用户名: 密码: 验证码:
几何约束求解中关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对几何约束求解中几何约束图的分解策略、几何约束求解精度、多解、初值敏感及求解稳定性等核心关键技术进行研究:
     1、提出一种基于图分解的几何约束求解策略:首先确定传播的起点S(e_i),不断寻找约束图中定位其它几何体的几何元素,将他们析出放入Si(e_i)集;将由该几何体出发的所有出弧视为已知并移除,同时不断将完全被定位的几何元素析出逆序放入T(e_i)。重复上述过程,直至有向约束依赖图的所有几何体全部析出,得到S_1(e_i), S_2(e_i),…,S_n(e_i) ,T(e_n,…,e_2,e_1)约束分解路径。分解后的路径中含有约束的传播起点,从该起点出发,依次求解后面的实体。由于已经分析出整个约束图中所有几何元素之间的连接关系,使得求解过程由总体下降到局部,避免了对数学方程的大规模数值求解,提高求解的效率和可靠性。这样,设计中对草图进行局部修改时,只需要对与约束变动相关的结点重新排序,有效提高了草图修改的效率。
     2、提出禁忌粒子群算法求解几何约束,提高求解精度:新算法根据搜索过程中解的质量动态地变化求解策略,将禁忌搜索独有的记忆能力引入到粒子群算法的搜索过程中。一方面利用禁忌算子的集中性搜索策略,加强对当前搜索到的优良解邻域作进一步的搜索。另一方面利用禁忌搜索的发散性搜索策略,构建跃变算子增加多样性搜索,跳出局部极值的陷阱,较好地解决了集中性搜索与多样性搜索之间的矛盾,有效提高优化算法求解几何约束的求解精度。
     3、提出免疫蚂蚁算法,解决几何约束问题中良约束下多解问题:针对蚂蚁算法初期信息素匮乏,求解速度慢的缺点,引入免疫机制,动态生成蚂蚁抗体群。用赌轮盘选择机制选择蚂蚁抗体群进行约束求解,其选择概率正比于聚合适应度;在群体更新时,随机增加N个蚂蚁抗体,从2N个抗体中选取聚合适应度较高的N个抗体组成下一代群体。这样既可保留具有优秀适应度的抗体,又可抑制浓度过高的抗体,形成一种新的多样性保持策略。算法具有优良的多解搜索能力,很好的解决了几何约束求解问题中良约束条件下的多解问题。
     4、提出平行搜索算法,解决非线性方程组求解时初值敏感及求解稳定性问题:单纯形法是确定性下降方法,混沌算法是随机、遍历性搜索算法。将两种选择机制上存在如此差异的算法进行混合,丰富搜索行为。新算法1)采用混沌序列初始化变量,利用混沌提高种群的多样性和搜索的遍历性,解决算法对初值敏感的问题;2)通过单纯形中反射、收缩、延伸等策略不断缩小搜索空间,有效地调整搜索移向,加快收敛速度;3)以整个单纯形搜索到的最优位置为基础产生混沌序列,把产生的混沌序列中的最优位置替代当前单纯形中的个体的位置,产生局部最优解的许多邻域点,帮助惰性个体逃离局部极小点,提高求解稳定性。
The capacity of developing and applying CAD technology has became one of the major indexes measuring a nation’s modernization of science, technology, and industry. Parameterization technology and the more advanced Variational technology provided more opportunities to future development of CAD technology.
     Parameterization design technique has become an effective way on preliminary design, modeling, modification, multi-scheme comparison, and dynamical design in design process due to its powerful sketch design and size-driven graph modification functions. It has drawn more and more attentions from people all over the world. Geometry Constraint Solving technique (GCS) is the core component of parameter design methods on the basis of constraint satisfaction. Many issues in engineering area can be categorized under GCS. Further research on the theory of Geometric Constraint Solving technology will significantly improve parametric level and industrial competition ability.
     Geometry constraint solving means that once the dimension constraints and topological constraints were provided, the system will generate the drafts automatically. Geometric constraints solving involves some key technologies such as modeling, decomposition, constraint maintenance and solving.
     This thesis makes a broad and in-depth research on the key technique-geometric constraint solving for Parametric and Variational design. While further studies are done with many existing methods, many new techniques are also proposed and numerical solution is provided to confirm its superiority.
     1. In this paper, a new method for decomposing geometric constraint graph is described. The basic idea of the graphic method is to build a Geometric Constraint Graph (GCG) for the GCS. In GCG, the vertex represents the geometric entity and the edge represents the constraint. The method also uses related theories and constraint information from real business to decompose and combine the geometric constraint graph. The purpose of decomposition is to slice the strongly coupled graph into sub-graphs, solve each individual sub-graph and then combine them as a whole.
     The Geometric Constraint Graph can be presented as non-directed graph and direced graph. The Directed Geometric Constraint graph (DGCG) takes plenty consideration of the constraint’s spread directions which is easier to be presented in geometric terms.
     The basic idea of Geometric Constraint Solving is to "divide and rule", which a large problem can be decomposed into several smaller questions. We use constraint network graph to express constraint system. Decomposition paths are used to reduce the scale of constraint solving problem, decompose it from global scope into many local sub-problems , avoid a large-scale of numerical solution. The algorithm can separately calculate the sub-problems geometrically with great improvement in efficiency and robustness.
     2. Constraint solving can be transformed into optimization. However, since the speciality of nonlinear equation will easily lead the optimization process to focus more on local extremum, the optimization issues transformed from the nonlinear equations may not always be able to reach a global optimal solution.
     Comparing between the global and local optimization algorithm, the global optimization algorithm is better on wide-range searching but not on local searching and vise versa. To be benefitted from both algorithms, the paper is going to introduce a global-local optimization strategy called Tabu Particle Swarm Optimization.
     Particle Swarm Optimization (PSO) is a Parallel searching algorithm with multi-memory points. Most researchers have focused their efforts on how to promote the convergence rate and avoid the premature convergence. The better solution on relieving premature convergence of the algorithm is to ensure the diversity of swarm population or by introducing a new mechanism to break away the limitation of local optimums.
     My solution is to introduce tabu search strategy into PSO. Tabu Search is a new intelligence optimization algorithm. Its flexible memory structure and corresponding tabu criterion prevent recurrence searching. Iis strong mountain climbing function prevents prematurity.
     Tabu search strategy enhances the search of the neighborhood of excellent neighborhood in some certain phases. And then it builds up a jump-operator for diversity search which could increase the search area, change search direction, and break away from the trap of local optimums in latter phases. To improve the precision of the optimization algorithm of geometric constrain problem solving,the paper presents tabu search embedded in particle swarm algorithm.
     3. It is proposed to introduce immune mechanism into ant algorithm to solve multi-solutions of geometric constraint in the good-constrained solution. The over-constrained and Under-constrained problem can be solved naturally in our approach because transforming a constraint problem into an optimal problem doesn’t require the number of constraint equations to equal the one of constraint variables. It can only get one solution to solve the geometric constraint problem by numeric iteration method. The Ant Colony Optimization (ACO) algorithm base on immune mechanism is present to solve geometric constraint multi-solutions problem.
     My solution for preventing ACO from premature convergence and improving the precision of local optimization algorithm is to develop ant operators with immunity based on the basic Principles of artificial immune systems. The immune ant operators will create better balance between exploration and exploitation by keeping the diversity of ant colony, maintaining the intensification in the later iteration phase, and improving the precision of local optimization algorithm.
     ACO is a rising optimization tool with positive feedback, distributing computing and heuristic searching functions. ACO can significantly reduce calculative burthen for multi-solution optimization processes. My proposal of introducing ACO algorithm to the sequence of equations solving in the paper is based on the multi-solution function of geometric constraint solving and path-seeking function from ACO.
     Using the characteristics of immune operator can simultaneously search a series of points in solution space, which generate the initial pheromone distribution related to questions. We fully utilize the capability of parallel, positive feedback, the high precision of ant algorithm. Mutli-solution can extract one time.
     Experiments results show that the new algorithm has the capability of effectively improve optimization speed and the quality of optimization, settles multi-solution question in good-constraint problem.
     4. Parallel Search algorithm is proposed for solving nonlinear equations. The most common method for numerical solving is Newton iteration method. Generally, the method can reach the solution quickly. It needs a well-designed initial value and is quite sensitive to the initial value. When the initial value changed slightly, the method may emanate or converge the process and generate an unexpected solution. The random selection of the initial value in the initial design stage often makes the initial condition not good enough and gives Newton-Raphson method difficulties to converge. We’ve revealed two major defects after analysis on the traditional numerical method in the application of the nonlinear equation solution: (1) It is too relied on the initial point; (2) The convergence results lack of consistency. I believe the ergodicity of chaos algorithm introduced in this paper can help resolve the issues mentioned above.
     Chaos is a general nonlinear phenomenon laying in the nonlinear system. Chaos does not mean“disorder”. Instead, it is a class of nonlinear phenomenon that has exquisite intrinsic structure. By using the ergodicity and randomness of the chaotic system, the optimal solution is picked up directly by transforming the chaotic variables into optimizing variables in Chaotic Algorithm. Its ergodicity is an effective mechanism to avoid being trapped into local minima during the searching process.
     Parallel Chaos optimization algorithm improves the efficiency of searching in a big range by constantly shrinking the areas of optimization variables. It focuses on the low precision and suddenly slow downed convergence speed near the optimization point. The results have been improved after integrated Simplex Search into parallel chaos optimization. Simulation results have also proved that this hybrid algorithm worked as expected.
     The basic principle of the new algorithm is to adopt chaos initialization to improve individual quality and utilize Chaos Perturbation to avoid the search being trapped into local optimum. The new algorithm will then calculate the reliable approximate solution by using reflection, contraction, and extension fuincgtions of simplex to constantly shrink the search and solution areas.
     Features of the hybrid algorithm are highlighted below:
     (1)Uses the properties of chaos initialization to seek the optimal areas and dirctions from the population of existing potential solutions. It also resolves the issue that the current algorithm is too relied on the initial value.
     (2)Uses Simplex to enhance the searching capacity. In the mean time, it also provides new models and increases the variety of the population.
     (3)Employs chaotic mapping to search subtly in the neighboring domain of the present optimal solution in the latter algorithm.
     Experimental results have proved that the new algorithm embedded with initialization technique based on chaotic has more superiority than the conventional stochastic approach.
引文
[1]陈家平等,现代企业与CAD/CAM技术。计算机辅助设计与制造.1996.8.4.
    [2] Lin V, Gossard D C and Light R. Variational geometry in computer-aided design. In ACM SIGGRAPH, August 1981, 171-179.
    [3] R.Light and D.Gossard. Modification of geometric models through variational geometry. Geometric Aided Design, July 1982,vol.14, 208-214.
    [4] X.S.Gao. Automated Geometry Diagram Construction and Engineering Geometry. Automated D eduction in Geometry, Springer, 226-252, 1999.
    [5] X.S.Gao. Automated Geometry Diagram Construction and Intelligent CAD. Automated Deduction in Geometry, Springer-Verlag, 232-257, 1999.
    [6] V.C.Lin, D.C.Gossard&R.A. Light. Variational Geometry In Computer-Aided Design. Computer Graphics, 1981, Vol. 15, No. 3: pp.171-177.
    [7] R.Light&D.C.Gossard, Modification of geometric models through variational geometry. Geometric Aided Design, July 1982, Vol. 14:pp208-214.
    [8] Sakurai H and Gossard D C. Shape feature recognition from 3D solid models. In: ASME Proc. Computers in Engineering, San Francisco, USA, 1988, 515-519.
    [9] Meeran S and Pratt M J. Automated feature recognition from 2D drawings. CAD, 1993, 25(1):7-17.
    [10] Pratt M J. Synthesis of an optimal approach to form feature modeling. In: ASME Proc. Computers in Engineering, San Francisco, USA, 1988, 263-274.
    [11] Rosen D W, Dixon J R and Finger S. Conversion of feature-based design representations using graph grammar parsing. Journal of Mechanical Design, ASME, 1994, 116(3):785-792.
    [12] Ludy S C, Dixon J R AND Simmons M K. Design with features: creating and using a feature data base. In: Proc. Computers in Mechanical Engineering Conference, Chicago, USA, 1986, 285-292.
    [13] Duffy M R and Dixon J R. Automating extrusion design: a case study in geometric and topological reasoning for mechanical design. CAD, 1988, 20(10): 589-596.
    [14] Cunningham J and Dixon J R. Designing with features: the origin of features. In: ASME Pro. Computers in Engineering, San Francisco, USA, 1988, 237-243.
    [15] Shah J and Rogers M T. Feature based modeling shell: design and implementation. In: ASME Proc. Computers in engineering, San Francisco, USA, 1988, 255-261.
    [16] Shah J and Rogers M. Expert form feature modeling shell. CAD, 1988, 20(9): 515-524.
    [17] Shah j. Assessment of features technology. CAD, 1991, 23(5): 331-343.
    [18] Roy U, Liu C R and Woo T C. Review of dimensioning and tolerancing: representation and processing. CAD, 1991, 23(7): 466-483.
    [19]段卫垠.特征造型的理论研究与实践.华中理工大学博士论文, 1990.
    [20]刘鹤坤.基于特征产品定义的研究与实践.华中理工大学博士论文,1992.
    [21]向文.参数化特征造型系统的研究.华中理工大学博士论文,1992.
    [22] Duan W Y, Zhou J and Lai K. FSMT: A feature solid-modeling tool for feature-based design and manufacture. CAD, 1993, 25(1): 29-38.
    [23]张文祖.适应智能制造环境的机械产品模型研究.华中理工大学博士论文.1993.
    [24]郭群.基于约束的产品特征设计及CAD/CAM集成的研究.华中理工大学博士论文.1998.
    [25]王波兴.几何约束系统若干关键问题的研究与实践.华中理工大学博士论文.2001.
    [26]杨海成.面向对象的CAD/CAM系统开发与集成.西北工业大学博士论文.1990.
    [27]张定华.多轴数编程系统的理论、方法和接口研究.西北工业大学博士论文.1989.
    [28]曾定文.集成化工艺过程设计图象编程智能系统研究.西北工业大学博士论文.1989.
    [29]徐邵宇.基于特征的CAD/CAM集成化研究.西北工业大学博士论文.1990.
    [30]江平宁. CAD指导的坐标测量机智能检测规划集成环境的研究.西安交通大学博士论文.1991.
    [31]焦国方.产品造型CAD环境的研究与开发.中科院计算所博士论文.1990.
    [32]蒋鲲.几何约束求解的新方法.中科院数学与系统科学研究院博士论文. 2001.
    [33]袁波.几何约束求解技术研究与实现.清华大学博士论文.1999.
    [34]李彦涛.基于图规约的几何约束求解技术研究.清华大学博士论文.2001.
    [35]张彦平. CIMS中产品信息建模及数据管理.北京航空航天大学博士论文.1992.
    [36]赵新力.信息建模技术和产品数据交换标准的研究与实施.北京航空航天大学博士论文.1992.
    [37]张应中.机械零件计算机辅助几何造型及特征造型技术的研究.大连理工大学博士论文.1993.
    [38]黎华.几何约束系统建模和求解技术研究.大连理工大学博士论文.2001.
    [39]万华根.面向特征的实时实体显示与线框信息重建.浙江大学硕士论文.1993.
    [40] Chung J.C.H., and M.D.Shussel. Comparison of variational and parametric design. In Proceedings of Antofact89, 1989, 27-44.
    [41] Kramer G A. A geometric constraint engine. Artificial Intelli-pence, 1992, 58:327-360.
    [42] Solano L, Brunet P. Constructive constraint-based model for parametric CAD systems. Computer-Aided Design, 1994, 26(8): 614- 621.
    [43] Light L, Gossard D. Modification of geometric models through variational geometry. Computer Aided Design, 1982, 14( 4): 209- 214.
    [44] Lee J y, Kim K. Geometric reasoning for knowledge-based parametric desigm using graph representation. Computer Aided Design, 1996, 28(10): 831-841.
    [45] Verroust A, Schonek F, Roller D. Rule-oriented method for parameterized computer-aided design. Computer Aided Design, 1992, 24(10): 531-540.
    [46] Bouma W, Fudos I, Hoffmann C, Cai J, Paige R. Geometric constraint solver. Computer Aided Design, 1995, 27(6):481-501.
    [47]葛建新,杨莉.参数化设计中的动态约束迭代及静态因果分析技术.计算机学报, 1997, 20(4):305-314.
    [48]罗浩.基于约束的工程图形参数化设计系统的理论与实践.华中理工大学博士学位论.1995.
    [49] Hillyard R and Braid I. Analysis of dimension and tolerances in computer-aided mechanical design. CAD, 1978, 10(3):161-166.
    [50] Gossard D, Zuffante R P, Hiroshi, Sakurai. Representing Dimension, Tolerances and Features in MCAE systems, IEEE CG & A, 1988: 51-59.
    [51] Lin V C, Gossard D. Variational Geometry Modification in Computer-Aided Design, Computer Graphics, 1981, 15(3): 171-177.
    [52] Light R, Gossard D. Variational Geometry: A new method for modifying part geometry for FiniteElement Analysis, Computer and Structures, 1983: 903-909.
    [53] Lee K, Gossard D. A Hierarchal Data Structure for Representing Assemblies: Part 1, Computer-Aided Design, 1985, 17(1): 15-19.
    [54] Serrano D, Gossard D. Combining Mathematical Models with Geometric Models in CAE Systems, Chincago: Proceedings of 1986 Computer in Engineering Conference and Exhibit, 1986.
    [55] Serrano D, Gossard D. Constraint Management in Conceptual Design, Artificial Intelligence in Engineering Design, ed. Gero J S, Computational mechanics publications, 1988.
    [56] A.Heydon & G.Nelson. The Juno-2 Constraint-Based Drawing Editor. SRC Research Report 131a, 1994.
    [57] R.Light & D.C.Gossard. Modification of geometric models through variational geometry. Geometric A ided Design, 14(7),208-214,1982.
    [58] V.C.L in, D.C.Gossard & R. A. L ight. Variational Geometry in Computer-Aided Design. Computer Graphics, 15(3),171-177, 1981.
    [59] E.L.Allgower & K.Georg. Numerical Continuation Methods, An Introduction Springer-Verlag, 1990.
    [60] E.L.Allgower & K.G eorg. Continuation and Path Following.Acta Numerical,1-84.1993.
    [61] C.Durand. Symbolic and Numerical Techniques for Constraint Solving.PhD thesis, Department of computer Sciences, Purdue University; West Lafayette, IN, USA ,1998.
    [62] H. Lanmre & D. Michelucci. Solving Geometric Constraints By Homotopy. IEEE Trans o n Visualization and Computer Graphics, 2 (1), 28 -34, 1996.
    [63] T.Y. Li. Numerical Solutions of Multivariate Polynomial System by Homotopy Continuation Methods. Acta Numerical, 6, 399-436, 1997.
    [64] J.Ge, S.C.Chou & X.Gao.Geometric Constraint Satisfaction Using Optimization Methods. Computer Aided Design, 31(14). 867-879; 2000.
    [65] J.Ortega & W.Rheinboldt. Iterative Solution of Nolinear Equations in Several Variable. Academic Press, New York, 1970.
    [66] J.Stoer & R.Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, New York, 2nd edition, 1993.
    [67] Duff I S, Reid J K. An implementation of Tarjan's algorithm for the block triangularization of a matrix. ACM Transactions Mathematical Software, 1978, 4(2):137- 147.
    [68] G. Nelson & Juno. A Constraint-Based Graphics System. Computer Graphics, 1985, vol.19, 235-243.
    [69] R.Light and D. Gossard. Modification of geometric models through variational geometry. Geometric Aided Design, July 1982, vol.14, 208-214.
    [70] C.Durand. Symbolic and Numerical Techniques for Constraint Solving. PhD thesis, Department of computer Sciences, Purdue University, West Lafayette, IN, USA, 1998.
    [71] C.Durand & C. M. Hofmann. A Systematic Framework for Solving Geometric Constraints Analytically. J. of Symbolic Computation, 30(5),493-529,2000.
    [72] J.X.Ge, S.C.Chou & X.S.Gao. Geometric Constraint Satisfaction Using Optimization Methods. Computer Aided Design, 2000, Vol.31, No.14, p867-879.
    [73] Barford L A. A graphical, language-based editor for genetic solid models represented by constraints. PhD thesis, Dept of Computer Sciences, Cornell University, 1987.
    [74] Kalra D and Barr A. Constraint-based figure-maker. Eurographics’90, 1990, 413-424.
    [75] Ge J X, Chou S C and Gao X S. Geometric constraint satisfaction using optimization methods. CAD, 1999, 31(14):867-879.
    [76] Kin N, Takai Y and Kunii T L. Geometric constraint solving based on the extended Bo;tzmann machine. Computers in industry, 1992, 19:239-250.
    [77] Thornton A C. A support tool for constraint process in embodiment design. Design Theory and Methodology, DTM’94, ASME, 1994, 68:231-239.
    [78] Hel-Or Y, Rappoport A and Werman M. Relaxed parametric design with probabilistic constaints. CAD, 1994, 26: 426-434.
    [79] Parbon J, Young R. Integrating parametric Geometry, Features, and Variational Modeling for Conception Design, Int. Journal of System Automation. 1992, 4:17-37.
    [80] Gosling J. Algebraic Constraints, P.H.D Thesis, Carnegie Mellon University, May 1983.
    [81] B.Buchberger. An Algorithm for Finding a Basis for the Residue class Ring of a Zero-Dimensional Polynomial Ideal (in German). PhD thesis, Institute if Mathematics, University of Innsbruck, Austria, 1965.
    [82] B.Buchberger. Grobner Basis: An Algorithmic Method in Polynomial Ideal Theory. In N.K. Bose, editor, Recent Trends in Multidimensional Systems Theory, D.Reidel, 1985, 184-232.
    [83] D.Cox, H. Little & D.O’shea. Ideals, Varieties and Algorithms. Springer-Verlag, 1992.
    [84] N.K.Bose, editor. Multidimensional Systems Theory, pages 184-232. D.Reidel Publishing Co., 1985.
    [85] Chou S C. Mechanical Geometry theorem proving, Dordrecht: Kluwer, 1987.
    [86] C.M. Hoffmann. Solid and geometric Modeling. Morgan Kaufmann, 1989.
    [87] K.Kondo. Algebraic Method for Manipulation of Dimensional Relationships in Geometric Models. Computer Aided Design, 1992, Vol.24, No.3, 141-147.
    [88] K.Kondo. PIGMOD: parametric and interactive geometric modeler for mechanical design. Computer Aided Design, 22(10):633-644, December 1990.
    [89] K.Kondo. Algebraic method for manipulation of dimensional relationships in geometric models. CAD, 24(3): 141-147, March 1992.
    [90] W.T.Wu. Basis Principle of Mechanical Theorem Proving in Geometries, Volume I: Part of Elementary Geometries. Science Press, Beijing (in Chinese) 1984. English Translation, Springer, 1994.
    [91] D.Wang. On Wu’s Method for Solving Systems of Algebraic Equations. RISC-Linz Series 91-52, Johannes Kepler University, Austria, 1989.
    [92] D.Lazard. On Theories of Triangular Sets. Journal of Symbolic Computation, 28:105-124, 1999.
    [93] D.Kapur, T.Saxena & L.Yang. Algebraic and Geometric Reasoning with Dizon Resultants. In Proc. ISSAC’94, Oxford, ACM Press, 1994.
    [94] Borning A H. The programming language aspects of ThingLab, a constraint oriented simulation laboratory. ACM TOPLAS, 1981, 3(4): 353-387.
    [95] D.Kapur, T.Saxena & L.Yang. Algebraic and Geometric Reasoning with Dizon Resultants. In Proc. ISSAC’94, Oxford, ACM Press, 1994.
    [96] Y.Yamaguchi, F., Kimma. A constraint modeling system for variational geometry. Geometric Modeling for Product Engineering, IFIP, 1990.
    [97] H.Suzuki, H.Ando, F.Kimma. Geometric constraint and reasoning for mechanical CAD systems. Computer Graphics, vol.14, No.2, 1990, 211-224.
    [98] H.Ando, H.Suzuki, F.kimura. A geometric reasoning system for mechanical product design. Computer Applications in Production and Engineering, North-Holland, 1989, 131-140.
    [99] G.Sunde. A CAD System with Declarative Specification of Shape. EuroGraphics Workshop on Intelligent CAD Systems, the Nederlands, 1987.
    [100] Roller D, Schonck F and Verroust A. Dimension-driven geometry in CAD: a survey. In Strauper(eds). Geometric Modeling Methods and Applications. Springer-Verlag, 1989, 509-523.
    [101] R.Joan-Arinyo & A.Soto. A Correct Rule-Based Geometric Constaint Solver. Compt. and Graphics , 1997, 21(5): 599-609. [103]. A.Verroust, F.Schonek and D.Roller. Rule-Oriented Method for Parameterized Computer-Aided Design., October 1992, 24(10): 531-540.
    [102] X.S.Gao & S.C.Chou. Solving Geometric Constaint Systems I. A Global Propagation Approach. Computer-Aided Design, 1998, 30(1): 47-54.
    [103] R.Joan-Arinyo & A.Soto. A Correct Rule-Based Geometric Constaint Solver. Compt. and Graphics , 1997, 21(5): 599-609.
    [104] R.Joan-Arinyo & A.Soto. Combing Constructive and Equational Geometric Constaint-Solving Techniques. ACM Trac. on Graphics, 1999, 18(1): 35-55.
    [105] R.Joan-Arinyo & A.Soto. A Rule-and Compass Geometric Constraint Solver. In M.J.Pratt, R.D.Sriram & M.J.Wozny, editors, Product Modeling for Cmputer Integrated Design and Manufacture, Chapman and Hall, London, 1997, 384-393.
    [106] C.M.Hoffmann & R. Joan-Arinyo. Symbolic Constaint in Constructive Geometry. Journal of Symbolic Compuation, 1997, 23: 287-300.
    [107]陈立平,周济等.几何约束系统推理研究.华中理工大学学报, 1995(6):70-74.
    [108]罗浩,陈立平,周济.基于规约的几何约束推理研究.计算机辅助设计与图形学学报, May.1997, 9(3):262-268.
    [109]董金祥,葛建新,高屹,李海龙.变参数绘图系统中约束求解的新思路。计算机辅助设计与图形学学报,Nov. 1997, 9(6): 513-519.
    [110]谭孟恩,董金祥,葛建新,何志均.基于几何抽象的约束问题求解。软件学报, June. 1997, Suppl. 42-48.
    [111] J.Owen, Algebraic Solution for Geometry from Dimensional Constraints, in ACM Symp., Found of Solid Modeling, 397-407, ACM Press,Austin TX,1991.
    [112] I.Fudos & C. M. Hofmann. A Graph-constructive Approach to Solving Systems of Geometirc Constarints. ACM Transactions on Graphics,16(2), 179-216, 1997.
    [113] C.M. Hofmann & P. J.Vermeer. Geometric Constarint Solvingin R2 and R3. in Computing in Euclidean Geometry, D. Z. Du & F. Huang (eds), World Scientific, Singapore, 266-298, 1995.
    [114] G.A.Kramer. Solving Geometric Constraints Systems: A Case Study in Kinematics, MIT Press, 1992.
    [115] S.Ait-Aoudia, R.Jegou & D.Michelucci. Reduction of Constraint Systems. In Proc. Compugraphics, Alvor, Portugal, 1993, 83-92.
    [116] C.Hsu & Beat D. Bruderlin. Moving into Higher Dimensions of Geometric Constraint Solving. Technical Report UUCS-94-027, Department of Computer Science, University of Utah, 1994.
    [117] Kramer G. Solving Geometric Constraint Systems, Proceedings AAAI-90, Boston MA, 1990: 1038-1044.
    [118] Kramer G. A geometric constraint Engine, Artificial Intelligence, 1992, 58: 327-360.
    [119] D-Cubed. The Dimensional Constraint Manager. Cambridge, England, 1994. Version 2.7.
    [120] B.Yuan & J. G Sun. A Graph Based Approach to Design Decomposition. The 6th International Conference on CAD &CG, Shanghai-China, Dec. 1999, 984-988.
    [121] Yantao Li & Jiaguang Sun. A Propagation Approach to Geometric Constraint solving. In the Proceedings of the 6th International Conference on Computer Aided Design & Computer Graphics, 1999, 994-998.
    [122] Li Yan-Tao, Hu Shi-Min & Sun Jia-Guang. Hybrid model of geometric constraint satisfaction. Journal of Computer Research and Development, 2000, 37(10): 1233-1239.
    [123]陈立平,涂中斌,罗浩,周济.一种新的面向参数化绘图的约束管理技术.软件学报, Jul. 1996, 7(7): 394-400.
    [124]罗浩,陈立平,周济.几何约束满足问题的规约分治算法.计算机学报, Sept.1996, Vol. 19, Suppl, 232-239.
    [125] Liping Chen, Feng Gao & Ji Zhou. An Optimal Method of bipartite Graph Matching for Under-Constrained Geometry Solving. In the Proceedings of the 6th International Conference on Computer Aided Design & Computer Graphics, 1999, 952-957.
    [126] R.Joan-Arinyo&A.Soto.Combining Constructive and Equational Geometric Constraint-Sloving Techniques. ACM Trac. On Graphics, 18(1),35-55, 1999.
    [127] W.Bouma, I.Fudos, C.M.Hofmann, J.Cai & R.Paige. A Geometric Constraint Solver. Computer Aided Design, 27(6), 487-501,1995.
    [128] I.Fudos & C.M. Hofmann. A Graph-constructive Approach to Solving Systems of Geometirc Constarints. ACM Transactions on Graphics,16(2), 179-216, 1997.
    [129] C.M. Hofrnann, A.Lomonosov & M.Sitharam. Decomposition Plans for Geometric Constraint Systems, I: Performance Measures for CAD. 31, 367-408; II: New Algorithms. 31, 409-427, J.of Symbolic Computation, 2001.
    [130] C.M. Hofmann, W. Bouma, I. Fudos, J. Cai, & R. Paige. A Geometric Constraint Solver. CSD-TR-054, CS Department, Purdue Univ, 1993.
    [131] C.M. Hoffmann, & R.Joan-Arinyo. Symbolic Constraint in Constructive Geometry. Journal of Symbolic Computation, 23, 287-300, 1997.
    [132] C.Durand & C.M.Hofmann. A Systematic Framework for Solving Geometric Constraints Analytically. J.of Symbolic Computation,30(5),493-529,2000.
    [133] C.Durand. Symbolic and Numerical Techniques for Constraint Solving. PhD thesis, Department of computer Sciences, Purdue University, West Lafayette, IN USA, 1998.
    [134] X.S.Gao, L.Huang & K, Jiang. A Hybrid Method for Solving Geometric Constraint Problems in Automated Deduction in Geometry. J.Richter-Gebert & D. Wang (eds): LNAI No.2061, Springer-Verlag, Berlin, 16-25,2001.
    [135] C.Hsu & B.Brüderlin. A Hybrid Constraint Solver Using Exact and Iterative Geometric Constructions. in CAD Systems Development-Tools and Methods. Springer Verlag, 1997.
    [136] X.S.Gao, C.M.Hofmann & W.Yang. Solving Basic Geometric Constraint with Locus Intersection. Proc. ACM SM02, ACM Press, New York, 95-104, 2002.
    [137]唐荣锡等, CAD/CAD技术,北京航空航天大学出版社. 1994.
    [138] Light R A, Gossard D C. Modification of geometric models through variational geometry. Computer Aided Design, 1982, 14(4):209-214.
    [139] Kramer G A . Solving Geometric Constraint Systems. Massachusetts: MIT Press, 1992.
    [140] Durand C·Symbolic and numerical techniques for constraint solving [D]·West Lafayette: Purdue University, 1998.
    [141] Hoffmann C M, Lomonosov A, Sitharam M. Geometric Constraint Decomposition [M]. In: Beat Br, ed. Geometric Constraint Solving and Applications. New York: Springer-Verlag,1998·170~195.
    [142]高剑锋等.二维几何约束求解器具[J].计算机辅助设计与图形学学报,2000,12(2):110-115.
    [143] Chen Liping, Luo Hao, Tu ChongBin, et al. In: Fourth International Conference on CAD & CG. Wuhan, China, 1995, 599-604.
    [144]蒋鲲.几何约束求解的新方法.中科院数学与系统科学研究院博士论文.2001.
    [145]董金祥,葛建新,高屹等.变参绘图系统中约束求解的新思路[J].计算机辅助设计与图形学学报,1997,9(6):513-519.
    [146] Rina Dechter. Constraint Networks. In Encyclopedia of Artificial Intelligence, 1999.
    [147]李彦涛,胡事民,孙家广.一个几何约束系统分解的新算法.[J]计算机辅助设计与图形学学报, 2000(12),p926-930.
    [148]罗忠祥,唐任仲.基于图论的参数化求解方法的研究.机电工程, 1999(5), p160-162.
    [149]易荣庆,李文辉,袁华.基于有向图的约束求解新算法, [J].工程图学学报2009(3).
    [150] Gao X S and Chou S C and Gao X S. Geometric constraint satisfaction using optimization methods. CAD, 1999; 31(14): 867-879.
    [151] Moscato, P. and Norman, M.G. A′Memetic′Approach for the Traveling Salesman Problem: Implementaiton of a Computational Ecology for Combinatorial Optimization on Message-Passing Systems. In Parallel Computing and Transputer Applications, IOS Press, Amsterdam, 1992:187-194.
    [152] Kennedy J., Eberhart R.C. Particle swarm optimization. Proceedings of IEEE International Conference On neural networks.Vol.IV.IEEE. 1995.1942-1948.
    [153] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Preceedings of the IEEE Conference on Evolutionary Computation, ICEC, Vol.1: 84-88.
    [154] Ayed Salman, Imtiaz Ahmad, Sabah Al-Madani. Particle Swarm Optimization for task assignment problem. Microprocessors and Microsystems 26. Department of Computer Engineering, Kuwait University. 2002:363~371.
    [155]胡家声.粒子群优化算法及其若干工程应用研究.华中科技大学硕士论文. 2004.
    [156]张丽平.粒子群优化算法的理论及实践.浙江大学博士论文. 2005.
    [157] Kennedy J, Eberhart R.C, Shi Yuhui.Swarm intelligence[M].San Francisco:Morgan Kaufmann Publisher,2001.
    [158] Kennedy J. Bare bones particle swarm[C]. IEEE Swarm Intelligence Symposium, Indianapolis, IN, 2003.
    [159] Kennedy J.Probability and dynamics in the particle swarm[C].IEEE Congress on Evolutionary Computation(CEC2004),2004,1:340~347.
    [160] Secrest B.R, Lamont G.Bc. Visualizing particle swarm optimization-Gaussian particle swarm optimization[C]. IEEE Symposium on Swarm Intelligence (SIS'03),2003,198~204.
    [161] Mendes R,Kennedy J,Neves J.Watch thy neighbor or how the swarm can learn from its environment[C].IEEE Symposium on Swarm Intelligence (SIS'03),2003,88~94 [40].
    [162] Angeline P.J. Using Selection to Improve Particle Swarm Optimization [C]. IEEE World Congress on Computational Intelligence, 1998, 84~89.
    [163] Glover F. Future Paths for integer programming and links to artifieial intelligenee[J].Computers and Operations Researeh,1986,13:533~549.
    [164] Marco Dorigo, Eric Gonabeau, Guy Theraulaz. Ant Algorithm and Stigmergy. Future Generation Computer System, 2000,Vol.16, No.5, 851-871.
    [165] M.Dorigo, G.Di Caro. Ant colony optimization: a new meta-heuristic. IEEE Congress on Evolutionary Computation, 1997, 1470-1477.
    [166] Gambardella L M, Dorigo M.Ant-Q:an reinforcement learing approach to the traveling salesman problem[C]. Proc.of 12th Machine Learing. France:Morgan Kaufmanm:1995.252-260.
    [167] Dorigo M, Gambardella L M.A study of some poperties of ant-Q algorithms[C]. Proceeding of parallel Problen Solving from Nature(PPSN).Berlin:1996.656-665.
    [168] Gambardella L M,Dorigo M.Solving symmetric and asymmetric TSPs by ant colonies[C]. Proc.of IEEE Conf.Evolutionary Computation.1996.622-627.
    [169] Stuzle T, Hoos H H. MAX-MIN ant system[J]. Future Generation Computer Systems, 2000,16(8):889-914.
    [170] M Dorigo,V Maniezzo and A Colorni.The ant system:Optimization by a colony ofcooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics Part B,1996,26(1):29-41.
    [171] Jang Sungchu箸,胡朝阳译.免疫算法与其它模拟进化优化算法的比较研究,电力情报, 1998(1):61~63,73.
    [172]高洁.应用免疫算法进行电网规则研究,系统工程理论与实践, 2001(5):119~123.
    [173]孙勇智,韦巍.基于人工免疫算法的电力系统最优潮流计算,电力系统自动化, 2002,26(12):30~34.
    [174]谈英姿,沈烔,吕震中.免疫优化算法及其前景展望,信息与控制, 2002,3(5):385~390.
    [175]李蔚,刘长东,盛德仁,陈坚红,袁镇福,岑可法.免疫算法在火电机组优化组合中的应用,浙江大学学报(工学版), 2004,38(8):1090~1094.
    [176]王凌.智能优化算法及其应用.清华大学出版社. 2001.10.
    [177]熊盛武,王琼,刘麟.一种解决函数优化问题的免疫算法,武汉理工大学学报, 2005,27(3):84~86.
    [178]梁瑞鑫,基于混沌理论和人工免疫理论优化方法的研究-及其在高炉操作参数优化中的应用,北京科技大学博士学位论文. 2002.
    [179]王东风,韩璞.基于免疫遗传算法优化的汽温系统变参数PID控制,中国电机工程学报, 2003,23(9):212~217.
    [180]张著洪,黄席樾.一种新的免疫算法及其在多模态函数优化中的应用,控制理论与应用,2004,21(1):17~21.
    [181]崔逊学.基于免疫原理的多目标进化算法群体多样性研究,模式与识别与人工智能, 2001,14(3):291~296.
    [182]李子韵.基于免疫算法的配电网电容器优化配置,河海大学硕士学位论文, 2003.
    [183]张进华.免疫遗传算法在机械工程模糊优化设计中的应用研究,西安交通大学硕士学位, 2003.
    [184]谈英姿.人工免疫工程及其热工过程控制应用,东南大学博士学位论文, 2002.
    [185] Endih S,Toma N,Yamada K.Immune algorithm for n-TSP,IEEE International Conference on Systems,Man,and Cybernetics.1998,4:3844-3849.
    [186]李蔚,刘长东,盛德仁,陈坚红,袁镇福,岑可法.免疫算法在火电机组优化组合中的应用,浙江大学学报(工学版), 2004, 38(8):1090~1094.
    [187] CHUN J S,KIMM K,JUNG H K.Shape optimization of electromagnetic devices using immune algorithm.IEEE Transactions on Magnetics,1997,33(2):1876-1879.
    [188] Knowles J.D,Come D.W.Approximating the nondominated front using the Pareto archived evolution strategy.Evolutionary Computation,2000,8(2):149-172.
    [189] Robillson S. Extension of Newton’s method to nonlinear functions with values in a cone. Numerical Mathematics, 1972,19:341-347.
    [190] Hentenryck P, Miehel L,Deville Y. Nomerica: A Modeling Language for Global Optimization. Cambridge: The MIT Press, 1997. 1-16.
    [191]邹秀芬,刘敏忠,吴志健,康立山.解约束多目标优化问题的一种鲁棒的进化算法.计算机研究与发展.2004,41(6):985-990.
    [192]侯云鹤,熊信艮,吴耀武等.基于广义蚁群算法的电力系统经济负荷分配.[J].中国电机工程学报, 2003, 23(3):59-64.
    [193]丁永生.计算智能-理论、技术与应用.北京.科学出版社.2004.
    [194]高康林,李德生,殷爱武,宋健,王晓辉.智能优化技术的免疫算法研究,现代电子技术, 2005,2:34~38.
    [195]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 1999. 27-28.
    [196]. Maranas C, Floudas C. Finding all solutions of nonlinearly constrained systems of equations. Journal of Global Optimization, 1995, 7(2):143-182.
    [197]曹春红.几何约束求解技术的研究,吉林大学博士论文, 2005.
    [198]陈永,李立,张剑,严静,一种基于同伦函数的迭代法----同伦迭代法,数值计算与计算机应用, 2:6 (2001), 149-155.
    [199] Light R, Gossard D, Modification of geometric models through variational geometry[J], Computer Aided Design, 1982, 14(4):209-214.
    [200]张纪远,沈守范.确定机构运动学解的区间分析法,机械工程学报,27:2(1991), 75-79.
    [201] E.L.Allgower & K.Georg, Numerical Continuation Methods, An Introduction. Springer-Verlag, 1990.
    [202] E.L.Allgower & K.Georg, Continuation and Path Following, Acta Numerical, 1993, 1-84.
    [203] T.Y.LI, Numerical Solutions of Multivariate Polynomial Systems by Homotopy Continuation Methods,Acta Numerical, 1997, Vol.6, 399-436.
    [204]王则柯,高堂安,同伦方法引论,重庆出版社, 1990.
    [205] Tsai, L.W.,Morgan, A., Solving the Kinematics of the Most General Six-and-Five-Degree of Freedom Manipulators by Continuation Methods, ASME Journal of Mechanisms, Transmissions and Automation in Design, 107(1985): 189-200.
    [206] Morgan, A.P., Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems, Prentice-Hall, 1987.
    [207] Li, T.Y., Yorke,J.A., The Random Product Homotopy and deficient Polynomial Systems, Numerische Mathemetik, 51(1987), 481-500.
    [208] Li, T.Y., Yorke, J.A., The Cheater’s Homotopy: An efficient Procedure for Solving System of Polynomial Equations, SIAM, Journal of Numerical Analysis, 18:2(1988), 173-177.
    [209] Morgan, A.P., Sommese, A.J., Coefficient Parameters Polynomial Continuation, Appl. Math. Comput.29(1989), 123-160.oyouniurougan.
    [210]黄像鼎,曾钟钢,马亚南.非线性数值分析[M]武汉:武汉大学出版社,2000.
    [211]卢侃等编译.混沌动力学.上海:上海远东出版社[M],1990.
    [212]褚美茹,崔明勇.混沌遗传算法在配电网无功优化中的应用,信息技术, 2004, 28(10):48-50.
    [213] J-X Ge. S-C Chou. X-S Gao. Geometrie Constraint Solving with Optimization Methods [J]. CAD.2002.31(14):867-879.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700