用户名: 密码: 验证码:
有机朗肯循环热源耦合机理及流型协同理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中低温能源占世界能源总储量一半以上。合理、有效利用中低温能源对人类持续发展具有重要意义。有机朗肯循环作为一种高效的低温热功转换技术,为中低温能源的利用提供了有效途径。目前有机朗肯循环技术仍处于发展阶段,理论分析方法与实际应用均不成熟,具体表现为热力学分析模式单一,换热设备体积大、成本高,严重制约有机朗肯循环技术的发展与推广。本论文针对以上具体科学问题,从系统与部件两个层面,分别开展研究工作。
     首先基于系统层面研究,提出了有机朗肯循环热力学新方法以及求解方案。新方法的提出改变了传统有机朗肯循环热力学分析方式,不仅将膨胀机输出功与系统热效率完全统一,并且把热源与窄点温差作为重要参数同时引入循环系统中,在充分考虑热源温度与窄点温差双重影响下,通过对膨胀机输出功、窄点温差以及烟气进出口温度等因素的研究,深度剖析有机朗肯循环系统整体循环性能。研究结果表明,在给定热源与窄点温差的约束条件下,系统的热效率、膨胀机的进口压力和有机工质的质量流率随着膨胀机的进口温度的增加而减少。最佳运行工况出现在膨胀机进口处的蒸汽处于饱和状态或轻微过热状态。窄点温差的增加,使得膨胀机进口压力下降,导致了系统的热效率降低。目前将ORC热力学分析新方法作为指导思想,探索并筛选出甲苯、苯和环己烷三种有机工质,不仅适用于不同中温热源有机朗肯循环,并且具有更广泛的运行范围。在有效回收余热的同时,将膨胀机输出功最大化。
     蒸发器与冷凝器作为有机朗肯循环主要换热设备直接影响系统循环效率,其主要科学问题体现为小温差换热需求导致换热面积大,成本高。在最佳运行工况下,冷凝器(?)效率最低,因此提高冷凝器换热性能,降低其不可逆损失,对提高整个系统性能具有重要作用。新型相分离流动结构的构想与实施,解决了这一科学难题。本论文针对相分离流型调控过程开展数值研究,研究结果不仅从多角度揭示了垂直相分离冷凝管冷凝强化换热机理主要表现为薄液膜传热模式与自发性振荡流动循环结构,同时还建立了不同重要参数之间的定量关系。对于垂直相分离冷凝管内气泡流动过程中出现的泄漏现象给予了理论性分析,通过拟合曲线获得气泡泄漏判别式。本论文进一步将相分离冷凝管拓展到了小重力和微重力环境中,总结了重力对相分离流型调控过程的影响,在不同重力条件下,流型调控后依然呈现“气在壁面,液在中心”的全新分布模式。重力越小,调控后液膜厚度减小幅度越大,冷凝换热量越大,特别是在微重力情况下,环隙区域内完全被气体占据,膜厚度减薄到了1/3,冷凝换热量提高57.4倍。
     在本论文研究过程中,发展了多种数值方法。其中包括跨尺度网格系统的建立,动态参考坐标系的应用,局部动态网格加密技术。在获取精确计算结果的同时,更加节省了计算时间,解决了多尺度计算的难题。
     本论文的研究成果,极大的拓展了对有机朗肯循环及流型协同理论的认识,为有机朗肯循环系统设计和运行,以及相分离冷凝管的应用等提供科学指导。
Low grade thermal energy (heat) such as waste heat, geothermal, and heat from low to moderate temperature solar collectors, accounts for more than one half of the total heat generated worldwide. It is significantly to utilize the energy from low grade thermal energy for human sustainable development. Organic Rankine Cycle (ORC) is applied efficiently to recover the low grade thermal energy as a kind of the thermal power conversion technology. At present, however, the development and application of the ORC are restricted due to the unitary thermodynamic analysis mode and the requirement of the large size for heat transfer equipment. In this paper, the research on ORC is carried on from both system and component to improve the ORC performance.
     A new design method for Organic Rankine Cycles coupling heat source and solution strategy are proposed firstly based on the ORC system analysis. The new design method is not only building the connection between expansion power and thermal efficiency, but also considering influence of the heat source and pinch temperature difference on the ORC performance. The results indicate that With constraint of the given heat source and pinch temperature difference, the system thermal efficiency, expander inlet pressure and mass flow rate of the organic fluid are decreased with increases in the expander inlet temperatures. The optimal condition appears at the saturated or slightly-superheated vapor state at the expander inlet. The increase in the pinch temperature differences yields the decreased expander inlet pressure to reduce the system thermal efficiency. Furthermore, the three organic working fluid, toluene, benzene and cyclohexane, are selected for medium temperature ORC system due to the higher thermal efficiency and larger operation range applying the new design method.
     As the main heat transfer equipment, the evaporator and condenser are influence on the ORC system performance strongly. It is point that the exergetic efficiency of the condenser is lowest in the ORC system via analyzing based on the new design method. Besides that, the low temperature difference heat transfer process in the evaporator and condenser leads to the requirement of the larger size and higher manufacture cost. Phase separation condensation tube is applied to solve this scientific problem. In this paper, the numerical simulation is carried on to quantify the relationship among the different parameters. The simulation results reveal that the mechanism of the phase condensation tube enhance heat transfer is contributed by the extra liquid film and three-levels of liquid circulation. The tube behaves the upward mixture flow in the annular region and downward liquid flow in the core region. Void fractions are exact zero in the core region and larger in the annular region, indicating the gas phase flowing in the annular region and inside of the mesh cylinder is liquid. Liquid film thicknesses are significantly decreased by the modulated flow. The three-levels of liquid circulation promote the liquid mixing over the whole tube length and within the radial direction. These circulations were performed through mesh pores. Besides that, the critical criterion is proposed to prevent the bubble leakage deteriorating heat transfer. The research will further developing into the small gravity and microgravity environment. The phase distribution still keeps "gas near the tube wall and liquid in the tube core". The liquid film thickness and condensation heat transfer quantity decrease significantly as the gravity decreasing. Especially for the microgravity, the annular region of the tube is occupied by gas totally.
     During the numerical simulation process, some kinds of the numerical technology, including the multiscale grid system, dynamic mesh adaption and the frame of reference coordinate, are developed and employed to reduce the computing period.
     The conclusions of this paper will promote the ORC system and modulating flow pattern theory research, and provide support for the ORC system and phase separation condensation tube design and application.
引文
[1]Chen H, Goswami D Y, Muhammad M R, et al. A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power [J]. Energy,2011,36(1):549-555.
    [2]Roy J P, Mishra M K, Misra A. Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions [J]. Applied Energy,2.011,8(9):2995-3004.
    [3]Roy P, Desilets M. Thermodynamic analysis of a power cycle using a low-temperature source and a binary NH3-H2O mixture as working fluid [J]. Int. J. of Thermal Sciences 2010; 49:48-58.
    [4]中信重机公司,水泥余热发电技术介绍,2004。
    [5]张轶,中外水泥窑低温余热发电对比[J],中国建材,2005(6),43-46。
    [6]李文,水泥厂带补燃锅炉的中低温余热发电系统[J],应用能源技术,2000(3),35-37。
    [7]Fernandez-Garcia A, Zarza E, Valenzuela L, Perez M. Parabolic-trough solar collectors and their applications. Renewable and Sustainable Energy Reviews 2010; 14:1695-721.
    [8]Clean energy ahead Turboden A Pratt & Whitney Power Systems. Brescia, Italy.Available from: [accessed 11.03.11].
    [9]Canada S, Cohen G, Cable R, Brosseau D, Price H. Parabolic trough organic Rankine cycle solar power plant. In:Solar energy technologies programreview meeting.2004.
    [10]Ormat Technologies, Inc. Reno, United States. Available from: [accessed 11.03.11].
    [11]Agustin D, Lourdes G. Comparison of solar technologies for driving a desalination system by means of an organic Rankine cycle. Desalination 2007; 216:276-91.
    [12]Joan B, Jesus L, Eduardo L, Silvia R, Alberto C. Modelling and optimisation of solar organic Rankine cycle engines for reverse osmosis desalination. Applied Thermal Engineering 2008; 28:2212-26.
    [13]Rayegan R, Tao YX. A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs). Renewable Energy 2011;36:659-70。
    [14]Robert B. Current costs of solar powered organic Rankine cycle engines. Solar Energy 1977; 20:1-6.
    [15]Wang JL, Zhao L, Wang XD. A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle. Applied Energy 2010; 87: 3366-73.
    [16]Gang P, Jing L, Jie J. Analysis of low temperature solar thermal electric generation using regenerative organic Rankine cycle. Applied Thermal Engineering 2010; 30:998-1004.
    [17]Hung T, Wang S, Kuo C, Pei B, Tsai K. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy 2010; 35: 1403-11.
    [18]Agustin D, Lourdes G. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycle (ORC). Energy Conversion and Management 2010; 51:2913-20.
    [19]Lourdes G, Agustin D. Solar-powered Rankine cycles for fresh water production. Desalination 2007; 212:319-27.
    [20]Agustin D, Lourdes G. Double cascade organic Rankine cycle for solar-drivenreverse osmosis desalination. Desalination 2007; 216:306-13.
    [21]Kosmadakis G, Manolakos D, Papadakis G. Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination. Renewable Energy 2010; 35:989-96.
    [22]Lourdes G, Julian B. Solar-heated Rankine cycles for water and electricity production:POWERSOL project. Desalination 2007; 212:311-8.
    [23]Manolakos D, Mohameda E, Karagiannis I, Papadakisa G. Technical and economic comparison between PV-RO system and RO-solar Rankine system. Case study:Thirasia island. Desalination 2008; 221:37-46.
    [24]Manolakos D, Papadakisa G, Kyritsisa S, Bouzianasb K. Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination. Desalination 2007; 203:366-74.
    [25]Ruyck J, Delattin F, Bram F. Co-utilization of biomass and natural gas in combined cycles through primary steam reforming of the natural gas. Energy 2007; 32:371-7.
    [26]David G, Michel F. Small scale biomass power plant using organic Rankine cycle technology. SAS Enertime; 2008.
    [27]Duvia A, Guercio A. Technical and economics aspects of biomass fuelled CHP plants based on ORC turbogenerator feeding existing district heating networks. In:Proceedings of the 17th biomass conference and exhibition.2009.
    [28]Duvia A, Tavolo S. Application of ORC units in the pellet production field: technical-economic considerations and overview of the operational results of an ORC plant in the industry installed in Mudau (Germany). In:Proceedings of the 16th Biomass conference and exhibition.2008.
    [29]Brignoli V, Malidin A, Colombo D. Small scale biomass powered organic Rankine cycle turbo generator. In:Proceedings of the 16th biomass conference and exhibition.2008.
    [30]Dong L, Liu H, Riffat S. Development of small-scale and micro-scale biomassfuelled CHP systems A literature review. Applied Thermal Engineering 2009; 29:2119-26.
    [31]Rentizelas A, Karellas S, Kakaras E, Tatsiopoulos I. Comparative technoeconomic analysis of ORC and gasification for bioenergy applications. Energy Conversion and Management 2009; 50:674-81.
    [32]Poeschl M, Ward S, Owende P. Prospects for expanded utilization of biogas in Germany. Renewable and Sustainable Energy Reviews 2010; 14:1782-97.
    [33]Andreas W, Martin K, Woo Y. Renewable power generation-a status report. Renewable Energy Focus 2009:68.
    [34]Schulz W, Heitmann S, Hartmann D, Manske S, Peters ES, Risse S. Utilization of heat excess from agricultural biogas plants. Bremen Germany:Bremer Energie Institut, University Bremen, Institut fur Umweltverfahrenstechnik; 2007.
    [35]Martina P, Shane W, Philip O. Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy 2010; 87:3305-21.
    [36]Gianni B, Umberto D, Francesco DM. A single flash integrated gas turbinegeothermal power plant with non condensable gas combustion. Geothermics 1999; 28:131-50.
    [37]Gianni B, Umberto D, Francesco DM. A single flash integrated gas turbinegeothermal power plant with non condensable gas combustion. Geothermics 1999; 28:131-50.
    [38]Desideri U, Bidini G. Study of possible optimisation criteria for geothermal power plants. Energy Conversion and Management 1997; 38(15-17):1681-91.
    [39]Heard C, Fernandez H, Holland F. Development in geothermal energy in Mexico-part twenty seven:the potential for geothermal organic Rankine cycle power plants in Mexico. Heat Recovery Systems & CHP 1990; 10(2):79-86.
    [40]Dipippo R. Geothermal power plants:principles, applicants, case studies and environmental impact.2nd ed. Elsevier; 2008.
    [41]Franco A, Villani M. Optimal design of binary cycle power plants for water-dominated, medium-temperature geothermal fields. Geothermics 2009; 38:379-91.
    [42]Lukawski M. Design and optimization of standardized organic Rankine cycle power plant for European conditions. Master's thesis. University of Iceland & the University of Akureyri, Akureyri, Iceland; February 2009.
    43] Gu Z, Sato H. Optimization of cyclic parametres of a supercritical cycle for geothermal power generation. Energy Conversion and Management 2001; 42: 1409-16.
    44] Gu Z, Sato H. Performance of supercritical cycles for geothermal binary design. Energy Conversion and Management 2002; 43:961-71.
    45] DiPippo. R. Second Law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics 2004; 33:565-86.
    46] Kanoglua M, Bolatturk A. Performance and parametric investigation of a binary geothermal power plant by exergy. Renewable Energy 2008; 33:2366-74.
    47] Mohanty B, Paloso G. Economic power generation from low temperature geothermal resources using organic Rankine cycle combined with vapour absorption chiller. Heat Recovery Systems & CHP 1992; 12(2):143-58.
    48] Rosyid H, Koestoer R, Putra N, Nasruddin, Mohamad, Yanuar A. Sensitivity analysis of steam power plant-binary cycle. Energy 2010; 35:3578-86.
    49] Borsukiewicz GA. Dual-fluid-hybrid power plant co-powered by lowtemperature geothermal water. Geothermics 2010; 39:170-6.
    50] Heberle F, Bruggemann D. Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation. Applied Thermal Engineering 2010; 30:1326-32.
    51] Bronicki L. Electrical power from moderated temperature geothermal sources with modular mini-power plants. Geothermics 1988; 17(1):83-92.
    52] Sternlicht B. Waste energy recovery:an excellent investment opportunity. Energy Conversion and Management 1982;22:361-73.
    53] Chacartegui R, Sanchez D, Munoz JM, Sanchez T. Alternative ORC bottoming cycles for combined cycle power plants. Applied Energy 2009; 86:2162-70.
    54] Gutierrez L, Lopez J. Residual heat to power generation in a compression station of Enagas (Spain). In:Proceedings of the 24th World Gas Conference. 2009.
    55] Lu T, Wang KS. Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery. Applied Thermal Engineering 2009; 29:1478-84.
    56] Invernizzi C, Iora P, Silva P. Bottoming micro-Rankine cycles for micro-gas turbines. Applied Thermal Engineering 2007; 27:100-10.
    57] Najjar Y, Radhwan A. Cogeneration by combining gas turbine engine with organic Rankine cycle. Heat Recovery Systems & CHP 1988;8(3):211-9.
    58] Najjar Y. Efficient use of energy by utilizing gas turbine combined systems. Applied Thermal Engineering 2001; 21:407-38.
    59] Bombarda P, Invernizzi C, Pietra C. Heat recovery from Diesel engines:a thermodynamic comparison between Kalina and ORC cycles. Applied Thermal Engineering 2010; 30:212-9.
    [60]Vaja I, Gambarotta A. Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs). Energy 2010; 35:1084-93.
    [61]Srinivasan K, Mago P, Krishnan S. Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an organic Rankine cycle. Energy 2010; 35:2387-99.
    [62]Querol E, Gonzalez RB, Garcia TJ, Ramos A. Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal. Applied Energy 2011, doi:10.1016/j.apenergy.2011.01.023.
    [63]Kane M, Larrain D, Favrat D, Allani Y. Small hybrid solar power system. Energy 2003; 28:1427-43.
    [64]Chacartegui R, Sanchez D, Munoz JM, et al. Alternative ORC bottoming cycles for combined cycle power plants. Applied Energy,2009,86(10),2162-2170.
    [65]Chen. Y, P. Lundqvist, et al. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery [J]. Applied Thermal Engineering,2006, 26(17-18):2142-2147.
    [66]Liu B, Chien K, Wang C. Effect of working fluids on organic rankine cycle for waste heat recovery [J]. Energy,2004,29(8):1207-1217.
    [67]Hung T. Waste heat recovery of organic rankine cycle using dry fluids [J]. Energy Conversion and Management 2001,42(5):539-553.
    [68]Guo T., Wang H. X., Zhang S. J.. Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system [J]. Energy Conversion and Management,2011,52(6):2384-2391.
    [69]Maizza V., Maizza A.. Unconventional working fluids in organic rankine-cycles for waste energy recovery systems [J]. Applied Thermal Engineering,2001, 21(3):381-390.
    [70]Lai N. A, Wendland M, Fischer J. Working fluids for high-temperature organic rankine cycles [J]. Energy,2011,36(1):199-211.
    [71]Bahaa S, Koglbauer G, Wendland M, Fisher J. Working fluids for low-temperature organic rankine cycles [J]. Energy,2007,32(7):1210-1221.
    [72]Lakew A. A, Bolland O. Working fluids for low-temperature heat source [J]. Applied Thermal Engineering,2010,30(10):1262-1268.
    [73]顾伟,翁一武,王艳杰等.低温热能有机物发电系统热力分析[J].太阳能学报,2008,29(5):608-612。
    [74]贺红明等.利用LNG物利火用的朗肯循环研究[D].2007,上海交通大学。
    [75]Liu Botau, Chen Kuohsiang, Wang Chichuan. Effect of working fluids on organic Rankine cycle for waste heat recover [J]. Energy,2004,28(8-9): 998-1007.
    [76]Hung T. C. Waste heat recovery of organic Rankine cycle using dry fluids [J]. Energy Conversion and Management,2001,42:539-553.
    [77]Gianfranco Abgelino, Piero Colonna Di Paliano. Multicomponent working fluids for organic rabjine cycles (ORCs)[J]. Energy,1998,23(6):449-463.
    [78]Ulli Drescher, Dieter Bruggemann. Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants [J]. Applied Thermal Engineering. 2007,27(1):223-228.
    [79]张圣君,王怀信,郭涛。废热源驱动的有机朗肯循环工质的研究[C]。工程热力学与能源利用学术会议论文集,2008。
    [80]Bombarda P, Costante M I, Pietra Claudio. Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycle [J]. Applied Thermal Engineering,2010,33(2-3):212-219.
    [81]王辉涛,王华。低温太阳能热力发电有机朗肯循环工质的选择[J]。动力工程,2009,29(3):87-91。
    [82]Dai Y. P., etal. Parametric optimization and comparative study of organic Rankine cycle (ORC). Energy Convers Manage (2008).
    [83]Wei Donghong, Lu Xuesheng, Lu Zhen, et, al. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J]. Energy Conversion and Management,2007,48(4):1113-1119.
    [84]Wu C, Burke T. J.. Interlligent computer aided optimization on specific power of an OTEC Rankine power plant [J]. Applied Thermal Engineering,1998,18(5): 295-300.
    [85]Curzon F. L, Ahlborn B. Efficiency of carnot engine at maximum power output [J]. Am J Phy,1975,43(1):22-24.
    [86]Szargut J. International progress in second law analysis [J]. Energy,1980,5(8-9): 709-718.
    [87]Reistad G. M., Fabrycky W. J.. Available-energy costing, thermodynamics: second law analysis [J]. ACS Symposium Series,1980,122:143-159.
    [88]Steco S. S, Manfrida G. The exergy and capital cost factors:a new approach to energy conversion economics, second law analysis of thermal system [M]. New York:ASME,1987.
    [89]Gaggioli R. A., Wepfer W. J.. Exergy economics [J]. Energy,1980,5(8-9): 823-837.
    [90]Bohem R. F.. Design analysis of thermal systems [M]. New York:J Wiley.
    [91]Betrand Fankam Tchanche, George Papadalis, Gregory Lambrinos, et al. Fluid selection for a low-temperature solar organic Rankine cycle [J]. Applied Thermal Engineering,2009,29(11-12):2468-2476.
    [92]H.D.Madlhawa Hettiarachchi, et al. Optimum design criteria for an organic Rankine cycle using low temperature geomthermal heat sources [J]. Energy, 2007,32(9):1698-1706.
    [93]Nusselt W. Die Oberflachencondensation Des Wasserdampfes. VDI, Vol.60, pp. 541-569,1916.
    [94]杨世铭,陶文铨.传热学,第四版.北京:高等教育出版社,2006.
    [95]Dobson M K, Chato J C. Condensation in smooth horizontal tubes. Journal of Heat Transfer, Vol.120, pp.193-213,1998.
    [96]Suliman R, Liebenberg L, Meyer J P. Improved flow pattern map for accurate prediction of the heat transfer coefficients during condensation of R-134a in smooth horizontal tubes and within the low-mass flux range. International Journal of Heat and Mass Transfer, Vol.52, pp.5701-5711,2009.
    [97]Wang L L, Dang C B, Hihara E. Experimental study on condensation heat transfer and pressure drop of low GWP refrigerant HFO1234yf in a horizontal tube. International Journal of Refrigeration,2012,35:1418-1429.
    [98]Kim S M, Mudawar I. Theoretical model for annular flow condensation in rectangular micro-channels. International Journal of Heat and Mass Transfer, Vol.55, pp.958-970,2012.
    [99]Chato J C. Laminar condensation inside horizontal and inclined tubes. Massachusetts Institute of Technology,1960.
    [100]Lips S, Meyer J P. Experimental study of convective condensation in an inclined smooth tube. Part I:inclination effect on flow pattern and heat transfer coefficient. International Journal of Heat and Mass Transfer, Vol.55, pp. 395-404,2012.
    [101]Chacartegui R, Sanchez D, Munoz JM, et al. Alternative ORC bottoming cycles for combined cycle power plants. Applied Energy,2009,86(10),2162-2170.
    [102]Tang. L. Empirical study of new refrigerant flow condensation inside horizontal smooth and micro-fin tubes. Ph. D.dissertation. University of Maryland, College Park,1997.
    [103]Graham D., Chato J.C., Newell T.A., Heat transfer and pressure drop during condensation of refrigerant 134a in an axially grooved tube, Int. J. Heat Mass Transfer,1999,42:1935-1944.
    [104]Cavallini A., Del Col D., Doretti L., Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced, Int. J refrig.2000,23(1): 4-25
    [105]Suriyan L., Somchai W., The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R134a inside horizontal corrugated tube, Int. J. Heat Mass Transfer,2010,53:2924-2931.
    [106]隋海明,黄渭堂,管内插入双螺旋丝强化冷凝换热的实验研究,应用科学,2007,34(8):55-57
    [107]Megerlin F. E., Bergle A E., Augmentation of heat transfer in tubes by use of mesh and brush insert [J]. J Heat Transfer,1974,96:145-151.
    [108]Traviss D.P., Rohsenow W.M., Flow regimes in horizontal two-phase flow with condensation, ASHRAE Trans.1973,79:31-39.
    [109]Breber G, Palen J.W., Taborek J., Prediction of horizontal tube side condensation of pure components using flow regime criteria, J. Heat Transfer 1-980,120:471-476.
    [110]Soliman H.M., On the annular-to-wavy flow pattern transition during condensation inside horizontal tubes, Can. J. Chem. Eng.1982,60:475-481.
    [111]Wang W.C., Ma X.H., Wei Z.D. Yu P., Two phase flow patterns and transition characteristics for in tube condensation with different surface inclinations, Int. J. Heat Mass Transfer,1998(41):4341-4349.
    [112]Dalkilic A.S., Wongwises S., Intensive literature review of condensation inside smooth and enhanced tubes, Int. J. Heat Mass Transfer,2009,52:3409-3426
    [113]Suliman R., Liebenberg L., J.P. Meyer, Improved flow pattern map for accurate prediction of the heat transfer coefficients during condensation of R-134a in smooth horizontal tubes and within the low-mass flux range, Int. J. Heat Mass Transfer,2009,52:5701-5711.
    [114]Dobson M.K., Chato J.C., Condensation in smooth horizontal tubes, J Heat Transfer,1998,120:193-213.
    [115]Shao D.W., Granryd E., Flow pattern, heat transfer and pressure drop in flow condensation. Part I:pure and azeotropic refrigerants, Int. J. HVAC&R Res. 2000,6(2):175-195.
    [116]Cavallini A., Censi G, Del D. Col, In-tube condensation of halogenated refrigerants, ASHRAE Trans.2002,108 (1):146-161.
    [117]Hajal J. El, Thome J.R., Cavallini A., Condensation in horizontal tubes. Part l:two-phase flow pattern map, Int. J. Heat Mass Transfer,2003,46:3349-3363.
    [118]Kattan N., Thome J.R., Favrat D., Flow boiling in horizontal tubes. Part 3: development of a new heat transfer model based on flow patterns, J. Heat Transfer,1998,120:156-165.
    [119]Da Riva I, Sanz A. Condensation in ducts. Microgravity Science and Technology, Vol.4, pp.179-187,1991.
    [120]Delil A A M. On thermal-gravitational modeling, scaling and flow pattern mapping issues of two-phase heat transport systems. National Aerospace Laboratory, Albuquerque, USA,1998.
    [121]Chow L C, Parish R C. Condensation heat transfer in a microgravity environment. AIAA 24th Aerospace Sciences Meeting, AIAA-86-0068,1986.
    [122]Faghri A, Chow L C. Forced condensation in a tube with suction at the wall for microgravitational applications. Journal of Heat Transfer, Vol.110, pp.982-985 1988.
    [123]陈宏霞,徐进良,王伟.一种内分液罩式冷凝换热管.中国专利,CN1 02278904A,2011.
    [124]Chen H X, Xu J L, Wang W. An enhancement condensation pipe with inserted mesh cylinder. USA Patent, PCT/CN2012/000274,2012.
    [125]Utlu Z, Hepbasli A. A review on analyzing and evaluating the energy utilization efficiency of countries. Renew Sustain Energy Rev 2007; 11:1-29.
    [126]Lund PD. Effects of energy policies on industry expansion in renewable energy. Renewable Energy 2009;34:53-64.
    [127]Resch G, Held A, et al. Potentials and prospects for renewable energies at global scale. Energy Policy 2008;36:4048-56.
    [128]Klevas V, Streimikiene D, Kleviene A. Sustainability assessment of the energy projects implementation in regional scale. Renew Energy Rev 2009; 13:155-66.
    [129]Larjola J. Electricity from industrial wast heat using high-speed organic rankine cycle (ORC). Int J Prod Econ 1995;41:227-35.
    [130]Hung TC, Shai TY, Wang SK. A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy 1996;22:661-7.
    [131]Wei D, Lu U, Lu Z, Gu J. Dynamic modeling and simulation of an organic rankine cycle (ORC) system for waste heat recovery. Appl Therm Eng 2008;28:1216-24.
    [132]Bianchi M, Pascale AD. Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Applied Energy 2011;88:1500-9.
    [133]Ammare Y, Joyce S. Low grade thermal energy sources and uses from the process industry in the UK. Applied Energy 2012;89:3-20.
    [134]Bianchi M, Pascale AD. Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Applied Energy 2011; 88:1500-9.
    [135]Zhu J, Zhang W. Optimization design of plate heat exchangers (PHEs) for geothermal district heating systems. Geothermics 2004; 33:337-47.
    [136]Douglas TC, Gregory SJ. Optimization of cross flow heat exchangers for thermo electric waste heat recovery. Energy Convers Manage 2004;45:1565-82.
    37] Lin S, Luo X. Synthesis of multipass heat exchanger networks based on pinch technology. Comput Chem Eng 2011;35:1257-64.
    38] Bahaa S, Koglbauer G, Wendland M, Fisher J. Working fluids for low temperature organic rankine cycles. Energy 2007;32:1210-21.
    39] Guo T, Wang HX, Zhang SJ. Selection of working fluids for a novel low temperature geothermally-powered ORC based cogeneration system. Energy Convers Manage 2011;52:2384-91.
    40] Wang JL, Zhao L, Wang XD. An experimental study on the recuperative low temperature solar rankine cycle using R245fa. Applied Energy 2012;94:34-40.
    41] Zhang S, Wang H, Guo T. Performance comparison and parametric optimization of subcritical organic rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Applied Energy 2011;88:2740-54.
    42] Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N. Analysis of a novel solar energy-powered rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renewable Energy 2006;31:1839-954.
    43] Karellas S, Schuster A. Supercritical fluid parameters in organic rankine cycle applications. Int J Thermodyn 2008;11:101-8.
    44] Wang XD, Zhao L. Analysis of zeotropic mixtures used in low-temperature solar rankine cycles for power generation. Solar Energy 2009;83:605-13.
    45] Angelino G, Pallano PCD. Multicomponent working fluids for organic rankine cycles (ORCs). Energy 1998;23:449-63.
    46] Arima H, Okamoto A, Ikegami Y. Local boiling heat transfer characteristics of ammonia/water binary mixture in a vertical plate evaporator. Int J Refrig 2011;34:648-57.
    47] Mago PJ, Srinivasan KK, Chamra LM, Somayaji C. An examination of exergy destruction in organic rankine cycles. Int J Energy Res 2008;32:926-38.
    48] Tchanche BF, Lambrinos Gr, et al. Exergy analysis of micro-organic rankine power cycles for a small scale solar driven.
    49] Chen Qicheng, Xu Jinliang, Chen Hongxia. A new design method for Organic Rankine Cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source [J]. Applied Energy,2012,98: 562-573.
    50] Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G.A., Rossetto, L., Zilio, C,2003. Condensation inside and outside smooth and enhanced tubes-a review of recent research. Int. J. Refrig.26,373-392.
    [151]Thome, J.R.,2003. Update on advances in flow pattern based two-phase heat transfer models. Exp. Therm. Fluid Sci.29,341-349.
    [152]Miyara, A., Otsubo, Y.,2002. Condensation heat transfer of herringbone micro fin tubes. Int. J. Therm. Sci.41,639-645.
    [153]Brackbill, J.U., Kothe, D.B., Zemach, C.,1992. A continuum method for modeling surface tension. J. Comput. Phys.100,335-354.
    [154]Chen, H.X., Xu, J.L., Li, Z.J., Xing, F., Xie, J., Wang, W., Zhang, W.,2012. Flow pattern modulation in a horizontal tube by the phase separation concept. Int. J. Multiphase Flow 45,12-23.
    [155]Chen H X, Xu J L, Li Z J, et al. Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface. Applied Energy,2012, Available online.
    [156]Chen H X, Xu J L, Li Z J, et al. Flow pattern modulation in a horizontal tube by the passive phase separation concept. International Journal of Multiphase Flow, 2012, Vol.45, pp.12-23.
    [157]Chen H X, Xu J L, et al. Modulated flow patterns for vertical upflow by the phase separation concept, Experimental Thermal and Fluid Science 2014, Vol. 52, pp.297-307
    [158]Taha T, Cui Z. F., CFD modelling of gas-sparged ultrafiltration in tubular membranes, Journal of Membrane Science 2002, Vol:210, pp:13-27.
    [159]Taha T, Cui Z. F., CFD modelling of slug flowin vertical tubes, Chemical Engineering Science,2006, Vol:61, pp:676-687.
    [160]Jr-Hung Tsai, Lin L W, Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,2002, Vol:97-98, pp:665-671.
    [161]Lemenand T., Dupont P., et, al. Comparative efficiency of shear, elongation and turbulentdroplet breakup mechanisms:Review and application, Chemical Engineering Research and Design,2013, Available online 8 April
    [162]Conrath M, Smiyukha Y L, Fuhrmann E, Dreyer M, Double porous screen element for gas-liquid phase separation, International Journal of Multiphase Flow,2013, Vol:50, pp:1-15.
    [163]Federico M, Fernando A. M., Multiphase capillary flows, International Journal of Multiphase Flow,2012, Vol:42, pp:62-73.
    [164]Chen Q C, Xu J L, Sun D L, et al. Numerical simulation of the modulated flow pattern for vertical 6 upflows by the phase separation concept. International Journal of Multiphase Flow,2013, Vol.56, pp.7105-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700