用户名: 密码: 验证码:
混凝土箱梁剪力滞效应的分析理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土箱梁是目前简支梁、连续梁、连续刚构、刚性系杆拱桥和混凝土斜拉桥等桥梁常用的主梁结构形式。本文针对翼板厚度沿横向变化的混凝土箱梁,通过理论研究并结合数值模拟和试验结果,系统研究了混凝土箱梁剪力滞效应理论分析中的关键问题。
     主要研究成果如下:
     (1)针对翼板沿截面宽度方向变厚度的混凝土箱梁,利用势能变分原理,在引入广义截面特性参数的基础上,建立了可以考虑翼板厚度变化的混凝土箱梁的剪力滞效应分析通用分析方法。针对简支梁和悬臂梁等基本结构体系,建立了集中力、均布荷载和集中弯矩等典型荷载作用下剪力滞效应分析的通用公式。
     (2)从薄壁箱梁的剪力滞效应是由于翼板剪切变形所致这一本质出发,通过分析箱梁在竖向弯曲时翼板的剪力流分布规律,创造性地提出了利用翼板剪切变形规律来定义其剪力滞翘曲函数的新方法。针对常见的单室箱梁,定义出截面仅有一个未知翼板剪切变形最大差,各翼板符合剪切变形规律的新翘曲位移函数。通过对典型结构的剪力滞效应分析得出,本文分析结果与模型试验值、基于板壳元的数值解以及截面具有3个未知剪切变形最大差的变分解吻合良好。证明了本文提出的基于翼板剪切变形规律的剪力滞翘曲位移函数不仅原理明确,而且具有未知变量少、适用性广和分析精度高等特点。
     (3)针对能量变分法研究箱梁剪力滞效应时引入截面中性轴与形心轴重合而产生的附加轴力问题,利用截面的静力平衡条件,建立了抛物线型翘曲位移函数下截面附加轴力的表达式,讨论了附加轴力的基本特点,并通过引入附加轴向应力比直观反映附加轴力的相对大小。通过简支梁、悬臂梁和连续梁等典型结构算例,并结合常规混凝土箱梁的统计研究,表明附加轴向应力对常规混凝土箱梁的影响在初等梁应力的5%以内,可以在定义抛物线型剪力滞翘曲位移函数时不进行轴向位移的修正以简化分析。
     (4)结合考虑翼板厚度变化的混凝土箱梁剪力滞效应通用解答和基于翼板剪切变形规律的剪力滞翘曲位移函数,建立了翼板厚度变化混凝土箱梁的理论分析方法。通过对算例混凝土箱梁的剪力滞效应采用板壳数值解和本文理论解的对比分析,验证了本文分析方法的精度。通过改变翼板厚度,系统研究了翼板厚度变化对混凝土箱梁:正、负剪力滞和剪力滞附加挠度的影响规律。
     (5)针对预应力混凝土箱梁,结合能量变分原理建立了直线布束、折线布束和曲线布束情况下,预应力等效荷载引起的剪力滞效应计算公式,完善了既有研究仅针对预应力锚固于形心轴的剪力滞效应计算方法。通过对静定简支梁、悬臂梁和超静定连续梁在常规配束下的剪力滞效应基本规律的系统研究表明,以提供截面抵抗弯矩为主的预应力筋,剪力滞效应将增大梁体弯矩和弯曲应力。预应力的剪力滞效应在锚固端、折角处及中间支座部位较为突出,而在曲线配束段较不明显。同时,根据预应力剪力滞效应的分布规律,提出了预应力设计的相关建议。
     (6)在研究剪力滞效应对混凝土箱梁变形影响机理的基础上,首次提出采用剪力滞系数和有效翼缘分布宽度两种修正方法考虑剪力滞效应对挠度的影响,完善了既有规范中以实心梁为基础的挠度计算公式。通过典型算例表明,剪力滞系数的修正方法精度较高,但考虑到设计的方便性,建议在剪力滞系数未知的情况下可采用有效翼缘分布宽度修正方法考虑剪力滞效应对刚度的影响。
Concrete box beams are commonly used as mail girders for simply supported girder bridges, continuum girder bridges, continuous rigid frame bridges, rigid tied arch bridges and concrete cable-stayed bridges. In this paper, key problems of shear lag calculation for concrete box beam are systematically studied through theoretical analysis, numerical simulation and experimental results. The mail work and achievements are as follows.
     (1) Based on variational principle of potential energy, new analysis method for shear lag effect is presented for commonly single cell concrete box beam which flanges' depth varying along cross section. General solution formulae of longitudinal stresses and bending deflections for simply supported girders and cantilever girders are developed under concentrated force, uniform load and concentrated bending moment.
     (2) For vertical bending box beams, shear lag occurs because of shear deformations of wide flanges in planes of themselves. According to this mechanism of shear lag, new method for defining functions of shear-lag warping displacement is presented. For commonly single cell box beam, new shear-lag warping displacements are defined which only includes one unknown maximum angular rotation but satisfies shear deformation principle. The governing differential equations for shear lag of box girders are established based on variational principles. After shear lag analysis according to typical structures, it's shown that the results obtained using new warping displacement are in good agreement with model test results, finite element results and variational results with 3 maximum angular rotations. It's proved that the new method to define warping displacement of shear lag concerned on the shear deformations of flanges has the features of clear mechanism, fewer variables and higher precise.
     (3) When analysis shear lag of box girder by variation principle method and beam finite element method, the shear lag warping displacement of spanwise sheet is always supposed to be parabola. It will cause additional axial force when supposing the neutral axis through the sectional centroid. Based on the balance condition of whole section, the formula of additional axial force is presented for parabolical shear lag warping displacement, and the basic character of additional axial force is discussed. For measure the value of additional axial force, the parameter of ratio of additional axial stress (RAAS) is posed. The RAAS of simple supported, cantilever and continuous beam are analyzed under concentrated load and uniform load. It's shown for common concrete bridges RAAS are usual less than 5%, so additional axial force has little influence for precision of stresses, and the parabolical shear lag warping displacement has high analysis precision and needless to be revised with axial displacement.
     (4) Based on new shear lag method and new warping displacement functions, shear lag analysis method is developed for concrete box with varying flanges depth along cross section. For example concrete box girders, shear lag effect which calculated using this paper's theoretical formulae are good agreement with shell finite element method. By changing the depth of flanges, influence of varying depth on positive, negative shear lag and additional deformation caused by shear lag is investigated.
     (5) For prestressed concrete (PC) box girders, calculation method for shear lag effect caused by prestressed tendons is developed based on equivalent load method. Shear lag effect of PC continuum box girders with straight and arbitrary lineshape tendons is analyzed. It's drown for prestressed tendons which are mainly used to resist bending moment, shear lag effect will commonly increase the bending moment and stress. Prestressed tendons can always cause more significant shear lag effect in regions of near anchor end, angle changing and intermediate supports than smoothing curve regions. Finally, suggestions of prestressing design are presented according to distribution rules of shear lag for PC box girders.
     (6) Based on study of shear lag influence on deflection for box girders, two methods which are shear lag coefficient (SLC) and effective flange width (EFW) are presented to modify box girder's deflection. Researches for typical box girders show despite SLC method has more accuracy than EFW, EFW method can be used to calculation box girders'deflection when SLC is unknown.
引文
[1]张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应.北京:人民交通出版社,1998.3
    [2]Reissner E. On the problem of stress distribution in wide flanged box beam. J Aero Sci,1938,5(8):295-299
    [3]Goldberg J E, Leve H L. Theory of prismatic folded plate structures. International Associations for Bridge And Structural Engineering, Publications,1957,17:59-86
    [4]Defries-Skene A, Scordelis A C. Direct stiffens solution for folded plates. J Struct Div-ASCE,1964,90(4):15-47
    [5]Van Dalen K, Narasimham S V. Shear lag in shallow wide-flanged box girders. J Struct Div-ASCE,1976,102(10):1969-1979
    [6]Hadji-Argyris J, Cox H L. Diffusion of load into stiffened panels of varying section. Aeronautical Research Council, Report and Memorandum,1969
    [7]Evans H R, and Taherian A R. The prediction of the shear lag effect in box girders. Proc, Inst Civ Eng, Part 2,1977, (63):69-92.
    [8]Evans H R, Taherian A R. A design aid for shear lag calculations. Proc, Inst Civ Eng, Part 2,1980, (69):403-424
    [9]程翔云,汤康恩.计算箱形梁桥剪力滞效应的比拟杆法.中南公路工程,1984,(1):65-73
    [10]程翔云.梁桥理论与计算.北京:人民交通出版社,1990
    [11]程翔云,汤康恩.T形梁翼缘的剪力滞及其有效宽度.重庆交通学院学报,1984,3(04):28-33
    [12]Reissner E. Analysis of shear lag in box beams by the principle of the minimum potential energy. Quart Appl Math,1946,4(3):268-278
    [13]Kuzmanovic B 0, Graham H J. Shear lag in box girders. J Struct Div-ASCE,1981,107(9):1701-1712
    [14]郭金琼,房贞政,罗孝登.箱形梁桥剪力滞效应分析.土木工程学报,1983,16(1):1-13
    [15]郭金琼,房贞政,郑振.箱形梁设计理论(第二版).北京:人民交通出版社,2008
    [16]Dezi L, Mentrasti L. Nonuniform Bending-Stress Distribution (ShearLag). J Struc Eng-ASCE,1985,111(12):2675-2690
    [17]韦成龙,曾庆元,刘小燕.薄壁箱梁剪力滞分析的多参数翘曲位移函数及其有限元法.铁道学报,2000,22(5):60-64
    [18]韦成龙,李斌.基于多参数翘曲位移函数的箱梁剪力滞和剪切效应分析解析法.湖南理工学院学报(自然科学版),2007,(03):38-42.
    [19]韦成龙,李斌,曾庆元.变截面连续箱梁桥剪力滞及剪切变形双重效应分析的传递矩阵法.工程力学,2008,25(09):111-117
    [20]罗旗帜,吴幼明,刘光栋.变高度薄壁箱梁的剪力滞.铁道学报,2003,(05):81-87.
    [21]吴幼明,罗旗帜,岳珠峰.薄壁箱梁剪力滞效应的能量变分法.工程力学,2003,24(04):161-165+160.
    [22]吴幼明,罗旗帜,岳珠峰.薄壁箱梁剪力滞计算的梁段有限元法.中国铁道科学,2003,24(04):64-68
    [23]王继兵,周德源,秦荣.箱梁剪力滞效应分析样条有限点法.沈阳工业大学学报,2010,32(05):596-600
    [24]秦荣.大跨度桥梁结构.北京:科学出版社,2008.10
    [25]Yamaguchi E, Chaisomphob T, Sa-nguanmanasak J, et al. Stress concentration and deflection of simply supported box girder including shear lag effect. Struc Eng Mech, 2008,28(2):207-220
    [26]Sa-nguanmanasak J, Chaisomphob T, Yamaguchi E. Stress concentration due to shear lag in continuous box girders. Eng Struct,2007,29(7):1414-1421
    [27]Lertsima C, Chaisomphob T, Yamaguchi E, etal. Deflection of simply supported box girder including effect of shear lag. Comput Struct,2005,84(1/2):11-18
    [28]Lertsima C, Chaisomphob T, Yamaguchi E. Stress concentration due to shear lag in simply supported box girders. Eng Struct,2004,26(8):1093-1101
    [29]牛斌,杨梦蛟,马林.预应力混凝十宽箱梁剪力滞效应试验研究.中国铁道科学,2004,33(02):25-30
    [30]蔺鹏臻,周世军等.混凝土箱梁翼板厚度变化对剪力滞效应的影响分析.第十八届全国结构工程学术会议,广州,2009:478-481
    [31]Lin P Zh, Liu S Z, Zhou Sh J. Shear lag effect analysis of steel box with curve side webs. SSCS07, Shandong, China,2007:439-446
    [32]蔺鹏臻,刘世忠.大宽跨比连续钢箱梁的剪力滞效应研究.第十八届全国桥梁学术会议,天津,2008:1110-1116
    [33]Cheung Y K. Finite strip method in structural analysis. New York:Pergamon Press, 1976
    [34]Cheung M S, Chan M Y T. Finite strip evaluation of effective flange width of bridge girders. Can J Civ Eng,1978,5(2):174-185
    [35]杨允表,黄剑源.广义有限条法分析多室箱梁的剪力滞效应.桥梁建设.1995,(4):4046
    [36]Amoushahi H, Azhari M. Buckling of composite FRP structural plates using the complex finite strip method. Comp struct,2009,90(1):28-33
    [37]程翔云,李立峰.变高度箱梁桥剪力滞效应的三结合分析法.公路,2008,(01):104-108
    [38]Chang S T, Yun D. Shear lag effete in box girder with varying depth. J Struct Eng, 1988,114(10):2280-2292
    [39]王修信,黄剑源.变截面多跨梯形箱梁剪力滞效应差分解.桥梁建设,1993,(2):58-64
    [40]Luigino D, Fabrizio G, Graziano L, et al. Time-dependent analysis of shear-lag effect in composite beams. J Eng Mech,2001,127(1):71-78
    [41]罗旗帜.薄壁箱形梁剪力滞计算的梁段有限元法.湖南大学学报,1991,18(2):33-38
    [42]Luo Q Z, Li Q S, Tang J. Shear lag in box girder bridges. J Bridge Eng.2002,7 (5):308-313
    [43]谢旭,黄剑源.薄壁箱形梁桥约束扭转下翘曲、畸变及剪力滞效应的空间分析.土木工程学报,1995,25(4):3-14
    [44]罗旗帜.变截面多跨箱梁桥剪力滞效应分析.中国公路学报,1998,11(1):63-70
    [45]Luo Q Z, Wu Y M, Li Q S, et al. A finite segment model for shear lag analysis. Eng Struct,2004,26(14):2113-2124
    [46]刘世忠,吴亚平,夏旻等.薄壁箱梁剪力滞剪切变形双重效应分析的矩阵方法.工程力学,2001,22(04):140-144+122.
    [47]刘世忠,欧阳永金,吴亚平等.变截面薄壁箱梁剪力滞剪切变形效应分析.中国公路学报,2002,15(03):
    [48]Wu Y P, Liu S Z, Zhu Y L, et al. Matrix analysis of shear lag and shear deformation in thin-walled box beams. J. Eng. Mech.2003,129(8):944-950
    [49]Zhou S J. Finite beam element considering shear-lag effect in box girder. J Eng Mech, 2010,136(9):1115-1122
    [50]周世军.箱梁剪力滞效应分析的有限梁段法.铁道学报,2007,29(05):85-88.
    [51]周世军,杨子江.考虑集中弯矩作用的箱梁剪力滞分析有限梁单元.铁道学报,2010,32(03):90-94.
    [52]张元海,王来林,李乔.箱形梁剪力滞效应分析的一维有限元法及其应用.土木工程学报,2010,40(08):44-50.
    [53]张元海,李乔.考虑剪力滞变形时箱形梁广义力矩的数值分析.工程力学,2010,31(04):30-36.
    [54]Reissner E. Least work solutions of shear lag problems. J Aeron Sci,1941, (8):284-291
    [55]魏丽娜,方放.变截面箱梁桥剪力滞效应分析中翼板纵向位移函数的选择.桥梁建设,1996,(3):25-31
    [56]甘亚南,周广春,王振波.直线矩形箱梁静力分析的双翘曲位移函数法[J].中国铁道科学,2010,31(06):50-55
    [57]倪元增,钱寅泉.弹性薄壁梁桥分析.北京:人民交通出版社,2000,6
    [58]马兆云,张元海.薄壁箱梁剪力滞效应一维有限元分析.兰州交通大学学报,2006,25(4)
    [59]张士铎,张启传.钱塘江三桥恒载箱梁剪力滞效应分析.中国土木工程学会桥梁及结构工程学会第十二届年会论文集(下册).中国广东广州,1996
    [60]蔡素军,张谢东,黄克超等.混凝土箱梁施工阶段剪力滞效应分析.武汉理工大学学报(交通科学与工程版),2008,32(04):719-722
    [61]唐怀平,唐达培.大跨径连续刚构箱梁剪力滞效应分析.西南交通大学学报2001,36(6):617-619
    [62]郭健,孙炳楠.斜拉桥主塔在施工过程中的剪力滞效应分析.中国市政工程,2004,(2):33-35
    [63]Evans H R, Ahmad M K H, and Kristek V. Shear lag in composite box girders of complex cross section. J Constr Steel Res,1993,24(3):183-204
    [64]宁贵霞,蔺鹏臻,赵延龙等.双线铁路箱梁施工阶段跨中截面应力的有限元分析.铁道学报,2006,28(2):122-126
    [65]孙学先,陈小勇,延力强.PC箱梁横隔板对其截面应力影响的空间分析.兰州交通大学学报,2008,27(06):8-11
    [66]孙学先,延力强,刘志锋.箱梁几何参数变化对剪力滞效应的影响分析.水利与建筑工程学报,2009,7(01):29-31
    [67]祝明桥.混凝土薄壁连续箱梁剪力滞效应试验研究.中南大学学报(自然科学版),2008,180(02):375-379
    [68]祝明桥,魏启智,曾垂军等.混凝上薄壁连续箱梁剪力滞效应分析与对比.湘潭大学自然科学学报,2009,31(03):117-122
    [69]曹国辉,方志.钢筋混凝土连续宽箱梁受力性能试验.中国公路学报,2006,19(05):46-52.
    [70]曹国辉,方志.变分原理分析开裂简支箱梁剪力滞效应.计算力学学报,2007,24(06):853-858+864
    [71]曹国辉,方志.变分原理分析连续箱梁开裂后的剪力滞效应.工程力学,2007,28(04):7580+40
    [72]林丽霞,吴亚平,丁南宏等.考虑剪力滞效应下计算钢筋混凝土箱梁应力的换算截面法.兰州理工大学学报,2009,35(02):122-126
    [73]林丽霞.钢筋混凝土箱梁非线性分析及剪力滞、剪切效应的有限段法研究:(博士学位论文).兰州:兰州交通大学,2010
    [74]索柯编,邹鸿仁等译.预应力混凝土的发展.中国建筑二业出版社,1981
    [75]范立础.预应力混凝土连续梁桥.北京:人民交通出版社,1988
    [76]李坚.我国预应力混凝土连续梁桥的发展与工程实践.中国市政工程,1999,87(4):21
    [77]中交公路规划设计院.公路桥涵设计通用规范(JTG D60-2004).北京:人民交通出版社,2004
    [78]Moorman R B B. Equivalent load method for analyzing prestressed concrete structures. Journal Proceedings,1952,48(1):405-416
    [79]李国平.预应力混凝土结构设计原理.北京:人民交通出版社,2000
    [80]项贻强,丰硕,汪劲丰等.大跨径单室预应力连续刚构箱梁桥的静力特性空间分析[J].公路交通科技,2005,22(03):58-61.
    [81]白浩,王仲民,高全明.预应力对大跨弯刚构薄壁箱梁剪力滞的影响分析.公路,2007,(12):51-54.
    [82]乐小刚,余晓琳.预应力对混凝土宽箱梁桥剪力滞的影响分析.中国市政工程,2008,135(05):80-81+96.
    [83]季文玉:周超民:预应力RPC箱梁剪力滞效应分析[J].中国铁道科学,2007,91(01):19-22.
    [84]蔺鹏臻,刘世忠.桥梁结构有限元分析.北京:科学出版社,2008
    [85]肖汝城.桥梁结构分析及程序系统.北京:人民交通出版社,2002
    [86]Chang S T. Shear Lag Effect in Simply Supported Prestressed Concrete Box Girder[J]. J Bridge Eng,2004,9(2):178-184
    [87]张士铎,王文州.桥梁工程中的负剪力滞效应.北京:人民交通出版社,2004
    [88]Lin, T Y. Load-balancing method for design and analysis of prestressed concrete structure. ACI,1963,60(6):719-742.
    [89]张士铎,邓小华.预应力在连续梁中对剪力滞效应的影响.长沙交通学院学报,1989,(02):47-53.
    [90]Chang S T. Prestress influence on shear-lag effect in continuous box-girder bridge. J Struct Eng,1992,118(11):3113-3121
    [91]钱寅泉,倪元增.单室箱梁的剪力滞分析.中国公路学报,1989,2(2):28-38
    [92]周世军,柳舒甫,张家玮.剪力滞对箱梁弯曲刚度影响的分析.铁道学报,2010,32(04):92-95
    [93]贡鑫鑫,魏巍巍,胡家顺.中美欧混凝土结构设计.北京:中国建筑工业出版社,2007
    [94]中华人民共和国建设部.混凝土结构设计规范,GB 50010-2002.北京:中国建筑工业出版社,2002
    [95]铁道第一勘察设计院.铁路桥涵设计基本规范,TB10002.1-2005.北京:中国铁道出版社,2005
    [96]中铁工程设计咨询集团有限公司.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范,TB10002.3-2005.北京:中国铁道出版社,2005
    [97]刘效尧,赵立成.梁桥(下册).北京:人民交通出版社,2000
    [98]Richard G. Budynas. Advanced strength and applied stress analysis (second edition) Beijing:Tsinghua University Press,2001.9:296-302
    [99]包世华,周坚.薄壁杆件结构力学.北京:中国建筑工业出版社,2006
    [100]刘沐宇,袁卫国,孙文会等.单索面宽幅矮塔斜拉桥拉索作用下主梁剪力滞效应分析.武汉理工大学学报(交通科学与工程版),2010,32(06):1162-1166
    [101]郑健.中国高速铁路桥梁.北京:高等教育出版社,2008
    [102]铁摩辛柯.材料力学[M].北京:科学出版社,1979
    [103]中交公路规划设计院.公路钢筋混凝土与预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004
    [104]邵旭东,程翔云,李立峰.桥梁设计与计算[M].北京:人民交通出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700