用户名: 密码: 验证码:
求解约束优化问题的增广拉格朗日函数法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
约束优化问题广泛见于工程、国防、经济、金融和社会科学等许多重要领域.求解约束优化问题的重要途径之一是把它们转化成无约束优化问题进行求解.罚函数方法是将约束优化问题无约束化的一类主要方法,它们通过求解一个或一系列罚问题来得到约束优化问题的解.我们称罚问题的目标函数为一个罚函数.罚函数一般与某个罚参数有关.如果当罚参数取大于某个较大正数的值(或者取大于零且小于某个小正数的值)时,对应的罚问题的极小点与原约束问题的极小点之间存在某种精确的对应关系,则称对应的罚函数为精确罚函数;反之,如果对于罚参数的任何正的有限值,对应的罚问题的极小点与原约束问题的极小点之间都不存在精确的对应关系,而当罚参数趋于它的极限值(无穷大或者零)时,对应罚问题的极小点的极限值与原约束问题的极小点之间存在某种精确的对应关系,则称对应的罚函数为序列罚函数.序列罚函数方法在理论上需要求解无穷多个罚问题来获得约束优化问题的解.这种方法的主要缺点是,当罚参数的值很大(或者很小)时,罚问题成为坏条件问题,从而使这种方法产生数值不稳定和收敛慢等缺点.精确罚函数方法在理论上只需要求解一个(或有限多个)罚问题来获得约束优化问题的解,从而避免了序列罚函数方法产生坏条件的缺点.精确罚函数包括不可微精确罚函数和连续可微精确罚函数.在实际计算时,不可微精确罚函数法由于罚函数的不可微性而使算法产生所谓的“Maratos效应”,从而产生阻止快速局部收敛的现象.连续可微精确罚函数大体上又包括两类:一类是定义在原约束问题变量空间上的连续可微精确罚函数;另一类是定义在原约束问题变量空间和KKT乘子变量空间的积空间上的连续可微精确罚函数.第一类连续可微精确罚函数通过使用乘子函数实现对不满足KKT条件情形的“惩罚”.乘子函数是原问题变量的函数,它产生KKT乘子的估计.从计算的角度来看,当约束的个数较多时,确定乘子函数值的代价是相当大的,因为它需要求出与约束个数同阶的一个矩阵的逆,而每一次计算罚函数值都需计算出乘子函数值.正是由于这一原因,使得这种连续可微精确罚函数的应用在某种程度上受到了限制.第二类连续可微精确罚函数又可以分为两个子类:第一个子类是把考虑KKT条件的项加到约束问题的目标函数上;第二个子类是把考虑KKT条件的项加到通常的拉格朗日函数上,因此称之为增广拉格朗日函数.大量的理论结果和数值试验均表明,增广拉格朗日函数法(亦即使用增广拉格朗日函数作为罚函数的连续可微精确罚函数法)比序列罚函数法和不可微精确罚函数法具有明显的优点,它们克服了序列罚函数法产生坏条件和不可微精确罚函数法产生“Maratos效应”的
Constrained optimization problems abound in many important fields such as en-gineering, national defence, economy, finance, social sciences and so on. One of themain approaches for solving constrained optimization problems is to transform theminto unconstrained optimization problems. Penalty function methods are a class ofprevailing techniques to implement the transformation. Penalty function methodsseek to obtain the solutions of a constrained optimization problem by solving asingle penalty problem or a sequence of penalty problems. The objective functionof penalty problems is called a penalty function. In general, a penalty parameterappears in a penalty function. We say that a penalty function is an exact penaltyfunction if, for some values of the penalty parameter, it is possible to establish somecorrespondence between the minimizers of the corresponding penalty problems andthe solutions of the original constrained problem. Otherwise, the penalty functionis called a sequential penalty function. The sequential penalty function methodsrequire, in principle, an infinite sequence of penalty problems to be solved. Themain drawback of the sequential penalty function methods is that when the penaltyparameter approaches its limiting value, the corresponding penalty problems areill-conditioned which will result in some shortcomings such as numerical instabil-ities and slow convergence. On the contrary, the exact penalty function methodsrequire only a single penalty problem to be solved which avoids the ill-conditioningassociated with the sequential penalty function methods. Exact penalty functionscan be divided into two classes: nondi?erentiable exact penalty functions and con-tinuously di?erentiable exact penalty functions. In practical computation aspects,the“Maratos’e?ect”emerges in nondi?erentiable exact penalty function methodsdue to the nondi?erentiability of penalty functions which gives rise to locally slowconvergence. Two classes of continuously di?erentiable exact penalty functions havebeen proposed so far: the functions which are defined on the same space of the vari-ables of the original constrained problem and the functions which are defined on theproduct space of the problem variables and of the KKT multipliers. The first classpenalize the violation of the KKT conditions by making use of multiplier functions,namely, of functions which yield estimates of the KKT multipliers as functions ofthe original constrained problem variables. In general a multiplier function is quiteexpensive from the computational point of view when the number of constraints islarge, which may limit somewhat the applicability of continuously di?erentiable ex-act penalty functions of this kind. The second class can be in turn divided into twosubclasses: the penalty functions in which the terms that account for the KKT con-ditions are added to the objective function of the original constrained problem andthe augmented Lagrangian functions in which the terms that account for the KKTconditions are added to the usual Lagrangian function. Both theoretical resultsand computational experience have indicated that augmented Lagrangian functionmethods o?er significant advantages over the usual penalty methods, i.e., sequentialpenalty function methods and nondi?erentiable exact penalty function methods, bycircumventing some of the traditional shortcomings of these techniques such as nu-
引文
[1] Bandler J. W. and Charalambous C., Nonlinear programming using minimax tech-niques, J. Optim. Theory Appl., 1974, 13: 607-619
    [2] Bazaraa M. S. and Goode J. J., Su?cient conditions for a globally exact penaltyfunction without convexity, Math. Programming Stud., 1982, 19: 1-15
    [3] Bazaraa M. S., Sherali H. D. and Shetty C. M., Nonlinear Programming: Theory andAlgorithms, 2nd edition, New York: John Wiley & Sons, Inc., 1993
    [4] Bertsekas D. P., Constrained Optimization and Lagrange Multiplier Methods, NewYork: Academic Press, 1982
    [5] Bertsekas D. P., Multiplier methods: a survey, Automatica, 1976, 12: 133-145
    [6] Bertsekas D. P., Necessary and su?cient conditions for a penalty method to be exact,Math. Program., 1975, 9: 87-99
    [7] Bertsekas D. P., Nonlinear Programming, 2nd edition, Massachusetts: Athena Scien-tific, 1999
    [8] Bertsekas D. P., On penalty and multiplier methods for constrained minimization,in: Nonlinear Programming 2, Mangasarian O. L., Meyer R. R. and Robinson S. M.,eds., New York: Academic Press, 1975
    [9] Bertsekas D. P., Variable metric methods for constrained optimization using di?er-entiable exact penalty function, Proc. 18th Annual Allerton Conference on Commu-nication, Control and Computing, 1980, 584-593
    [10] Boukari D. and Fiacco A. V., Survey of penalty, exact-penalty and multiplier methodsfrom 1968 to 1993, Optimization, 1995, 32: 301-334
    [11] Burke J., An exact penalization viewpoint of constrained optimization, SIAM J.Control Optim., 1991, 29(4): 968-998
    [12] Burke J., Calmness and exact penalization, SIAM J. Control Optim., 1991, 29(2):493-497
    [13] Camp G. D., Inequality-constrained stationary value problems, J. Oper. Res. Soc.Am., 1955, 3: 548-550
    [14] Chamberlain R. M., Lemarechal C., Pederson H. C. and Powell M. J. D., The watch-dog technique for forcing convergence in algorithms for constrained optimization,Math. Programming Stud., 1982, 16: 1-17
    [15] Charalambous C., A lower bound for the controlling parameter of the exact penaltyfunction, Math. Program., 1978, 15: 278-290
    [16] Clarke F. H., Optimization and nonsmooth Analysis, New York: John Wiley, 1983
    [17] Coleman T. F. and Conn A. R., Nonlinear programming via an exact penalty functionmethod: asymptotic analysis, Math. Program., 1982, 24: 123-136
    [18] Coleman T. F. and Conn A. R., Nonlinear programming via an exact penalty functionmethod: global analysis, Math. Program., 1982, 24: 137-161
    [19] Conn A. R., Constrained optimization using a nondi?erentiable penalty function,SIAM J. Numer. Anal., 1973, 10: 760-784
    [20] Conn A. R., Nonlinear programming, exact penalty functions and projection tech-niques for nonsmooth functions, in: Numerical Optimization 1984, Boggs P. T., ByrdR. H. and Schnabel R. B., eds., Society for Industrial and Applied Mathematics,Philadelphia, 1984, 3-25
    [21] Conn A. R., Penalty function methods, in: Nonlinear Optimization 1981, Powell M.J. D., ed., New York: Academic Press, 1982, 235-242
    [22] Conn A. R. and Gould N. I. M., An exact penalty function for semi-infinite program-ming, Math. Program., 1987, 37: 19-40
    [23] Conn A. R. and Pietrzykowski T., A penalty function method converging directly toa constrained optimum, SIAM J. Numer. Anal., 1977, 14: pp. 348-378
    [24] Contaldi G., Di Pillo G. and Lucidi S., A continuously di?erentiable exact penaltyfunction for nonlinear programming problems with unbounded feasible set, OperationsResearch Letters, 1993, 14(3): 153-161
    [25] Cooper M. W., A survey of methods for pure nonlinear programming, Man. Scien.,1981, 27(3): 353-361
    [26] Courant R., Variational methods for the solution of problems of equilibrium andvibrations, Bull. Amer. Math. Soc., 1943, 49: 1-23
    [27] Di Pillo G., Exact penalty methods, in: Algorithms for Continuous Optimization:The State of the Art, Spedicato E., ed., Boston: Kluwer Academic Publishers, 1994:209-253
    [28] Di Pillo G. and Facchinei F., Exact barrier function methods for Lipschitz programs,Applied Mathematics and Optimization, 1995, 32: 1-31
    [29] Di Pillo G. and Grippo L., A class of continuously di?erentiable exact penalty func-tion algorithms for nonlinear programming problems, in: System Modelling and Opti-mization, 11th IFIP Conference, Toft-Christensen E. P., ed., Berlin: Springer-Verlag,1984, 246-256
    [30] Di Pillo G. and Grippo L., A continuously di?erentiable exact penalty function fornonlinear programming problems with inequality constraints, SIAM J. Control Op-tim., 1985, 23(1): 72-84
    [31] Di Pillo G. and Grippo L., A new augmented Lagrangian function for inequalityconstraints in nonlinear programming problems, J. Optim. Theory Appl., 1982, 36(4):495-519
    [32] Di Pillo G. and Grippo L., A new class of augmented Lagrangians in nonlinear pro-gramming, SIAM J. Control Optim., 1979, 17(5): 618-628
    [33] Di Pillo G. and Grippo L., An exact penalty function method with global convergenceproperties for nonlinear programming problems, Math. Program., 1986, 36(1): 1-18
    [34] Di Pillo G. and Grippo L., Exact penalty functions in constrained optimization, SIAMJ. Control Optim., 1989, 27(6): 1333-1360
    [35] Di Pillo G. and Grippo L., Globally exact nondi?erentiable penalty functions, Report10.87, Dipartimento di Informatica e Sistemistica, Universita` di Roma “La Sapienza”,Rome, 1987
    [36] Di Pillo G. and Grippo L., On the exactness of a class of nondi?erentiable penaltyfunctions, J. Optim. Theory Appl., 1988, 57(3): 399-410
    [37] Di Pillo G., Grippo L. and Lucidi S., Globally convergent exact penalty algorithms forconstrained optimization, in: System Modelling and Optimization, 12th IFIP Confer-ence, Prepoka A., Szelezsan J. and Strazicky B., eds., Berlin: Springer-Verlag, 1986,694-703
    [38] Di Pillo G. and Lucidi S., An augmented Lagrangian function with improved exact-ness properties, SIAM J. Optim., 2001, 12(2): 376-406
    [39] Di Pillo G. and Lucidi S., On exact augmented Lagrangian functions in nonlinear pro-gramming, in: Nonlinear Optimization and Applications, Di Pillo G. and GiannessiF., eds., New York: Plenum Press, 1996, 85-100
    [40] Dolecki S. and Rolewicz S., Exact penalty for local minima, SIAM J. Control Optim.,1979, 17: 596-606
    [41] Du X. W., An augmented Lagrangian function for inequality constraints in nonlinearprogramming problems
    [42] Du X. W., A new exact augmented Lagrangian function for nonlinear programmingproblems with inequality constraints
    [43] Du X. W., A survey of the theoretical results on the Hestenes-Powell augmentedLagrangian function for inequality constraints, 3th International Conference on OCA,July 25-31, 2004, Chongqing-Chengdu, China
    [44] Du Xuewu, Yang Yongjian and Li Mingming, Further studies on the Hestenes-Powellaugmented Lagrangian function for equality constraints in nonlinear programmingproblems, submitted to OR Transactions
    [45] Du X. W., Zhang L. S. and Gao Y. L., A class of augmented Lagrangians for equalityconstraints in nonlinear programming problems, to appear in Applied Mathematicsand Computation
    [46] Eremin I. I., The penalty method in convex programming, Soviet Math. Dokl., 1966,8: 459-462
    [47] Evans J. P., Gould F. J. and Tolle J. W., Exact penalty functions in nonlinear pro-gramming, Math. Program., 1973, 4: 72-97
    [48] Facchinei F. and Lucidi S., A class of methods for optimization problems with simplebounds, Part 1, IASI-CNR Tech. Rep. 313, Roma, Italy, 1990
    [49] Facchinei F. and Lucidi S., A class of methods for optimization problems with simplebounds, Part 2, IASI-CNR Tech. Rep. 336, Roma, Italy, 1992
    [50] Facchinei F. and Lucidi S., A class of penalty functions for optimization problemswith bound constraints, Optimization, 1992, 26: 239-259
    [51] Fiacco A. V. and McCormick G. P., Computational algorithm for the sequentialunconstrained minimization technique for nonlinear programming, Management Sci-ence, 1964, 10: 601-617
    [52] Fiacco A. V. and McCormick G. P., Extensions of SUMT for nonlinear programming:equality constraints and extrapolation, Management Science, 1966, 12: 816-828
    [53] Fiacco A. V. and McCormick G. P., Nonlinear Programming: Sequential Uncon-strained Minimization Techniques, New York: John Wiley & Sons, 1968
    [54] Fiacco A. V. and McCormick G. P., The sequential unconstrained minimization tech-nique for nonlinear programming, a primal-dual method, Management Science, 1964,10: 360-366
    [55] Fiacco A. V. and McCormick G. P., The sequential unconstrained minimization tech-nique (SUMT), without parameters. Operations Research, 1967, 15: 820-827
    [56] Fiacco A. V. and McCormick G. P., The slacked unconstrained minimization tech-nique for convex programming, SIAM Journal on Applied Mathematics, 1967, 15:505-515
    [57] Fisher M. L., The Lagrangian relaxation method for solving integer programming,Man. Scien., 1981, 27: 1-18
    [58] Fletcher R., A class of methods for nonlinear programming with termination andconvergence properties, in: Interger and Nonlinear Programming, Abadie J., ed.,Amsterdam: North-Holland, 1970, 157-173
    [59] Fletcher R., A model algorithm for composite nondi?erentiable optimization prob-lems, Math. Programming Stud., 1982, 17: 67-76
    [60] Fletcher R., An exact penalty function for nonlinear programming with inequalities,Math. Program., 1973, 5: 129-150
    [61] Fletcher R., An l1 penalty method for nonlinear constraints, in: Numerical Optimiza-tion 1984, Boggs P. T., Byrd R. H. and Schnabel R. B., eds., Philadelphia: SIAMPublications, 1984, 26-40
    [62] Fletcher R., Methods related to Lagrangian functions, in: Numerical Methods forConstrained Optimization, Gill P. E. and Murray W., eds., New York: AcademicPress, 1974, 219-239
    [63] Fletcher R., Numerical experiments with an exact l1 penalty function method, in:Nonlinear Programming 4, Mangasarian O. L., Meyer R. R. and Robinson S. M.,eds., New York: Academic Press, 1981, 99-129
    [64] Fletcher R., Penalty functions, in: Mathematical Programming: The State of the Art,Bachem A., Gr¨otschel M. and Korte B., eds., Berlin: Springer-Verlag, 1983, 87-114
    [65] Fletcher R., Practical Methods of Optimization, Vol. 2: Constrained Optimization,New York: John Wiley & Sons, 1981
    [66] Fletcher R., Practical Methods of Optimization, 2nd edition, New York: John Wiley,1987
    [67] Floudas C. A., Pardalos M., Adjiman C. S., Esposito W. R., Gumus Z. H., HardingS. T., Klepeis J. L., Meyer C. A. and Schweiger C. A., Handbook of Test Problems inLocal and Global Optimization, Dordrecht: Kluwer Academic Publishers, 1999
    [68] Garcia-Palomares U. M., Connections among nonlinear programming, minimax andexact penalty functions, Computer Science Division, Argonne National Laboratories,Technical Memorandum No. 20, 1983
    [69] Geo?rion A. M., Lagrangian relaxation for integer programming, Math. ProgrammingStud., 1974, 2: 82-114
    [70] Glad T. and Polak E., A multiplier method with automatic limitation of penaltygrowth, Mathematical Programming, 1979, 17(2): 140-155
    [71] Goh C. J. and Yang X. Q., A nonlinear Lagrangian theory for nonconvex optimization,J. Optim. Theory Appl., 2001, 109: 99-121
    [72] Grippo L. and Lucidi S., On the solution of a class of quadratic programms using adi?erentiable exact penalty function, Optimization, 1991, 22: 557-578
    [73] Guignard M. and Kim S., Lagrangian decomposition: A model yielding strongerLagrangian relaxation bounds, Math. Program., 1993, 33: 262-273
    [74] Haarho? P. C. and Buys J. D., A new method for the optimization of a nonlinearfunction subject to nonlinear constraints, Computer J., 1970, 13: 178-184
    [75] Han S. P., A globally convergent method for nonlinear programming, J. Optim. The-ory Appl., 1977, 22: 297-309
    [76] Han S. P., Penalty Lagrangian methods via a quasi-Newton approach, Mathematicsof Operations Research, 1979, 4: 291-302
    [77] Han S. P. and Mangasarian O. L., A dual di?erentiable exact penalty function, Math.Program., 1983, 25: 293-306
    [78] Han S. P. and Mangasarian O. L., Exact penalty functions in nonlinear programming,Math. Program., 1979, 17(3): 251-269
    [79] Hestenes M. R., Multiplier and gradient methods, J. Optim. Theory Appl., 1969, 4:303-320
    [80] Hestenes M. R., Optimization Theory: The Finite Dimensional Case, New York:John Wiley & Sons, 1975
    [81] Howe S., New conditions for exactness of simple penalty functions. SIAM J. ControlOptim., 1973, 11: 378-381
    [82] Huang X. X. and Yang X. Q., Convergence analysis of a class of nonlinear penalizationmethods for constrained optimization via first-order necessary optimality conditions,Journal of Optimization Theory and applications, 2003, 116(2): 311-332
    [83] Lasserre J. B., Exact penalty functions and Lagrange multipliers, (R. A. I. R.), Au-tomat./Syst. Anal. Control, 1980, 14: 117-125
    [84] Li D. and Sun X. L., Success guarantee of dual search in integer programming: pthpower Lagrangian method, Journal of Global Optimization, 2000, 18: 235-254
    [85] Lucidi S., New results on a class of exact augmented Lagrangians, J. Optim. TheoryAppl., 1988, 58(2): 259-282
    [86] Lucidi S., New results on a continuously di?erentiable exact penalty function, SIAMJournal on Optimization, 1992, 2(4): 558-574
    [87] Lucidi S., New results on a continuously di?erentiable penalty function, Tech. Rep.R.277, Istituto di Analisi dei Sistemi ed Informatica del CNR, Roma, Italy, 1989
    [88] Lucidi S., On the role of continuously di?erentiable exact penalty functions in con-strained global optimization, Journal of Global Optimization, 199?
    [89] Luenberger D. G., Linear and Nonlinear Programming, 2nd edition, Addison-WesleyPublishing Company, Reading, Massachusetts, 1984
    [90] Luo Z. Q., Pang J. S. and Ralph D., Mathematical Programs with Equilibrium Con-straints, Cambridge: Cambridge University Press, 1996
    [91] Mangasarian O. L., Su?ciency of exact penalty minimization, SIAM J. Control Op-tim., 1985, 23(1): 30-37
    [92] Mangasarian O. L., Unconstrained Lagrangians in nonlinear programming, TechnicalReport No. 174, Computer Science Department, University of Wisconsin, 1973
    [93] Mayne D. Q. and Maratos N., A first order, exact penalty function algorithm forequality constrained optimization problems, Math. Program., 1979, 16: 303-324
    [94] Michelon P. and Maculan N., Lagrangian decomposition for integer nonlinear pro-gramming with linear constraints, Math. Program., 1991, 52: 303-313
    [95] Michelon P. and Maculan N., Lagrangian methods for 0-1 quadratic programming,Discr. Appl. Math., 1993, 42: 257-269
    [96] Miele A., Moseley P. E., Levy A. V. and Coggins G. M., On the method of multi-pliers for mathematical programming problems, Journal of Optimization Theory andApplications, 1972, 10: 1-33
    [97] Mukai H. and Polak E., A quadratically convergent primal-dual algorithm with globalconvergence properties for solving optimization problems with equality constraints,Math. Program., 1975, 9: 336-349
    [98] Pang J. S., Error bounds in mathematical programming, Math. Program., 1997, 79:299-332
    [99] Pierre D. A. and Lowe M. J., Mathematical Programming via Augmented Lagrangians:An Introduction with Computer Programs, Reading, Massachusetts: Addison-WesleyPublishing Company, 1975
    [100] Pietrzykowski T., An exact potential method for constrined maxima, SIAM J. Nu-mer. Anal., 1969, 6: 269-304
    [101] Pietrzykowski T., Application of the steepest descent method to concave program-ming, Proceedings of the International Federation of Information Processing SocietiesCongress (Munich), Amsterdam: North Holland, 1962, 185-189
    [102] Pietrzykowski T., The potential method for conditional maxima in the locally com-pact metric spaces, Numerische Mathematik, 1970, 14: 325-329
    [103] Polak E., Mayne D. Q. and Wardi Y., On the extension of constrained optimiza-tion algorithms from di?erentiable to non-di?erentiable problems, SIAM J. ControlOptim., 1983, 21: 179-203
    [104] Powell M. J. D., A method for nonlinear constraints in minimization problems, in:Optimization, Fletcher R., ed., New York: Academic Press, 1969, 283-298
    [105] Powell M. J. D. and Yuan Y., A trust region algorithm for equality constrainedoptimization, Mathematical Programming, 1991, 49: 189-211
    [106] Pshenichnyj B., Algorithms for the general problem of mathematical programming,Kibernetika (Kiev), 1970, 6: 120-125 (in Russian)
    [107] Pshenichnyj B. and Danilin Y., Numerical Methods in Extremal Problems, Moscow:MIR Publisher, 1975, Engl. transl. 1978
    [108] Rockafellar R. T., Augmented Lagrange multiplier functions and duality in noncon-vex programming, SIAM J. Control, 1974, 12: 268-285
    [109] Rockafellar R. T., New applications of duality in convex programming, Proc. Confer.Probab., 4th, Brasov, Romania, 1971
    [110] Rockafellar R. T., New applications of duality in nonlinear programming, Symposiumon Mathematical Programming, The Hague, 1970
    [111] Rockafellar R. T., Penalty methods and augmented Lagrangians in nonlinear pro-gramming, 5th IFIP Conference on Optimization Techniques, Part 1, Conti R. andRuberti A., eds., Berlin: Springer-Verlag, 1973, 418-425
    [112] Rockafellar R. T., The multiplier method of Hestenes and Powell applied to convexprogramming, Journal of Optimization Theory and Applications, 1973, 12: 555-562
    [113] Rosenberg E., Exact penalty functions and stability in locally Lipschitz program-ming, Mathematical Programming, 1984, 30: 340-356
    [114] Rubinov A. M. and Gasimov R. N., Strictly increasing positively homogeneous func-tions with application to exact penalization, Optimization, 2003, 52(1): 1-28
    [115] Rubinov A. M., Glover B. M. and Yang X. Q., Decreasing functions with applicationsto penalization, SIAM J. Optim., 1999, 10(1): 289-313
    [116] Rubinov A. M., Glover B. M. and Yang X. Q., Extended Lagrange and penaltyfunctions in continuous ptimization, Optimization, 1999, 46: 327-351
    [117] Rubinov A. M., Glover B. M. and Yang X. Q., Modified Lagrangian and penaltyfunctions in continuous optimization, Optimization, 1999, 46: 327-351
    [118] Rubinov A. M., Yang X. Q. and Bagirov A. M., Penalty functions with a smallpenalty parameter, Optimization Methods and Software, 2002, 17: 931-964
    [119] Sinclair M., An exact penalty function approach for nonlinear integer programmingproblems, European J. Oper. Res., 1986, 27: 50-56
    [120] Sun X. L. and Li D., A logarithmic-exponential penalty formulation for nonlinearinteger programming, Applied Mathematics Letters, 1999, 12(3): 73-77
    [121] Tapia R. A., Quasi-Newton methods for equality constrained optimization: equiv-alence of existing methods and a new implementation, in: Nonlinear Programming3, Mangasarian O. L., Meyer R. R. and Robinson S. M., eds., New York: AcademicPress, 1978, 124-164
    [122] Tseng P. and Bertsekas D. P., On the convergence of the exponential multipliermethod for convex programming, Mathematical Programming, 1993, 60: 1-19
    [123] Wierzbicki A. P., A primal-dual large scale optimization method based on augmentedLagrange functions and interaction shift predition, Ricerche di Automatica, 1976, 7:34-58
    [124] Wu Z. Y., Bai F. S., Yang X. Q. and Zhang L. S., An exact lower order penaltyfunction and its smoothing in nonlinear programming, Optimization, 2004, 53(1):51-68
    [125] Yang X. Q. and Huang X. X., A nonlinear Lagrangian approach to constrainedoptimization problems, SIAM J. Optim., 2001, 11(4): 1119-1144
    [126] Yang X. Q. and Huang X. X., Partially strictly monotone and nonlinear penaltyfunctions for constrained mathematical programs, Computational Optimization andApplications, 2003, 25: 293-311
    [127] Zangwill W. I., Nonlinear programming via penalty functions, Management Science,1967, 13: 344-358
    [128] Zhang L. S., A su?cient and necessary condition for a globally exact penalty func-tions, Chinese Journal of Contemporary Mathematics, 1997, 18(4): 415-424
    [129] Zhang L. S., Bai F. S. and Xu Q. Y., Some smooth global exact penalty functionsfor nonlinear integer programming, OR Transactions, 2003, 7(1): 19-27
    [130] 徐增坤, 数学规划导论, 北京: 科学出版社, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700