用户名: 密码: 验证码:
约束优化问题的若干对偶以及微分性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了广义平衡问题、分式优化问题、复合凸优化问题的对偶理论以及Farkas-型结果,集值优化问题的高阶最优性条件和高阶Fritz John型最优性条件,参数向量优化问题扰动映射的广义可微性。本文分为七章,具体如下
     第一章,首先回顾了广义平衡问题与若干优化问题对偶理论的研究近况,随后阐明了向量优化问题的最优性与灵敏性的研究现状,最后介绍了本文的研究动机以及主要工作。
     第二章,考虑带有DC函数的广义平衡问题。借助Fenchel共轭函数的方法,首先引入了广义平衡问题的对偶问题,并得到了相应的弱对偶与强对偶。随后借助得到的对偶理论刻画了广义平衡问题的Farkas-型结果。最后运用研究广义平衡问题的方法,研究了凸优化问题和广义变分不等式问题。
     第三章,考虑约束分式优化问题。借助Dinkelbach[1]的方法,首先将分式优化问题转化为约束优化问题。同时针对不同的情形,引入了约束优化问题的两种不同的对偶问题。随后借助共轭函数上图的性质,研究了约束优化问题的对偶理论。最后借助约束优化问题的对偶理论研究了分式优化问题的Farkas-型结果。
     第四章,考虑复合凸优化问题。在局部凸空间中,借助共轭函数上图的性质,引入了一些约束品性并讨论它们的一些性质。随后引入了复合凸优化问题的对偶问题。最后借助引入的约束品性刻画了复合凸优化问题的强对偶、稳定强对偶以及全对偶。同时说明了所得结果推广和改进了相关文献的结果。
     第五章,首先引入了集值映射的Studniarski导数并研究了相应的性质。随后利用集值映射的Studniarski导数研究了约束集值优化问题严格局部有效解的高阶最优性条件以及高阶Fritz John型最优性条件。进一步的,研究了集值映射的Studniarski导数与其剖面映射的Studniarski导数之间的关系。同时也得到了关于参数向量优化问题的Studniarski导数的一些灵敏性结果。
     第六章,考虑参数集值优化问题。借助二阶方向紧性的假设,首先研究了两个集值映射复合的二阶相依导数以及两个集值映射和的二阶相依导数的计算法则。随后利用得到的计算法则研究了一类参数集值优化问题的二阶灵敏性结果并得到了参数集值优化问题的扰动映射与弱扰动映射的二阶相依导数的一个具体表达式。最后研究了参数向量优化问题的最优解映射以及最优值映射的广义二阶相依上图导数的计算法则。
     第七章,首先对本文的研究内容进行了一个简单的总结,随后提出了一些本文研究中存在的遗留问题以及今后打算思考和研究的问题。
In this thesis, the duality assertions and Farkas-type results for generalizedequilibrium problems, fractional programming problems and composed convexoptimization problems are investigated. And the higher-order optimality conditions andhigher-order Fritz John type optimality conditions for a set-valued optimization problemare also investigated. Moreover, the generalized differentiability of perturbationmappings for parametric vector optimization problems are also investigated. This thesisis divided into seven chapters. It is organized as follows:
     In Chapter1, at first, the development and researches on the topic of duality forgeneralized equilibrium problems and some optimization problems are recalled. Then,the development and researches on the topic of optimality and sensitivity for vectoroptimization problems are reviewed. Finally, we give the motivations and list the mainresearch works.
     In Chapter2, a generalized equilibrium problem with DC functions is considered.By using the method of Fenchel conjugate function, a dual scheme for the generalizedequilibrium problem is introduced. And the weak and strong duality assertions areobtained. Then, by using the obtained duality assertions, some Farkas-type resultswhich characterize the optimal value of the generalized equilibrium problem are given.Finally, the proposed approach is applied to a convex optimization problem and ageneralized variational inequality problem.
     In Chapter3, a constrained fractional programming problem is considered. Byusing an idea due to Dinkelbach[1], we first associate the fractional programmingproblem with a constrained optimization problem. Adopting different tactics, two typesof dual problems of the constrained optimization problem are constructed. After that, byusing the properties of the epigraph of the conjugate functions, the duality assertions forthe constrained optimization problem are investigated. Finally, by using the dualityassertions, some Farkas-type results for the fractional programming problem areobtained.
     In Chapter4, a composed convex optimization problem is considered. By using theproperties of the epigraph of the conjugated functions, some new constraintqualifications are introduced. Then, by using these new constraint qualifications, somenecessary and sufficient conditions which characterize the stable strong and total dualities for the composed convex optimization problem are obtained. Moreover, weshow that our general results encompass as special cases some recently obtained resultsin the literature.
     In Chapter5, Studniarski derivatives of set-valued maps are first defined and theirproperties are discussed. Then, by virtue of these derivatives and strict local minimality,higher-order optimality conditions and higher-order Fritz John type optimalityconditions are obtained for a set-valued optimization problem whose constraintcondition is determined by a set-valued map. Moreover, the relationships betweenStudniarski derivative of a set-valued map and its profile map are investigated. Somesensitivity results for a parametrized vector optimization are also obtained.
     In Chapter6, a family of parameterized set-valued optimization problems, whoseconstraint set depends on a parameter, are considered. Some calculus rules are obtainedfor calculating the second-order contingent derivatives of the composition and sum oftwo set-valued mappings. Then, by using these calculus rules, some results concerningsensitivity analysis are established, and an explicit expression for the second-ordercontingent derivative of the (weak) perturbation mapping in the set-valued optimizationproblems is obtained. Moreover, some calculus rules of the generalized second-ordercontingent epiderivative for frontier and efficient solution maps in parametric vectoroptimization problems are established.
     In Chapter7, the results of this thesis are briefly summarized. Some problems whichare remained and thought over in future are put forward.
引文
[1] W. Dinkelbach. On nonlinear fractional programming[J]. Management Science,1967,13:492-498.
    [2] J.V. Burke, M.C. Ferris. A Gauss-Newton method for convex composite optimization[J].Mathematical Programming,1995,71:179-194.
    [3] C. Combari, M. Laghdir, L. Thibault. A note on subdifferentials of convex compositefunctionals[J]. Archiv der Mathematik,1996,67:239-252.
    [4] C. Combari, M. Laghdir, L. Thibault. On subdifferential calculus for convex functions defned on locally convex spaces[J]. Annales des Sciences Mathematiques du Quebec,1999,23:23-36.
    [5] C. Zalinescu. Convex Analysis in General Vector Spaces[M]. World Scientific, Singapore,2002.
    [6] R.I. Bot, I.B. Hodrea, G. Wanka. Composed convex programming: Duality and Farkas-typeresults[A], in: Z. Kása, G. Kassay, J. Kolumbán (Eds.),"Proceedings of the InternationalConference In Memoriam Gyula Farkas", Cluj University Press, Cluj-Napoca,2006,22-35.
    [7] R.I. Bot, G. Wanka. A weaker regularity condition for subdifferential calculus and Fenchelduality in infinite dimensional spaces[J]. Nonlinear Analysis: Theory, Methods&Applications,2006,64:2787-2804.
    [8] C. Li, K.F. Ng. Majorizing functions and convergence of the Gauss-Newton method forconvex composite optimization[J]. SIAM Journal on Optimization,2007,18:613-642.
    [9] R.I. Bot, S.M. Grad, G. Wanka. A new constraint qualification for the formula of thesubdifferential of composed convex functions in infinite dimensional spaces[J].Mathematische Nachrichten,2008,281:1088-1107.
    [10] R.I. Bot, S.M. Grad, G. Wanka. Generalized Moreau-Rockafellar results for composedconvex functions[J]. Optimization,2009,58:917-933.
    [11] C. Li, D.H. Fang, G. Lopez, M.A. Lopez. Stable and total Fenchel duality for convexoptimization problems in locally convex spaces[J]. SIAM Journal on Optimization,2009,20:1032-1051.
    [12] R.I. Bot. Conjugate Duality in Convex Optimization[M]. Springer-Verlag, Berlin,2010.
    [13] X.Y. Zheng, K.F. Ng. Strong KKT conditions and weak sharp solutions in convex compositeoptimization[J]. Mathematical Programming,2011,126:259-279.
    [14] F. Giannessi. Theorems of the alternative, quadratic programs and complementarityproblems[A]. In: R.W. Cottle, F. Giannessi, J.L. Lions (eds.), Variational Inequalities andComplementarity Problems, Wiley, New York,1980,151–186.
    [15] D.T. Luc. Theory of Vector Optimization[M]. Springer, Berlin,1989
    [16] Y. Sawaragi, H. Nakayama, T. Tanino. Theory of Multiobjective Optimization[M].Academic Press, New York,1985.
    [17]林锉云,董加礼.多目标优化的方法与理论[M].长春:吉林教育出版社,1992.
    [18] F. Giannessi(eds). Vector Variational Inequalities and Vector Equilibria. In: MathematicalTheories[C]. Kluwer, Dordrecht,2000.
    [19] F. Giannessi, A. Maugeri, P.M. Pardalos. Equilibrium Problems: Nonsmooth Optimizationand Variational Inequalities[M]. Kluwer, Dordrecht,2002.
    [20] J. Jahn. Vector Optimization-Theory, Applications and Extensions[M]. Springer, Berlin,2004.
    [21] G.Y. Chen, X.X. Huang, X.Q. Yang. Vector Optimization: Set-Valued and VariationalAnalysis[M]. Springer, Berlin,2005.
    [22] E. Blum, W. Oettli. From optimization and variational inequalities to equilibriumproblems[J]. The Mathamatics Student,1994,63:123–145.
    [23] M. Bianchi, S. Schaible. Generalized monotone bifunctions and equilibrium problems[J].Journal of Optimization Theory and Applications,1996,90:31–43.
    [24] O. Chadli, Z. Chbani, H. Riahi. Equilibrium problems with generalized monotone bifunctionsand applications to variational inequalities[J]. Journal of Optimization Theory andApplications,2000,105:299–323.
    [25] A.N. Iusem, W. Sosa. New existence results for equilibrium problems[J]. Nonlinear Analysis:Theory, Methods&Applications,2003,52:621–635.
    [26] G. Mastroeni. Gap functions for equilibrium problems[J]. Journal of Global Optimization,2003,27:411–426.
    [27] M. Bianchi, R. Pini. A note on equilibrium problems with properly quasimonotonefunctions[J]. Journal of Global Optimization,2001,20:67–76.
    [28] M. Bianchi, R. Pini. Coercivity conditions for equilibrium problems[J]. Journal ofOptimization Theory and Applications,2005,124:79–92.
    [29] A. Chinchuluun, P.M. Pardalos, A. Migdalas, L. Pitsoulis. Pareto Optimality, Game Theoryand Equilibria[M]. Springer, New York,2008.
    [30] V.Z. Belenkii, V.A. Volkonskii(Eds). Iterative Methods in Game Theory and Programming[C]. Nauka, Moscow, Russia,1974(in Russian).
    [31] I.V. Konnov, S. Schaible. Duality for equilibrium problems under generalizedmonotonicity[J]. Journal of Optimization Theory and Applications,2000,104:395–408.
    [32] J.E. Martinez-Legaz, W. Sosa. Duality for equilibrium problems[J]. Journal of GlobalOptimization,2006,35:311–319.
    [33] F.M.O. Jacinto, S. Scheimberg. Duality for generalized equilibrium problem[J]. Optimization,2008,57:795–805.
    [34] G. Bigi, M. Castellani, G. Kassay. A dual view of equilibrium problems[J]. Journal ofMathematical Analysis and Applications,2008,342:17–26.
    [35] N. Dinh, J.J. Strodiot, V.H. Nguyen. Duality and optimality conditions for generalizedequilibrium problems involving DC functions[J]. Journal of Global Optimization,2010,48:183–208.
    [36] C.S. Lalitha. A note on duality of generalized equilibrium problem[J]. Optimization Letters,2010,4:57–66.
    [37] S.J. Li, P. Zhao. A method of duality for a mixed vector equilibrium problem[J].Optimization Letters,2010,4:85–96.
    [38] X.K. Sun, S.J. Li. Duality and Farkas-type results for extended Ky Fan inequalities with DCfunctions[J]. Optimization Letters,2011, DOI10.1007/s11590-011-0434-8.
    [39] X.K. Sun, S.J. Li. Duality and gap function for generalized multivalued vector variationalinequality[J]. Applicable Analysis,2011, DOI:10.1080/00036811.2011.628940.
    [40] R.T. Rockafellar. Conjugate duality and optimization[A]. Conferenee Board of theMatheMatieal Sciences Regional Conferenee Series in Applied Mathematies16,PhiladelPhia:Society for Industrial and Applied Mathematies,1974.
    [41] M. Borwein, V. Jeyakumar, A. Lewis. Constrained approximation via convex programming[R]. Waterloo: University of Waterterloo,1988.
    [42] M.S. Gowda, M. Teboulle. A comparison of constraint qualifications in infinite dimensionalconvex programming[J]. SIAM Journal on Control and Optimization,1990,28:925-935.
    [43] V. Jeyakumar. Duality and infinite dimensional optimization[J]. Nonlinear Analysis, Theory,Methods&Applications,1990,15:1111-1122.
    [44] V. Jeyakumar, H. Wolkowicz. Generalizations of Slater’s constraint qualification for infiniteconvex programs[J]. Mathematical Programming,1992,57:85-102.
    [45] J.E. Martinez-Legaz, M. Volle. Duality in D. C. programming: The case of several D. C.Constraints[J]. Journal of Mathematical Analysis and Applications,1999,237:657–671.
    [46] K.F. Ng, W. Song. Fenchel duality in infinite dimensional setting and its applications[J].Nonlinear Analysis: Theory, Methods&Applications,2003,25:845-858.
    [47] R.S. Burachik, V. Jeyakumar. A new geometric condition for Fenchel’s duality in infinitedimensional spaces[J]. Mathematical Programming,2005,104:229-233.
    [48] R.S. Burachik, V. Jeyakumar. A dual condition for the convex subdifferential sum formulawith applications[J]. Journal of Convex Analysis,2005,12:279-290.
    [49] V. Jeyakumar, G.M. Lee, N. Dinh. New sequential Lagrange multiplier conditionscharacterizing optimality without constraint qualifications for convex programs[J]. SIAMJournal on Optimization,2003,14:534-547.
    [50] V. Jeyakumar, N. Dinh, G.M. Lee. A new closed cone constraint qualifcation for convexoptimization[R]. Applied Mathematics Report AMR04/8, University of New South Wales,2004.
    [51] V. Jeyakumar, W. Song, N. Dinh, G.M. Lee. Stable strong duality in convex optimization[R].Applied Mathematics Report AMR05/22, University of New South Wales,2005.
    [52] N. Dinh, M.A. Goberna, M.A. Lopez, T.Q. Son. New Farkas-type constraint qualifications inconvex infinite programming[J]. ESAIM: Control, Optimisation and Calculus of Variations,2007,13:580-597.
    [53] N. Dinh, G. Vallet, T.T.A. Nghia. Farkas-type results and duality for DC programs withconvex constraints[J]. Journal of Convex Analysis,2008,15:235–262.
    [54] M.A. Goberna, V. Jeyakumar, M.A. Lopez. Necessary and sufficient conditions forsolvability of systems of infinite convex inequalities[J]. Nonlinear Analysis: Theory,Methods&Applications,2008,68:1184-1194.
    [55] D.H. Fang, C. Li, K.F. Ng. Constraint qualifications for extended Farkas’s lemmas andLagrangian dualities in convex infinite programming[J]. SIAM Journal on Optimization,2009,20:1311-1332.
    [56] N. Dinh, B.S. Mordukhovich, T.T.A. Nghia. Subdifferentials of value functions andoptimality conditions for DC and bilevel infinite and semi-infinite programs [J].Mathematical Programming,2010,123:101-138.
    [57] D.H. Fang, C. Li, K.F. Ng. Constraint qualifications for optimality conditions and totalLagrange dualities in convex infinite programming [J]. Nonlinear Analysis: Theory, Methods&Applications,2010,73:1143-1159.
    [58] D.H. Fang, C. Li, X.Q. Yang. Stable and total Fenchel duality for DC optimization problemsin locally convex spaces[J]. SIAM Journal on Optimization,2011,21:730-760.
    [59] R.I. Bot, G. Wanka. An alternative formulation for a new closed cone constraint qualification[J]. Nonlinear Analysis: Theory, Methods&Applications,2006,64:1367-1381.
    [60] R.I. Bot, S.M. Grad, G. Wanka. On strong and total Lagrange duality for convex optimizationproblems[J]. Journal of Mathematical Analysis and Applications,2008,337:1315-1325.
    [61] R.I. Bot, S.M. Grad, G. Wanka. New regularity conditions for strong and totalFenchel-Lagrange duality in infinite dimensional spaces[J]. Nonlinear Analysis: Theory,Methods&Applications,2008,69:323-336.
    [62] R.I. Bot, G. Wanka. Farkas-type results with conjugate functions[J]. SIAM Journal onOptimization,2005,15:540–554.
    [63] V. Jeyakumar. Characterizing set containments involving infinite convex constraints andreverse convex constraints[J]. SIAM Journal on Optimization,2003,13:947–959.
    [64] R.I. Bot, I.B. Hodrea, G. Wanka. Farkas-type results for inequality systems with composedconvex functions via conjugate duality[J]. Journal of Mathematical Analysis andApplications,2006,322:316-328.
    [65] R.I. Bot, G. Wanka. Farkas-type results for max-functions and applications[J]. Positivity,2006,10:761-777.
    [66] R.I. Bot, I.B. Hodrea, G. Wanka. Farkas-type results for fractional programming problems[J].Nonlinear Analysis, Theory, Methods&Applications,2007,67:1690–1703.
    [67] R.I. Bot, I.B. Hodrea, G. Wanka. Some new Farkas-type results for inequality system withDC functions[J]. Journal of Global Optimization,2007,39:595–608.
    [68] N. Dinh, T.T.A. Nghia, G. Vallet. A closedness condition and its applications to DCprograms with convex constraints[J]. Optimization,2010,59:541-560.
    [69] D.H. Fang, C. Li, X.Q. Yang. Asymptotic closure condition and Fenchel duality for DCoptimization problems in locally convex spaces[J]. Nonlinear Analysis: Theory, Methods&Applications,2012,75:3672-3681.
    [70] M.R. Hestenes. Calculus of Variations and Optimal Control Theory[M]. New York, Wiley,1966.
    [71] Cromme, L. Strong uniqueness: a far reaching criterion for the convergence of iterativeprocedures[J]. Numerische Mathematik,1978,29:179–193.
    [72] A. Auslender. Stability in mathematical programming with nondifferentiable data[J]. SIAMJournal on Control and Optimization,1984,22:239–254.
    [73] M. Studniarski. Necessary and sufficient conditions for isolated local minima of nonsmoothfunctions[J]. SIAM Journal on Control and Optimization,1986,24:1044–1049.
    [74] D.E. Ward. Characterizations of strict local minima and necessary conditions for weak sharpminima[J]. Journal of Optimization Theory and Applications,1994,80:551–571.
    [75] B. Jimenez. Strict efficiency in vector optimization[J]. Journal of Mathematical Analysis andApplications,2002,265:264-284.
    [76] B. Jimenez, V. Novo. First and second-order sufficient conditions for strict minimality innonsmooth vector optimization[J]. Journal of Mathematical Analysis and Applications,2003,284:496–510.
    [77] B. Jimenez, V. Novo. First-order optimality conditions in vector optimization involvingstable functions[J]. Optimization,2008,58:449–471.
    [78] E. Hernandez, L. Rodriguez-Marn, M. Sama. Scalar multiplier rules in set-valuedoptimization[J]. Computers&Mathematics with Applications,2009,57:1286–1293.
    [79] B. Jimenez, V. Novo. Second-order necessary conditions in set constrained differentiablevector optimization[J]. Mathematical Methods of Operations Research,2003,58:299–317.
    [80] B. Jimenez, V. Novo. Optimality conditions in differentiable vector optimization via secondorder tangent sets[J]. Applied Mathematics and Optimization,2004,49:123–144.
    [81] D.V. Luu. Higher-order necesssary and sufficient conditions for strict local pareto minima interms of Studniarski’s derivatives[J]. Optimization,2008,57:593–605.
    [82] F. Flores-Bazn, B. Jimenez. Strict efficiency in set-valued optimization[J]. SIAM Journal onControl and Optimization,2009,48:881–908.
    [83] S.J. Li, X.K. Sun, S.K. Zhu. Higher-order optimality conditions for strict minimality inset-valued optimization[J]. Journal of Nonlinear and Convex Analysis,2012,13:281-291.
    [84] S.J. Li, S.K. Zhu, X.B. Li. Second-order optimality conditions for strict efficiency ofconstrained set-valued optimization[J]. Journal of Optimization Theory and Applications,2012,155:534-557.
    [85] A.V. Fiacco. Introduction to Sensitivity and Stablity Analysis in Nonlinear Programming[M].Academic Press, New York.1983.
    [86] J.F. Bonnans, A. Shapiro. Perturbation Analysis of Optimization Problems[M]. Springer,New York,2000.
    [87] J.P. Aubin, H. Frankowska. Set-Valued Analysis[M]. Birkhauser, Boston,1990.
    [88] J. Jahn, R. Rauh. Contingent epiderivatives and set-valued optimization[J]. MathematicalMethods of Operations Research,1997,46:193–211.
    [89] T. Tanino. Sensitivity analysis in multiobjective optimization[J]. Journal of OptimizationTheory and Applications,1988,56:479–499.
    [90] T. Tanino. Stability and sensitivity analysis in convex vector optimization[J]. SIAM Journalon Control and Optimization,1988,26:521-536.
    [91] D.S. Shi. Contingent derivative of the perturbation map in multiobjective optimization[J].Journal of Optimization Theory and Applications,1991,70:385–396.
    [92] D.S. Shi. Sensitivity analysis in convex vector optimization[J]. Journal of OptimizationTheory and Applications,1993,77:145–159.
    [93] H. Kuk, T. Tanino, M. Tanaka. Sensitivity analysis in vector optimization[J]. Journal ofOptimization Theory and Applications,1996,89:713–730.
    [94] H. Kuk, T. Tanino, M. Tanaka. Sensitivity analysis in parametrized convex vectoroptimization[J]. Journal of Mathematical Analysis and Applications,1996,202:511–522.
    [95] S.J. Li, H. Yan, G.Y. Chen. Differential and sensitivity properties of gap functions for vectorvariational inequalities[J]. Mathematical Methods of Operations Research,2003,57:377–391.
    [96] K.W. Meng, S.J. Li. Differential and sensitivity properties of gap functions for Minty vectorvariational inequalities[J]. Journal of Mathematical Analysis and Applications,2008,337:386–398.
    [97] S.J. Li, K.W. Meng, J.P. Penot. Calculus rules for derivatives of multimaps[J]. Set-ValuedAnalysis,2009,17:21–39.
    [98] M.H. Li, S.J. Li. Second-order differential and sensitivity properties of weak vectorvariational inequalities[J]. Journal of Optimization Theory and Applications,2011,144:76–87.
    [99] S.J. Li, M.H. Li. Sensitivity analysis of parametric weak vector equilibrium problems[J].Journal of Mathematical Analysis and Applications,2011,380:354-362.
    [100] M.H. Li, S.J. Li, Z.M. Fang. Stability and Sensitivity Analysis of Solutions to Weak VectorVariational Inequalities[J]. Set-Valued and Variational Analysis,2012,20:111-129.
    [101] S.J. Li, J. Zhai. Second-order asymptotic differential properties and optimality conditions forweak vector variational inequalities[J]. Optimization Letters,2012,6:503-520.
    [102] S.J. Li, X.W. Xue. Sensitivity analysis of gap functions for vector variational inequality viacoderivatives[J]. Optimization,2012, DOI:10.1080/02331934.2012.688970.
    [103] S.K. Zhu, S.J. Li, K.L. Teo. Differential properties and optimality conditions for generalizedweak vector variational inequalities[J]. Positivity,2012, DOI:10.1007/s11117-012-0179-3
    [104] G.Y. Chen, J. Jahn. Optimality conditions for set-valued optimization problems[J].Mathematical Methods of Operations Research,1998,48:187–200.
    [105] E.M. Bednarczuk, W. Song. Contingent epiderivate and its applications to set valued maps[J].Control and Cybernetics,1998,27:375–386.
    [106] G. Bigi, M. Castellani. K-epiderivatives for set-valued functions and optimization[J].Mathematical Methods of Operations Research,2002,55:401–412.
    [107] C. Ling. Generalized tangent epiderivative and applications to set-valued map optimization[J].Journal of Nonlinear and Convex Analysis,2002,3:303-313.
    [108] J. Jahn, A.A. Khan. Generalized contingent epiderivatives in set-valued optimization[J].Numerical Functional Analysis and Optimization,2002,23:807–831.
    [109] X.H. Gong, H.B. Dong, S.Y. Wang. Optimality conditions for proper efficient solutions ofvector set-valued optimization[J]. Journal of Mathematical Analysis and Applications,2003,284:332–350.
    [110] A.A. Khan, F. Raciti. A multiplier rule in set-valued optimization[J]. Bulletin of theAustralian Mathematical Society,2005,68:93–100.
    [111] C.S. Lalitha, R. Arora. Weak Clarke epiderivative in set-valued optimization[J]. Journal ofMathematical Analysis and Applications,2008,342:704–714.
    [112] T.D. Chuong, J.-C. Yao. Generalized Clarke epiderivatives of parametric vector optimizationproblems[J]. Journal of Optimization Theory and Applications,2010,147:77-94.
    [113] J. Jahn, A.A. Khan, P. Zeilinger. Second-order optimality conditions in set optimization[J].Journal of Optimization Theory and Applications,2005,125:331–347.
    [114] S.J. Li, S.K. Zhu, K.L. Teo. New generalized second-order contingent epiderivatives andset-valued optimization problems[J]. Journal of Optimization Theory and Applications,2012,152:587-604.
    [115] S.J. Li, C.R. Chen. Higher-order optimality conditions for Henig efficient solutions inset-valued optimization[J]. Journal of Mathematical Analysis and Applications,2006,323:1184–1120.
    [116] C.R. Chen, S.J. Li, K.L. Teo. Higher-order weak epiderivatives and applications to dualityand optimality conditions[J]. Computers&Mathematics with Applications,2009,57:1389–1399.
    [117] Q.L. Wang, S.J. Li. Higher-order weakly generalized adjacent epiderivatives and applicationsto duality of set-valued optimization[J]. Journal of Inequalities and Applications,2009, ID:462637.
    [118] Q.L. Wang, S.J. Li, K.L. Teo. Higher-order optimality conditions for weakly efficientsolutions in nonconvex set-valued optimization[J]. Optimization Letters,2010,4:425–437.
    [119] Q.L. Wang, S.J. Li. Second-order contingent derivative of the perturbation map inmultiobjective optimization[J]. Fixed Point Theory and Applications,2011, ID:857520.
    [120] Q.L. Wang, S.J. Li. Sensitivity and stability for the second-order contingent derivative of theproper perturbation map in vector optimization[J]. Optimization Letters,2012,6:731-748.
    [121] X.K. Sun, S.J. Li. Stability analysis for higher-order adjacent derivative in parametrizedvector optimization[J]. Journal of Inequalities and Applications,2010, ID:510838.
    [122] X.K. Sun, S.J. Li. Lower Studniarski derivative of the perturbation map in parametrizedvector optimization[J]. Optimization Letters.2011,5:601-614.
    [123] X.K. Sun, S.J. Li. Weak lower Studniarski derivative in set-valued optimization[J]. PacificJournal of Optimization.2012,8:307-320.
    [124] S.J. Li, X.K. Sun, J. Zhai. Second-order contingent derivatives of set-valued mappings withapplication to set-valued optimization[J]. Applied Mathematics and Computation,2012,218:6874-6886.
    [125] S. Schaible. Fractional programming, II: On Dinkelbach’s algorithm[J]. Management Science,1976,22:868-873.
    [126] X.M. Yang, K.L. Teo, X.Q. Yang. Symmetric duality for a class of nonlinear fractionalprogramming problems[J]. Journal of Mathematical Analysis and Applications,2002,271:7-15.
    [127] S.K. Mishra, S.Y. Wang, K.K. Lai, J.M. Shi. Nondifferentiable minimax fractionalprogramming under generalized univexity[J]. Journal of Computational and AppliedMathematics,2003,158:379-395.
    [128] X.M. Yang, X.Q. Yang, K.L. Teo. Duality and saddle-point type optimality for generalizednonlinear fractional programming[J]. Journal of Mathematical Analysis and Applications,2004,289:100-109.
    [129] J.Y. Lin, R.L. Sheu. Modified Dinkelbach-type algorithm for generalized fractional programswith infinitely many ratios[J]. Journal of Optimization Theory and Applications,2005,126:323-343.
    [130] X.H. Zhang, C.Z. Cheng. Some Farkas-type results for fractional programming with DCfunctions[J]. Nonlinear Analysis: Real World Applications,2009,10:1679–1690.
    [131] H.J. Wang, C.Z. Cheng. Duality and Farkas-type results for DC fractional programming withDC constraints[J]. Mathematical and Computer Modelling,2011,53:1026–1034.
    [132] G.M. Lee, N.Q. Huy. On sensitivity analysis in vector optimization[J]. Taiwanese Journal ofMathematics,2007,11:945-958.
    [133] N.Q. Huy, B.S. Mordukhovich, J.-C. Yao. Coderivatives of frontier and solution maps inparametric multiobjective optimization[J]. Taiwanese Journal of Mathematics,2008,12:2083-2111.
    [134] T.D. Chuong, J.-C. Yao. Coderivatives of efficient point multifunctions in parametric vectoroptimization[J]. Taiwanese Journal of Mathematics,2009,13:1671-1693.
    [135]宋文,万莉娟.向量优化中值映射的余切上图可微性[J].黑龙江大学学报(自然科学版),2005,22:198-203.
    [136] R.T. Rockafellar. Convex Analysis[M]. Princeton University Press, Princeton,1970.
    [137] J.P. Penot. Differentiability of relations and differential stability of perturbed optimizationproblems[J]. SIAM Journal on Control and Optimization,1984,22:529–551.
    [138] J.F. Toland. Duality in nonconvex optimization[J]. Journal of Mathematical Analysis andApplications,1978,66:399-415.
    [139] R.I. Bot, G. Kassay, G. Wanka. Strong duality for generalized convex optimizationproblems[J]. Journal of Optimization Theory and Applications,2005,127:45-70.
    [140] G. Wanka, R.I. Bot. On the relations between different dual problems in convexmathematical programming[A], in: P. Chamoni, R. Leisten, A. Martin, J. Minnermann, H.Stadtler (Eds.), Operations Research Proceedings,2001, Springer-Verlag, Berlin,2002,255-262.
    [141] H. Hantoute, M.A. Lopez, C. Zalinescu. Subdifferential calculus rules in convex analysis: Aunifying approach via pointwise supremum functions[J]. SIAM Journal on Optimization,2008,19:863-882.
    [142] S.J. Li, K.L. Teo, X.Q. Yang. Higher-order optimality conditions for set-valuedoptimization[J]. Journal of Optimization Theory and Applications,2008,137:533–553.
    [143] D.E. Ward. A chain rule for first and second-order epiderivatives and hypoderivatives[J].Journal of Mathematical Analysis and Applications,2008,348:324-336.
    [144] V. Kalashnikov, B. Jaddamba, A.A. Khan. First and second-order optimality conditions in setoptimization[A], in: S. Dempe, V. Kalashnikov (Eds.), Optimization with MultivaluedMappings, Springer, Berlin,2006,265–276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700