爆炸场性能预测。然后,根据冲击波毁伤准则设定了某一距离处的超压和冲量,利用建立的遗传神经网络模型计算得到了较优的温压炸药配方。结果表明,采用处理后的数据进行训练预测与采用原始数据直接进行训练预测的结果相比,温压炸药爆炸超压和冲量参数预报的稳定性和准确性都有所提高,误差不超过5%,且网络收敛速度较快。
     根据固体化制备工艺的需求,筛选了适合于压装型温压炸药的粘结剂和钝感剂。采用接触角测定仪测试了添加不同助剂的粘结剂溶液表面张力及其在RDX炸药颗粒表面的接触角,分析了铺展系数、粘附功与包覆度、特性落高的关系,发现包覆度和特性落高随铺展系数的增大而增大,随粘附功的增大而减小,说明铺展系数越大、粘附功越小,对润湿包覆越有利。采用扫描电镜、X射线能谱仪(XPS)和机械感度测定仪等从微观和宏观两个角度研究了不同助剂对RDX颗粒表面包覆情况的影响,扫描电镜观察结果表明,包覆后样品表面有一层均匀的橡胶薄膜。XPS分析结果表明,未添加助剂时的包覆度仅为16.85%,添加增粘剂和表面活性剂后样品包覆度可提高到95.41%。机械感度测试结果也表明,添加合适的助剂后特性落高由11.47cm提高到25.12cm,摩擦感度也从68%降低到16%。根据实验结果初步讨论了粘结剂对RDX颗粒的粘结-包覆过程和机理。
     采用扫描电镜和X射线能谱仪从微观角度研究了液态端羟基聚丁二烯(HTPB)粘结剂对RDX颗粒的包覆情况,通过对包覆度的计算和分析,优选出一种低分子树脂(表面活性剂J)作为该体系较好的表面活性剂。并通过正交实验确定了浇注型温压炸药较佳的制备工艺参数,即控制捏合温度50℃,搅拌速度25r/min,捏合时间45min,保养温度50℃。
     阐述了熔铸型固体温压炸药载体组分的选择依据和注装工艺理论,根据实际情况选择了合适的载体组分和敏化剂等,并在实验室制备了熔铸型固体温压炸药样品。
     对温压炸药固体化性能进行了研究,包括物理性能、力学性能、安全性能和爆炸性能等。以压装型固体温压炸药为例,重点研究了不同粘结剂种类和助剂对其成型性能和力学性能的影响。结果表明,采用P树脂作为粘结剂比采用D橡胶制备的固体温压炸药的力学强度高一倍左右;在所选用的助剂中,增粘剂和6#表面活性剂对力学性能的改善具有明显的作用。对比了温压炸药固体化前后的爆炸TNT当量,分别为1.70和1.71,说明固体化前后药剂威力基本相当,固体化方案可行。提出了含有对比炸高和对比距离两个变量的冲击波超压拟合公式,分析得到了最有利的起爆高度(对比炸高)与对比距离的关系,进而得出最佳炸高条件下冲击波超压随对比距离的衰减曲线,该曲线上的冲击波超压高于其他条件的超压值。
     采用实验和数值模拟相结合的方法对温压炸药能量输出结构进行了初步研究。结果表明,距爆心较近时冲击波压力时程曲线上呈现两个峰值,而在较远处则存在较宽的正压作用区,该温压炸药正压作用区冲量约为相同质量TNT的1.6~1.8倍。并根据JWL-Miller模型参数得出后燃反应释放的能量约占总能量的1/3,以及非理想组分反应度随时间的变化关系,在理想条件下,后燃持续时间可达400ms。说明温压炸药中铝粉等高能添加剂的后燃反应对增强冲击波效应和提高炸药做功能力有显著贡献。
For the design of solid Thermobaric Explosive (TBE), the solidification techniques of thermobric explosive was investigated by theoretical, numerical and experimental methods, including formulation design, the bonding and insensitive mechanism, manufacture techniques, solidification performances and the after-burnning energy output structure.
     Based on existing research results, the principles and methods of formulation design were proposed. According to the blast field test results of lkg thermobaric explosive, the method of Grey Correlation Analysis was used to investigate the influence rule of5raw materials and their contents on blast performances. The results show that the decreasing order of the factors investigated for the overpressure at a distance of3m from the explosion center is:high explosive RDX, fine particles of AP; and for the overpressure at9m the decreasing order is:fine particles of aluminum powder Al(Ⅱ), coarse particles of aluminum powder Al(Ⅰ) and coarse particles of AP. It indicates that high explosive RDX and fine particles of AP are in favor of the overpressure at3m, but weaken the overpressure at9m. Whereas the aluminum powders both fine and coarse, and the coarse particles of AP have the inverse influence on overpressure at both distances.
     The explosion parameters of TBE were investigated by combining the experimental results and neural network predictions. To overcome the problems of that experimental data exist error, and the training of Artificial Neural Network largely depends on initial sample data for prediction, the smooth thoughts of Whittaker were applied to improve the initial data. A new Artificial Neural Network model based on Genetic Algorithm was established and used to predict the overpressures of TBE in field tests. And the optimal formulations of TBE were predicted with the method according to certain peak overpressure or impulse.The results show that with the new prediction method the stability and accuracy of the predicted results were improved and the error was less than5%, also the convergence rate of Network was improved.
     The optimal binder and desensitizer were selected according to the solidification technology of pressed type TBE. The surface tension of binder containing different additives and the contact angle with RDX were measured by a contact angle meter. The coating quality was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and the impact sensitivity was tested. The spreading coefficient (S) and adhesive work (W12) were calculated, and then the dependence of the coverage degree (R) and characteristic fall distance (H5o) on S and W12were analyzed. The results show that R and H50increase with the increase of S, and reduce with the increase of W12. It indicates that the bigger S and the smaller W12, the better the coating quality. The results of SEM show that a thin layer of film was formed on the surface of RDX. The results of XPS show that the additives can extend the coverage degree from16.85%to95.41%. The results of impact sensitivity show that the additives can prolong the characteristic fall distance from11.47cm to25.12cm, and significantly reduce friction sensitivity. The mechanism of bonding and desensitization was further discussed.
     The coverage degrees of HTPB binder on RDX particles were studied by SEM and XPS, and a low molecular weight resin (surfactant J) was chosen as surfactant. The optimal parameters of preparation process were determined by orthogonal experiments, that is the mixing temperature50℃, the stirring rate25r/min, the mixing time45min and the maintenance temperature50℃.
     The cast loading theory of TBE was expounded and the main components and sensitizer were selected. The samples of casting TBE were produced in lab, and their combustion heat and hardness were measured. The explosion peak overpressure of the samples before and after curing were compared by field test, the result shows that the overpressure of casting TBE is no less than that of liquid-solid composite TBE, and the casting scheme is feasible.
     The application properties of solid TBE were tested, especially the formabilty and mechanical performance. The results show that the mechanical strength of resin P is twice as rubber D, and the1#tackifier and6#surfactant are in favour of improving the mechanical strength.
     The explosion power of solid TBE and liquid-solid composite TBE were compared and the TNT equivalents were1.71and1.70respectively. It indicates that the casting scheme is practicable.The influence rule of bursting height on blast pressure was studied both theoretically and experimentally. Based on the theory analysis, a formula was proposed to describe the variation of overpressure with specific bursting height and distance to explosion center. From the partial derivatives with specific bursting height, the optimal specific bursting height varying with distance was obtained. Variation of the peak overpressure with scaled distance to explosion center was deduced under the condition of optimal specific bursting height consequently, and it can be approximated as a straight line, under which the pressure is not less than other conditions. It can be used to guide the warhead performance design of TBE.
     In order to investigate the influence of after-burning on the strength of shock waves produced by the thermobaric explosive explosion in air, experiments and numerical simulations were performed to study the energy output structure. The results show that the pressure histories have two peaks in the near field and a long period in the far field. The impulse is1.6~1.8times of the same quality of TNT. Based on the analysis of JWL-Miller model parameters, the energy of after-burning is about1/3of the total energy. Furthermore, the curve of reaction degree(λ) versus time was obtained. In the case of complete reaction, the after-burning time can reach at400ms. It indicates that the after-burning of high energy additive is important to enhance the power of thermobaric explosive.
引文
[1]许会林,汪家骅.燃料空气炸药[M].北京:国防工业出版社,1980.
    [2]王志军,尹建平.弹药学[M].北京:北京理工大学出版社,2005.
    [3]May Lee Chan, Dung Tri Bui, Gary Meyers, et al. Castable thermobaric explosive formulations[P]. USP:6969434B1,2005.
    [4]May L C, Gary W M. Advanced thermobaric explosive composition[P]. USP6955732B1, 2005.
    [5]Kirk E, Virgil R, Steven L, et al. Thermobaric explosives and compositions, and articles of manufacture and methods regarding the same[P]. USP:7754036B1,2010.
    [6]MIL-DTL-32074 (USAF). Explosive, plastic-bonded, cast AFX-757,2000.
    [7]Bo cksteiner G, Whelan D J. The Effect of Aging on PBXW-115 (Aust.), PBXN-103 and PBXN-105[R]. DST OTR-0228,1996.
    [8]Brian L. Hamshere, Ian J. Lochert, Richard M. Dexter. Evaluation of PBXN-109:the Explosive Fill for the Penguin Anti-Ship Missile Warhead.DSTO-TR-1471,2003.
    [9]曹文忠,王中伟,焦绍球,等.含RDX低燃速丁羟推进剂的配方研究[J].火炸药学报,2009,32(5):54-57.
    [10]苏昌银,王世英,韩晓娟等.高强度、高燃速丁羟推进剂配方工艺研究[J].化学推进剂与高分子材料,2010,8(4):30-34.
    [11]刘焕瑛,卢斌,胡继国.用于爆炸逻辑网络的微型浇注炸药研究[J].火工品,1995,(1):47-50.
    [12]关立峰,李尚斌,李玉斌,等.钝感弹药配方研究[J].中国工程物理研究院科技年报.
    [13]刘晓波,杨攀,唐文龙.FAE燃料配方和工艺研究[J]. 中国工程物理研究院科技年报.
    [14]崔晓荣,罗勇,周听清,等.固相一次起爆型FAE燃料的优化选择[J].火炸药学报,2008,31(1):12-15.
    [15]崔晓荣,周听清,贾来兵,等.多元固相FAE的离散与爆轰的协调研究[J].实验力学,2006,21(2):12-15.
    [16]裴明敬,许学忠,胡华权,等.抗高过载FAE燃料的性能[J].火炸药学报,2005,28(1):31-34.
    [17]裴明敬,胡华权,张景森,等.含铝温压炸药及其爆炸效能研究[J].中国工程科学,2008,11(4):67-75.
    [18]王玉祥.固体温压炸药成型性能和安全性能的研究[D].南京理工大学,2007.
    [19]安崇伟.硝胺炸药的表面包覆及其对推进剂性能的影响研究[D].南京理工大学,2008.
    [20]马婷婷,苟瑞君.PBX的制备及包覆工艺研究[J].山西化工,2010,30(4):13-16.
    [21]陆铭,孙杰,陈煌,等.包覆方法对PBX-RDX撞击感度的影响[J].含能材料,2004,12(6):333-337.
    [22]张树海,苟瑞君,张景林,等.硝胺炸药的超临界溶液快速膨胀包覆技术研究[J].火工品,2004,2:20-26.
    [23]李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    [24]王晓丽,焦清介,李国新,等.钝化黑索今薄膜及其感度的研究[J].火工品,2003,3:23-26.
    [25]李丹,王晶禹,姜夏冰.硬脂酸包覆超细RDX及其撞击感度[J].火炸药学报,2009,32(1):40-43.
    [26]姜夏冰,焦清介,任慧,等.高聚物黏结ε-HNIW混合炸药的制备及其感度[J].火炸药学报,2011,34(3):21-24.
    [27]王晓丽,焦清介.微/纳米含能薄膜材料的制备与应用研究[J].含能材料,2006,14(2):139-14.
    [28]Cowey K, Day S, Fryer R. Examination of wax-coated RDX by scanning electron microscopy and X-Ray phot oelectron spectroscopy[J]. Propellants, Explosives, Pyrotechnics,1985,10:61-65.
    [29]Jones W T. Desensitizing explosives[P]. USP4425170,1980.
    [30]黄亨健.RDX的钝化和B炸药的改性研究[D].中国工程物理研究院,2002.
    [31]Manning.Reduetion of energetie filler sensitivity in propellants through coating[P]. USP6524706,2003.
    [32]Nakajima K.Thickness-composition diagrams of stranski-krastanov mode in the GaPSb/GaP and InGaAs/GaAs systems [J]. Journal of Crystal Growth,1999,203: 376-386.
    [33]孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995.
    [34]Hofmann H, Rudolf K. Process for the production of a pressed insensitive explosive mixture[P]. USP0216822A1,2004.
    [35]孙杰,黄辉,张勇,等.TATB原位包覆HMX的研究[J].含能材料,2006,14(5):330-332.
    [36]Kim K J, Kim H S. Coating of energetic materials using crystallization [J]. Chem. Eng. Technol.,2005,28:946-949.
    [37]Kim K J, Kim H S.Agglomeration of NTO on the surface of HMX particles in water NMP sol vent [J]. Cryst.Res.Technol.,2008,43:87-90.
    [38]雷延茹,刘永刚,罗顺火.高聚物溶液在固体炸药表面上的湿润性[J].研究报告及专论粘接,2004,25(4):4-7.
    [39]李永祥,马建福,刘天生,等.某高聚物包覆RDX的影响因素[J].含能材料,2005,13(6):382-385.
    [40]金韶华,于昭兴,欧育湘,等.六硝基六氮杂异伍兹烷包覆钝感的探索[J].含能材料,2004,12(3):147-150.
    [41]金韶华,吴秀梅,王伟,等.高分子包覆ε-HNIW方法对样品机械撞击感度的影响[J].安全与环境学报,2005,5(5):6-8.
    [42]Murray J S, Politze P. Structure-sensitivity relationship in energetiec compounds [A]. The21st ICT international Annual Conference,1990.
    [43]Chan. Energetie binder explosive[P]. USP5316600,1994.
    [44]Simpson R L, Urtiew P A, Omellas D L, et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate[J]. Propellants, Explosives, Pyrotechnics,1997,22: 249-251.
    [45]Smith K T. Pressable plastic-bound explosive composition[P]. USP20050072503, 2005.
    [46]刘云飞,杨荣杰,谭惠民,等.聚丙烯酸乙酯包覆奥克托金(HMX)的研究[J].北京理工大学学报,1998,18(3):370-374.
    [47]陆铭,陈煌,孙杰,等.水性聚氨酯乳液的制备及其在含硝胺推进剂中的应用[J].精细化工,2004,21(11):576-580.
    [48]陆铭,孙杰,陈煌,等.聚氨酯-丙烯酸酯核-壳乳液的制备及其包覆的RDX[J].火炸药学报,2004,27(3):17-20.
    [49]陆铭,陈煌,罗运军,等.水性聚氨酯乳液的制备及其包覆RDX的研究[J].推进技术,2005,26(1):89-92.
    [50]孙国祥.高分子混合炸药[M].北京:国防工业出版社,1984.
    [51]吴文辉,马凤国.在硝胺填料HMX表面的乳液聚合-包覆[J].北京理工大学学报,2000,(1):122-125.
    [52]马凤国,吴文辉,谭惠民.硝胺填料HMX的聚合-包覆改性及其应用[J].北京理工大学学报,2000,3:129-133.
    [53]Teipel U. Energetic Materials:Particle Processing and Characterization[M]. Wiley-VCH verlag, Weinheim, Germany,2006.
    [54]关大林,刘小刚,陈雪莉.硝化棉球形药粒度级配对推进剂燃烧性能的影响初探[J].火炸药学报,1998,(4):4-5,8.
    [55]单文刚,孙铁刚,张国东,等.硝化棉包覆催化剂球形药的制备工艺研究[J].含能材料,1996,4(2):75-75.
    [56]刘小刚,王克强,邵重斌,等.硝化棉包覆黑索今的新方法[J].含能材料,2003,11(3):153-154.
    [57]李江存,焦青介,任慧,等.层层组装法制备NC-BA-RDX包覆球[J].固体火箭技术,2008,31(3):247-250.
    [58]彭网大,王春华,张仁.键合剂对RDX/HTPB推进剂界面粘结效能的影响[J].火炸药,1997,(3):5-8.
    [59]翟海光.压装高聚物粘结炸药界面化学作用的研究[J].机械管理开发,2006,(1):26-28.
    [60]Oberth A E. Principle of strength reinforcement in filled rubbers[J]. Rubber Chemistry and Technology,1967,23 (40):1337-1340.
    [61]刘学.复合固体推进剂用键合剂的种类及其作用机理[J].含能材料,2000,8(3):135-140.
    [62]Kim C S. Filler reinforcement of polyurethane binder using a neutral polymeric bonding agent[P]. USP4915755,1999.
    [63]刘裕乃,邓剑如.硝胺/丁羟复合推进剂高效偶联剂[J].推进技术,1990,(3):42-48.
    [64]Allen H C. Tetra alky titanates as bonding agent for thermoplastic propellants[P]. USP4597924,1986.
    [65]张娟,焦清介,李江存,等.不同包覆材料对RDX表面改性的对比研究[J].火工品,2006,(3):22-26.
    [66]潘碧峰,罗运军,谭惠民.树形分子键合剂包覆AP及其相互作用研究[J].含能材料,2004,12(1):6-9.
    [67]喻鸿钢.复合固体推进剂界面粘结的预估、表征及优化[D].湖南大学,2008.
    [68]王敦举,张景林.键合剂与固体填料RDX的界面相互作用研究[J].火工品,2009,(2):13-16.
    [69]陈鲁英,赵省向,杨培进,等.CL-20炸药的包覆钝感研究[J].含能材料,2006,14(3):171-173.
    [70]黄亨建,董海山,张明,等.高聚物改性B炸药研究(Ⅱ)[J].含能材料,2005,13(1):7-9.
    [71]蔚红建,张丽涵,刘小刚,等.RDX包覆与某种键合剂的匹配性研究[J].火炸 药学报,2002,(4):49-50.
    [72]陈洪伟,吴晓青,吴艳光.硝胺炸药颗粒包覆研究及其进展[J].天津化工,2009,23(3):9-12.
    [73]贾瑞盘.高分子混合炸药工艺研究及其发展[J].火炸药,1989,(3):27-32.
    [74]张树海张景林.压装高聚物粘结炸药湿法筛分的研究[J].中国安全科学学报,2001,11(6):48-52.
    [75]庞海燕,李明,温茂萍,等.温度对PBX炸药压制的作用[J].兵器材料科学与工程,2011,34(1):21-23.
    [76]王彦红,张树海.造型粉制备中反应器的研究[J].山西化工,2008,28(3):52-54.
    [77]徐庆兰.高聚物粘结炸药包覆过程及粘结机理的初步探讨[J].含能材料,1993,1(2):1-5.
    [78]Pourmortazavi S M, Hajimirsadeghi S S. Application of supercritical carbon dioxide in energetic materials processes:A review[J]. Industrial and Engineering Chemistry Research,2005,44:6523-6533.
    [79]高振明,蔡建国,龙宝玉,等.超临界C02法制备超细HMX颗粒[J].火炸药学报,2008,31(4):22-26.
    [80]张俊,张景林,刘树浩,等.超临界流体SAS法制备HMX基传爆药及其表征[J].火炸药学报,2010,33(5),33-35.
    [81]柴涛,张景林.混合炸药造型粉的超临界流体反溶剂过程制备.华北工学院学报,2005,26(4):274-277.
    [82]张涛,王保国,陈亚芳,等.超临界流体技术制备超细炸药与超细混合炸药研究进展[J].化工中间体,2010,(12):27-30.
    [83]廖政权,徐士明.从钢模压制浅谈散粒体炸药的工艺性能[J].兵工学报(火化工分册),1995,(2):38-42.
    [84]田丽燕,徐更光,王廷增.散粒体炸药压装成型过程分析[J].火炸药学报,2002,(2):23-24.
    [86]Thompson D G, Olinger B, Deluca R.The effect of pressing parameters on the mechanical properties of plastic bonded explosives [J]. Prop Explos Pyrotech,2005, 30(6):391-396.
    [87]李琳琳,张欲立,张宏光,等.弹箭战斗部分步压装工艺技术先进性分析[J].新技术与新工艺(数字技术与机械加工工艺装备),2009,(11):11-14.
    [88]王淑萍.分步压装装药的安全性分析[J].火炸药学报,2006,29(2):23-25.
    [89]王淑萍,陈松,赵省向,等.造型粉流动性能对分步压装工艺的影响[J].兵工自 动化,2010,29(7):40-42.
    [90]董军,赵省向,王淑萍,等.不同粘结剂制备的分步压装用炸药对撞击感度的影响[J].兵工自动化,2011,30(5):74-76.
    [91]马增祥,惠智,闫雷,等.浅论弹药分次压药分层缺陷及解决方法[J].国防技术基础,2010,(5):45-50.
    [92]杨可喜.固体推进剂颗粒填料最佳堆积研究—综合报告[A].1983.
    [93]肖扬华.颗粒级配优化研究—滚动级配法.推进技术,1993;(4):60-67.
    [94]Chen J K, Hsu J S. An empirical model for predication of the slurry viscosity of AP/HTPB Propellant[A].17th, ICT,1986:38,1-13.
    [95]杨可喜,陶泽铭,王国娟.复合固体推进剂药浆粘度的预估.推进技术,1985,4:19-23.
    [96]唐汉祥.AP级配和铝粉对HTPB推进剂药浆流变性的影响[J].固体火箭技术,1998,21(1):26-30.
    [97]刘玉存,王作山,柴涛,等.HMX粒度及其级配对塑料粘结炸药冲击波感度和爆炸输出能量的影响. 兵工学报,2000,21(4):357-360.
    [98]黄辉.颗粒级配技术及其在含能材料中的应用[J].含能材料,2001,9(4):161-164
    [99]黄辉,董海山.一类对撞击不敏感的新型炸药[J].含能材料,2002,1(2):74-77.
    [100]黄辉,王晓川.偶联剂在HMX基浇注固化炸药中的作用[J].含能材料,2000,8(1):13-17.
    [101]鲁国林,夏强,杜娟.三苯基铋对高燃速丁羟推进剂的催化固化作用研究[J].含能材料,1999,7(2):60-66.
    [102]唐汉祥,刘秀兰,吴倩.进剂功能组分作用研究——(Ⅰ)丁羟/AP体系[J].固体火箭技术,2002,25(1):41-45.
    [103]唐汉祥,刘秀兰,吴倩.推进剂功能组分作用机理研究——(Ⅱ)丁羟/铝粉体系[J].固体火箭技术,2002,25(3):41-44.
    [104]唐汉祥,吴倩,陈江.推进剂功能组分作用研究(Ⅲ)——聚醚/硝酸酯体系[J].固体火箭技术,2003,26(1):46-50.
    [105]唐汉祥,刘秀兰,吴倩.推进剂功能组分作用研究(Ⅳ)——工艺/力学性能[J].固体火箭技术,2004,27(3):193-197.
    [106]李坐社,苏昌银,李葆萱,等.高密度高强度丁羟推进剂配方及工艺性研究[J].固体火箭技术,2004,27(1):41-45.
    [107]孙伟,胡林俊,魏子力.高固体含量高强度丁羟推进剂工艺调节技术研究[J].化学推进剂与高分子材料,2008,6(3):42-44.
    [108]高立龙,席鹏.ATP-28在浇注固化炸药中的应用探索[J].含能材料,2008,16 (6):689-692.
    [109]Simmons B A. Motor Propellant improvement Programme. NASA CR 72621.
    [110]Saffian L W. Recent advances in loading technology—An overview, international jahrestagung. Technology of Propellants and High Explosives,1984.
    [111]李大方.复合固体推进剂振动浇注实验研究及应用[J].固体火箭技术,1997,20(4):27-33.
    [112]徐宇.振动技术在推进剂装药中的应用[J].飞航导弹,2004,(5):45-47.
    [113]王继楷,肖川,谢利科.精密注装技术在模拟轻弹破甲弹中的应用[J].火炸药学报,1998,(3):22-24.
    [114]关立峰,吴奎先,张明,等.大药量浇注PBX炸药工程化设计[J].兵工自动化,2010,29(4):23-25.
    [115]王亲会.一种新型熔铸炸药研究[J].含能材料,2004,12(1):46-48.
    [116]刘光烈.梯黑铝熔注装药防止铝粉沉降的技术措施[J].南京理工大学学报,1996,20(2):120-122.
    [117]混合炸药编写组编著.猛炸药的化学与工艺学(下册)[M].北京:国防工业出版社,1983.
    [118]Kegler W. Explosivestoffe,1961,8(1):1-4.
    [119]Stanton H D. USPat. Appl.1981,155,887.
    [120]Voigt H W. AD-A006560,1979.
    [121]Wanninger Paul. Ger DE 3234978,1984.
    [122]罗观,黄勇,张明,等.分散剂在炸药中的应用研究[J].2004年全国含能材料发展与应用学术研讨会论文集(上册),2004.
    [123]Witt W. Sabranski U. A new method for Cast-Loading mixtures of Explosives [J]. Propellants and Explosives,1979,(4):1-3.
    [124]王亲会,熊贤锋,谢利科.新型注装含铝混合炸药研究[J].火炸药,1997,(1):3-5.
    [125]郭朋林,张明,黄勇,等.熔铸炸药冷却过程的温度场分布[J].中国工程物理研究院科技年报,2006,(1):317-318.
    [126]赵省向,胡焕性,张亦安.EAK基熔铸分子问炸药的熔化安全性[J].兵工学报,2003,24(2):270-272.
    [127]赵省向,王晓峰,王浩,等.环境温度对熔铸炸药圆柱体装药热安全性的影响[J].爆炸与冲击,2003,23(2):147-150.
    [128]丁雁生,潘颖,蔡瑞娇,等.PBX材料的蠕变损伤本构关系[J].含能材料,2000,8(2):86-90.
    [129]李明,温茂萍,何强,等.TATB基高聚物粘结炸药的蠕变特性研究[J].含能材料,2005,13(3):150-155.
    [130]陈鹏万,黄风雷,张瑜,等.用巴西实验评价炸药的力学性能[J].兵工学报,2001,22(4):533-537.
    [131]庞海燕,李明,温茂萍,等.PBX巴西试验与直接拉伸试验的比较[J].火炸药学报,2011,34(1):42-45.
    [132]李明,蓝林刚,庞海燕,等.基于纳米压痕方式测定PBX的弹性模量[J].含能材料,2007,15(2):101-104.
    [133]温茂萍,李明,庞海燕,等.炸药件力学性能各向同异性试验研究[J].含能材料,2006,14(4):286-289.
    [134]温茂萍,周红萍,徐涛,等.高温老化后HMX基PBX的压缩与拉伸性能反向变化研究[J].含能材料,2011,19(4):420-424.
    [135]温茂萍,蓝林钢,田勇,等.高聚物粘结炸药及涂层表面抗变形与回弹性研究[J].含能材料,2009,17(1):42-45.
    [136]杨国满,胡晓棉.时间温度效应与塑料粘结炸药的力学性能[J].火炸药学报,2004,27(1):5-9.
    [137]颜熹琳,李敬明,周阳,等.高聚物粘结炸药温湿度载荷加速老化试验研究[J].含能材料,2009,17(4):412-415.
    [138]颜熹琳,周阳,周筱雨.JOB-9003炸药的载荷环境试验[J].火炸药学报,2009,32(1):36-39.
    [139]常新龙,简斌,李俊,等.高低温循环下HTPB推进剂力学性能规律研究[J].弹箭与制导学报,2010,30(4):117-119.
    [140]张鹏,赵峰,白树林,等.PBX代用材料动态力学行为和微观结构的实验研究[J].高压物理学报,2007,21(1):20-28.
    [141]赵玉刚,傅华,李俊玲,等.三种PBX炸药的动态拉伸力学性能[J].含能材料,2011,19(2):194-199.
    [142]辜宝华,裴保林,王光天.人工神经网络在HTPB推进剂力学性能预示中的应用[J].固体火箭技术,1997,20(1):51-56.
    [143]郑当成,杜润生,吴波.基于BP神经网络的固体推进剂性能预示方法研究[J].航天制造技术,2006,2(1)21-24.
    [144]吕文平,李旭昌,林培基.神经网络在复合固体推进剂力学性能研究中的应用[J].飞航导弹,2009,(4):54-56.
    [145]肖继军,王艳群,詹炜,等.PETN基PBX结合能和力学性能的理论研究[J].分子科学学报,2006,22(4):219-225.
    [146]肖继军,谷成刚,方国勇,等.TATB基PBX结合能和力学性能的理论研究[J].化学学报,2005,63(6):439-444.
    [147]马秀芳,肖继军,殷开梁,等.TATB/聚三氟氯乙烯复合材料力学性能的MD模拟[J].化学物理学报,2005,18(1):55-58.
    [148]马秀芳,肖继军,黄辉,等.分子动力学模拟浓度和温度对TATB/PCTFE PBX力学性能的影响[J].化学学报,2005,63(22):2037-2041.
    [149]朱伟,肖继军,黄辉,等.MD模拟温度对TATB和TATB/F2311 PBX力学性能的影响[J].南京理工大学学报,2007,31(2):243-247.
    [150]李红霞,强洪夫,武文明.HTPB与TDI固化的分子模拟研究[J].固体火箭技术,2008,31(6):602-606.
    [151]敬仕明,李明,龙新平.基于改进Hashin-Shtrikman方法预测PBX有效弹性模量[J].含能材料,2009,17(6):664-667.
    [152]郭万东,王北海.防老剂H对丁经推进剂粘合剂体系形态结构和力学性能的影响[J].推进技术,1997,18(3):86-91.
    [153]杜磊,肖金武,尹瑞康.高燃速HTPB/IPDI推进剂低温力学性能研究(Ⅰ)细AP及工艺助剂PA的影响[J]. 固体火箭技术,2000,23(3):29-33.
    [154]杜磊,肖金武,尹瑞康.高燃速HTPB/IPDI推进剂低温力学性能(Ⅱ)界面助剂的设计与应用[J].推进技术,2002,23(3):245-248.
    [155]赵长才,鲁国林,王北海.扩链剂对HTPB/IPDI推进剂力学性能的影响[J].固体火箭技术,2000,23,(2):52-55.
    [156]李松年,王罗新,刘勇,等.黏合剂活性基团对HTPB推进剂力学性能的影响机制[J].复合材料学报,2009,26(4):79-82.
    [157]唐承志,李忠友,王北海.提高IPDI丁羟推进剂低温力学性能研究[J]. 固体火箭技术,2002,25,(2):43-48.
    [158]舒远杰,王新锋,谢惠民,等.结晶特性与制造工艺对炸药件力学性能的影响[J].实验力学,2006,21(2):165-170.
    [159]Simmons H T.The vacuum thermal stability test of explosives.AD-718806,1970.
    [160]GJB772A-1997,炸药试验方法[S].国防科学技术工业委员会,1997.
    [161]楚士禁.炸药热分析[M].北京:科学出版社,1994.
    [162]胡荣祖,谢怡,吴善祥,等.用非等温DSC或DTA曲线计算火炸药自发火温度的一个经验式[J].化学世界(增刊),1996:329-330.
    [163]田林祥.用DSC测炸药与相关物的相容性[J].兵工学报,1998,19(3):281-283.
    [164]徐森,刘大斌,惠君明,等.燃料空气炸药中混合燃料的内相容性[J].火炸药学报,2008,31(4):46-50.
    [165]关宏艳.固体复合燃料的相容性研究[D].南京理工大学,2007.
    [166]高大元,张孝仪,李广来,等.热固炸药相容性表现与机理研究[R].中国核科技报告:1-16.
    [167]左玉芬,罗雪梅,周建华.温湿度作用下炸药与相关物的相容性研究[J].含能材料,2000,8(4):171-174.
    [168]左玉芬,罗雪梅,周建华,等.一定条件下炸药与相关物不相容原因的初步探索[J].含能材料,2001,9(3):117-121.
    [169]左玉芬,聂福德,郁卫飞,等.NTO基PBX热行为及其与金属的相容性[J].含能材料,2009,17(1):55-60.
    [170]许晓娟,肖继军,黄辉,等.ε-CL-20基PBX结构和性能的分子动力学模拟—HEDM理论配方设计初探[J].中国科学B辑:化学,2007,37(6):556-563.
    [171]侯佐民,刘世强.火炸药生产安全技术[M].北京:国防工业出版社,1984.
    [172]徐复铭.21世纪先进发射药:低敏感高能发射药——新材料和新实验技术[J].南京理工大学学报,2003,27(5):551-559.
    [173]唐桂芳,王晓峰,李巍.浇注PBX的低易损性能研究[J].含能材料,2003,11(3):163-165.
    [174]罗观,黄辉,张明,等.可浇注固化PBX类含铝炸药低易损性研究[J].含能材料,2004,12(1):20-23.
    [175]王金英,柴涛,张景林,等.PBX传爆药撞击感度影响因素的研究[J].华北工学院学报,2004,25(4):289-292.
    [176]王国栋,刘玉存.应用神经网络预测炸药撞击感度[J].含能材料,2008,16(2):167-171.
    [177]南海,高立龙,郭听,等.浇注PBX炸药药柱的动态撞击性能[J].火炸药学报,2010,33(5):36-38.
    [178]杨丽侠,张邹邹,刘来东.发射装药热刺激下的易损性响应试验研究[J].火炸药学报,2008,31(3):71-74.
    [179]高立龙,王晓峰,南海,等.PMX-1炸药易损性试验研究[J].含能材料,2010,18(6):699-701.
    [180]陈中娥,唐承志,赵孝彬.HTPB /AP推进剂的慢速烤燃特征[J].含能材料,2006,14(2):155-157.
    [181]王玉祥.固体温压炸药成型性能和安全性能的研究[D].南京理工大学,2007.
    [182]裴明敬,许学忠,胡华权,等.FAE燃料抗过载试验技术研究[C].第三届全国爆炸力学实验技术学术会议论文集,409-411.
    [183]裴明敬,毛根旺,胡华权,等.含铝温压燃料性能研究[J].含能材料,2007, 15(5):441-446,463.
    [184]李媛媛,高立龙,李巍,等.抗过载炸药装药侵彻安全性试验研究[J].含能材料,2010,18(6):702-705.
    [185]仲倩.FAE爆炸参数测量及毁伤效应评估[D].南京理工大学,2011.
    [186]郭炜,俞统昌,王建灵.空气冲击波压力的地面测量技术[C].第三届全国爆炸力学实验技术学术会议论文集:287-293.
    [187]常双君,刘天生,朱晋生.燃料空气炸药的爆炸特性研究[J].中北大学学报(自然科学版),2006,27(6):508-510.
    [188]QIN Y H, ZHOU T Q, SHEN Z W, et al. Study on the Explosion Characteristics of Single Igniting Solid Sensitized Fuel Air Explosive[J]. Journal of Experimental Mechanics,2002,17(3):284-288.
    [189]张陶,惠君明,解立峰,等.FAE爆炸场超压与威力的实验研究[J].爆炸与冲击,2004,24(2):176-181.
    [190]赵永涛,白春华,张奇.温压弹爆炸超压场实验研究[J].爆破,2004,21(4):15-17.
    [191]白春华,范喜生,李建平,等.一次引爆型燃料一空气炸药的爆炸超压场及TNT比当量[J].弹箭与制导学报,2006,26(2):210-212.
    [192]谢立军,方向,李裕春,等.固态燃料空气炸药近地面爆炸场威力特性分析及扫雷应用[J].解放军理工大学学报(自然科学版),2009,10(增刊):52-56.
    [193]郑波,陈力,丁雁生,等.温压炸药爆炸抛撒的运动规律[J].爆炸与冲击,2008,28(5):433-437.
    [194]刘庆明,白春华,李建平.多相燃料空气炸药爆炸压力场研究[J].实验力学,2008,23(4):360-370.
    [195]刘庚冉,曹保榆,周凯元.一次起爆固态FAE爆炸冲击波传播规律的实验研究[J].科技咨询导报,2007,(17):14-15.
    [196]谢立军,方向,周凯元,等.一次引爆型固相FAE云雾爆轰半径的研究[J].实验力学,2009,24(2):144-150.
    [197]刘庚冉,周凯元,曹保榆,等.固态燃料空气炸药空爆实验研究[J].实验力学,2007,22(5):489-494.
    [198]张奇,白春华,刘庆明,等.一次引爆燃料空气炸药及其爆炸效应研究[J].实验力学,2000,15(4):448-453.
    [199]罗艾民,张奇,白春华,等.燃料空气炸药冲击波超压反演研究[J].弹箭与制导学报,2005,25(1):34-36.
    [200]阐金玲,刘家骢,曾秀琳,等.温压炸药爆炸火球的特征[J].火炸药学报,2007, 30(2):55-58.
    [201]裴明敬,毛根旺,吴婉娥,等.含铝温压燃料爆炸抛撒过程中能量释放效率研究[J].中国科学技术大学学报,2007,37(3):276-283.
    [202]刘科种,徐更光,辛春亮,等.含铝炸药与一次引爆FAE威力特性对比研究[J].含能材料,2009,17(5):554-557.
    [203]杨雪海,张启戎,高晓敏.国外PBX老化研究动态[J].四川兵工学报,2008,29(5):99-102.
    [204]吴承云,于荫林,许光,等.炸药模拟环境温湿度试验技术研究[J].兵工学报(火化工分册),1996,(2):27-31.
    [205]秦亚萍,于荫林,吴承云,等.温度冲击试验技术在混合炸药中的应用研究[J].火炸药学报,1997,(2):40-43.
    [206]梁慧敏,白春华.高能固态FAE燃料贮存寿命研究[J].火炸药学报,1999,(3):21-24.
    [207]张兴高,张炜,芦伟,等.HTPB推进剂填料/基体界面粘结性能老化特性研究[J].含能材料,2009,17(3):269-273.
    [208]王玉峰,张勇,曲凯,等.HTPB推进剂药柱在变温环境下的累积损伤分析[J].弹箭与制导学报,2010,30(6):136-140.
    [209]尹俊婷,袁宝慧,牛鹏俊,等.炸药损伤及损伤炸药环境适应性的实验研究[J].火炸药学报,2008,31(2):78-80.
    [210]韦兴文,李敬明,涂小珍,等.热老化对TATB基高聚物粘结炸药力学性能的影响[J].含能材料,2010,18(2):157-161.
    [211]李敬明,郝莹,韦兴文,等.温度环境对JB-9014炸药性能的影响[J].中国工程物理研究院科技年报.
    [212]李敬明,郝莹,韦兴文,等.IHE环境适应性研究[J].中国工程物理研究院科技年报.
    [213]高登攀.高聚物粘结炸药损伤声发射特性研究[D].四川大学,2005.
    [214]刘承武,阳建红,邓凯,等.HTPB推进剂温度冲击环境下损伤特性的声发射试验[J].无损检测,2011,33(1):47-50.
    [215]周霖,徐更光.含铝炸药水中爆炸能量输出结构[J].火炸药学报,2003,26(1):30-33.
    [216]王玉玲,肖秀友,王效廉.含铝炸药爆轰特性研究现状[J].飞航导弹,2006,(1):52-54.
    [217]罗艾民,张奇,李建平,等.爆炸驱动作用下固体燃料分散过程的计算分析[J].北京理工大学学报,2005,25(2):103-107.
    [218]周俊祥,徐更光,王廷增.含铝炸药能量释放的简化模型[J].爆炸与冲击,2005,25(4):309-312.
    [219]辛春亮,徐更光,刘科种,等.含铝炸药与理想炸药能量输出结构的数值模拟[J].火炸药学报,2007,20(4):6-8.
    [220]史锐,徐更光,徐军培,等.炸药水中爆炸能量输出结构的数值模拟[J].含能材料,2009,17(2):147-151.
    [221]Kury J W, Hornig H C, Lee E L, et al. Metal Accelaration by Chemical Explosives [A]//Proceedings of the 4th International Symposium on Detonation [C]. White Oak, Maryland,1966:3-13.
    [222]于川,刘文翰,李良忠,等.钝感炸药圆筒试验与爆轰产物JW L状态方程研究[J].高压物理学报,1997,11(3):227-233.
    [223]于川,李良忠,黄毅民.含铝炸药爆轰产物JWL状态方程研究[J].爆炸与冲击,1999,19(3):274-279.
    [224]陈朗,冯长根,赵玉华,等.含铝炸药爆轰数值模拟研究[J].北京理工大学学报,2001,21(24):415-419.
    [225]辛春亮,徐更光,刘科种,等.含铝炸药Miller能量释放模型的应用[J].含能材料,2008,16(4):436-440.
    [226]孙占峰,徐辉,李庆忠,等.钝感高能炸药爆轰产物JWL状态方程再研究[J].高压物理学报,2010,24(1):55-60.
    [227]韩勇,黄辉,黄毅民,等.含铝炸药圆筒试验与数值模拟[J].火炸药学报,2009,32(4):14-17.
    [228]浣石,蒋国平.用Lagrange分析方法确定固体炸药基于JWL状态方程的反应速率方程[J].湖南大学学报(自然科学版),2006,33(3):33-36.
    [229]赵铮,陶钢,杜长星.爆轰产物JWL状态方程应用研究[J].高压物理学报,2009,23(4):277-282.
    [230]梁华琼,韩超,雍炼,等.高聚物黏结炸药的压制成型性[J].火炸药学报,2010,33(4):44-488.
    [231]林伟然,朱晓临,武志辉.基于选择-终极生命表的死力函数的参数估计[J].合肥工业大学学报(自然科学版),2008,31(6):972-976.
    [232]Koch W. Explosivestoffe,1961,8 (11):247-255.
    [233]Blumenthal W R, Thompson D G, Cady C D, et al. Compressive Properties of PBXN-110 and Its HTPB-Based Binder as a Function of Temperature and Strain Rate [C]. The 12th International Detonation Symposium. San Di-ego, California,2002.
    [234]Hoffman H J. High-Strain Rate Testing of Gun Propellants, AD-A208826 [R]. Columbia:Chemical Propulsion Information Agency,1989.
    [235]苗长青,张奇,白春华,等.FAE装置炸高对爆炸压力场影响的实验研究[J].火炸药学报,2002,3:9-10.
    [236]罗艾民,张奇,白春华,等.燃料空气炸药冲击波超压反演研究[J].弹箭与制导学报,2005,25(1):34-36.
    [237]李秀丽.基于燃烧和爆炸效应的温压药剂相关技术研究[D].南京理工大学,2008.
    [238]阚金玲,刘家骢.一次引爆云爆剂的爆炸特性——后燃反应对爆炸威力的影响[J].爆炸与冲击,2006,26(5):404-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700