用户名: 密码: 验证码:
用于半导体和金属表面三维微/纳结构制备的新型电化学加工方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工艺简单、用途广泛、能批量加工复杂三维微/纳结构的加工技术一直是微/纳加工领域的研究热点。近来,利用电化学手段进行三维微/纳米尺度的刻蚀加工己成为该领域中一个发展迅速的研究方向。电化学方法具有控制灵活、工作条件温和、低成本等优点,在加工复杂三维微/纳结构上具有很好的潜力。本论文完善和发展了适用于复杂三维微/纳加工的电化学加工技术,对金属和半导体的微/纳加工进行了深入的研究,并将电化学加工技术初步应用于微光学元件阵列和生物芯片(细胞阵列)的制备等方面。
     本论文共分为七个章节。前言介绍了现有的各种微细加工技术的主要特点,同时在应用方面主要介绍了微细加工技术用于微光学阵列元件以及细胞微阵列的制备。作者不仅对现有可加工复杂三维微结构的方法的局限性进行了分析,而且详细介绍了论文工作中涉及的两种新型电化学微/纳加工技术(约束刻蚀剂层技术和电化学湿印章技术),而后提出了本论文的主要设想和工作思路。第二章介绍了论文实验中涉及的实验技术和表征手段。第三章和第四章分别介绍约束刻蚀剂层技术(Confined Etchant Layer Technique,简称CELT)用于n-GaAs及p-Si表面的三维微加工。通过对约束刻蚀体系的筛选,确定溴离子为电生刻蚀剂前驱物种以及L-胱胺酸为有效的捕捉剂,利用Pt微圆柱电极刻蚀加工实验,对刻蚀体系进行优化,而后利用多种复杂三维模板对n-GaAs及p-Si进行三维微加工。同时,第四章中进一步对CELT技术加工的基底对微加工的分辨率影响进行了深入的讨论,指出了CELT技术中考虑基底与刻蚀剂的化学反应速度的必要性。第五章应用CELT技术进行n-GaAs表面衍射型光学微透镜阵列的制备,通过纳米热压印技术以及磁控溅射技术制备大面积PMMA/Ti/Pt模板电极,CELT技术将模板电极上微/纳结构复制刻蚀在n-GaAs表面。作者也提出了能够初步解决大面积微加工过程中涉及的均匀性和平行性等困难的方法。第六章介绍了电化学湿印章技术的原理和应用,将可存储溶液的图案化琼脂糖凝胶模板与阳极溶解过程结合,对多种金属(Ni、Cu以及Au膜)和半导体p-Si进行了微加工,并将Au膜应用于制备Hela细胞微阵列。第七章探讨了论文工作中尚需进一步完善的问题,提出了对未来工作的展望。
     本论文工作的创新点以及主要成果有如下三点:
     1.利用CELT技术首次在n-GaAs以及p-Si材料表面实现了三维复杂微加工。选择KBr或HBr作为电生刻蚀剂的前驱物种,确定L-胱氨酸作为最合适的捕捉剂,取代了毒性很强的H_3A_sO_3。利用Pt微圆柱电极刻蚀加工实验,优化刻蚀体系组成。使用复杂硅基模板电极和微凹半球阵列电极对n-GaAs基底进行了加工,并分析了影响刻蚀的因素,如平行度和溶液更新等问题。讨论了Br_2对GaAs的刻蚀机理,并分析了GaAs深刻蚀的困难,通过在刻蚀过程中反复提降模板强制更新溶液的方法,利用微圆柱电极进行了深刻蚀的初步实验。使用复杂Pt-Ir微半球模板电极和"XMU"模板电极对Si进行了加工,选择合适的表面活性剂(十六烷基三甲基氯化铵,CTAC1)消除了刻蚀过程中副产物氢气的影响,获得了高分辨率的刻蚀结果。比较不同极性的表面活性剂的作用效果,提出了表面活性剂可消除气体影响的作用机理和理论模型。从两者刻蚀机理出发,对GaAs刻蚀体系与Si刻蚀体系的差异进行了比较分析。通过分析相同刻蚀剂与捕捉剂浓度配比下,两者刻蚀分辨率的差别,提出了电生刻蚀剂与基底之间的异相捕捉反应可影响电生刻蚀剂浓度分布的观点。
     2.利用CELT技术在n-GaAs表面制备得到衍射型光学微透镜阵列,发展了纳米热压印技术结合磁控溅射技术制备大面积PMMA/Ti/Pt模板电极的方法。该二元微光学阵列的每个单元具有八个同心环和七个台阶,总高度为1.58μm。作者提出了利用CELT技术加工大面积的GaAs微光学元件的困难和策略:通过设计调整平行度的有效方法,克服了由于模板与基底之间不平行对刻蚀加工均匀性的影响;采用多次提降模板从而强制交换微区中溶液的实验步骤,一定程度上解决了模板和工件间微区中溶液更新的困难,初步解决刻蚀微结构均匀性的问题。
     分析了基底与电生刻蚀剂的异相捕捉反应对电生刻蚀剂浓度分布的影响,提出了可恒定模板和工件之间接触压力以进行电化学微加工的模式,在此模式下增加电生刻蚀剂前驱物HBr的浓度,可提高刻蚀分辨率和刻蚀深度,在GaAs上实现了大面积衍射微光学阵列元件的复制加工,同时在竖直方向上加工的分辨率可达到数十纳米。建立了简单的数学模型用以讨论无基底、有基底以及模板与基底距离不同时电生刻蚀剂的浓度分布。该模型也可解释基底对微区内电生刻蚀剂浓度分布的影响,以及加工过程中可通过减小模板与基底之间距离以提高刻蚀分辨率和刻蚀深度。
     3.提出了电化学湿印章技术(简称E-WETS)的电化学加工新技术。该技术将可存储溶液的图案化琼脂糖凝胶模板与阳极溶解过程结合,对多种金属(Cu、Ni、Au/ITO膜等)和半导体进行了加工。它克服了传统电化学微加工方法中溶液补充的难题,实现了三维微加工,加工速度快且加工分辨率可达到微米级。如通过将琼脂糖凝胶湿印章与阳极电抛光技术结合,选择合适的HF浓度以及电位条件,在p-Si(100)加工出多种微细结构。利用该技术对磁控溅射了Au膜的导电ITO玻璃(Au/ITO)进行微加工,得到图案化的Au/ITO基底。在残余的金岛表面修饰疏细胞的分子(甲氧基巯基聚乙二醇,methoxy(poly-(ethyleneglycol))thiol,mPEG-SH),而后在该基底上继续进行Hela细胞(宫颈癌细胞)的培养。由于细胞无法粘附在修饰疏有细胞硫醇的金岛表面,而金膜完全刻蚀后露出的ITO玻璃上可进行Hela细胞的粘附,因此可获得Hela细胞阵列。
The development of the micro-electro-mechanical systems(MEMS), micro-optics,micro-chips helps the advancement of micromachining technology that is the hotspot of the recent research and the core of MEMS.The requirements for new approaches of micro/nanomachining include the ability to fabricate complex 3D microstructures,high output and batch process.Recently,the electrochemical machining method is considered to be hopeful and environmentally friendly due to its mild working conditions,low cost and easy controllability and has a good potential ability to fabricate complex 3D micro/nano structures.Here,this thesis concentrates on developing new electrochemical micromachining methods and applying them to fabricate effective 3D micro/nanostrucutures on semiconductors and metals.The application of these methods to produce a diffractive microlens array and cell patterns was preliminarily explored.
     This thesis is divided into seven chapters.ChapterⅠintroduces the process and characteristics of the main approaches for micro/nanomachining.The application of the techniques especially those in the fabrication of microlens array and cell patterns are introduced in detail.Two electrochemical micromachining methods developed in our group were recommended in ChaperⅠ.The aim and main task of this thesis are presented.ChapterⅡintroduces the experimental reagents and characterization tools. In chapterⅢand chapterⅣ,the Confined Etchant Layer Technique(CELT) has been applied to achieve effective 3D micromachining on n-GaAs and p-Si.In chapter V,CELT was applied to fabricate large-scale diffractive microlens array on n-GaAs. The PMMA/Ti/Pt mold with complex micro/nano structures was fabricated by traditional hot embossing technique and radio frequency magnetron sputtering.After two-step precisely replication,the binary diffractive microlens array on the quartz was transferred to the n-GaAs.ChapterⅥintroduces a new technique named as electrochemical wet-stamping method(E-WETS),Localization of anodic dissolution using patterned agarose has been employed to fabricate micro-structures on metals (Ni、Cu and Au/ITO) and p-Si.In addition,the patterned Au/ITO substrate was applied to pattern Hela cells by further modification.In chapterⅦ,some unsolved questions were discussed and the prospective plan was presented.
     The main results of this work are listed as follows:
     (1) The confined etchant layer technique has been applied to achieve effective three-dimensional(3D) micromachining on n-GaAs and p-Si.This technique operates via an indirect electrochemical process,and is a maskless,low-cost technique for microfabrication of arbitrary 3D structures in a single step.Br2 was electrogenerated at the mold surface and used as an efficient etchant for n-GaAs and p-Si;L-cystine was used as a scavenger,for both substrates.The resolution of the fabricated microstructure depended strongly on the composition of the electrolyte,and especially on the concentration ratio of L-cystine to Br~-.A well-defined,polished Pt microcylindrical electrode was employed to examine the deviation of the size of the etched spots from the real diameter of the microelectrode.The thickness of the confined etchant layer can be estimated and thus the composition of the electrolyte can be optimized for better etching precision.The etched patterns were approximately negative copies of the mold,and the precision of duplication could reach the micrometer level for p-Si and the sub-micrometer level for n-GaAs.Although the same etchant(Br_2) and scavenger(L-cystine) were used in the etching solutions for GaAs and Si,the etching process,or mechanism,is completely different in the two cases.Compared with the fast etching process on GaAs in an etching solution with a concentration ratio of 3:1 of L-cystine to Br~-,the concentration ratio needs to be 50:1 for etching of Si.For the micromachining of Si,the addition of a cationic surfactant (cetyltrimethylammonium chloride,CTAC1) is necessary to reduce the surface tension of the substrate and hence reduce the influence of evolution of the by-product H_2.The function of the surfactant CTAC1 in comparison with an anionic surfactant(sodium dodecyl sulfate) was studied in contact angle experiments and micromachining experiments and then is discussed in detail.
     (2) A large-scale diffractive microlens arrays on n-GaAs has been fabricated by using an efficient electrochemical technique named CELT(confined etehant layer technique).This microlens array is an eight-phase level diffractive optic device with eight concentric rings and seven steps in one lenslet.When appropriate chemical solutions and etching conditions are chosen,an approximate copy of the diffractive microlens array on the quartz is transferred onto the n-GaAs.In this thesis,attention has been paid to the electromicromachining process that critically relates to the practical application.The feeding of the workpiece makes the refreshment of the solution in a very small volume mandatory;the heterogeneous reaction between the etchant and the workpiece enhances the confinement of the scavenger and thus the etching resolution in the horizontal direction reaches tens of nanometers.These studies will definitely help the electrochemical method come into mass production for micro-optic component arrays on GaAs.
     When the influence of the heterogeneous reaction on the etching resolution or the thickness of CEL needs to be taken into account,a mathematic model is proposed to illustrate the concentration gradient under different conditions with and without the influence of the substrate,considering different distance between the mold and the workpiece.Therefore,the pressure between the mold and the workpiece is kept at a constant and small value to ensure the nearest distance between them.Moreover,the concentration of the precursor HBr is increased to increase the resolution of micromachining and the etching rate and thus increase the efficiency of the micromachining.
     (3) Localization of electrochemical polishing using pattemed agarose has been employed to fabricate microstructures on p-Si and metals by electrochemical wet stamping method(abbreviated as E-WETS).The patterns were first transferred from a master to an agarose stamp,and then the microstructures were fabricated by limiting electrochemical polishing in the small contact area between the stamp and the workpiece.The gel stamp acts as the current flow channel between the working electrode and the counter electrode,simultaneously directing the electrolyte to the preferential parts of the workpiece.When the microstructures are fabricated by partial anodic dissolution on p-Si,they are approximately the same as those on the master. Lateral deviation of the fabricated microstructures from those on the master is approximately 2.6%and the electrochemical etching rate in HF is around several micrometers in an hour.This newly developed technique can be used as a low-cost and simple approach to fabricate microstructures on p-Si with high fidelity at a fast rate.This method has also been applied to micromachining metals,such as nickel, copper and Au film.Patterned Au/ITO substrate was immersed in mPEG-SH (methoxy(poly-(ethylene glycol))thiol) solution,and a cell-resistant self-assembled monolayer formed on gold islands.The gold islands coated with SAMs became cell-resistant and thus Hela cells only adhered on the exposed ITO surface.
引文
1.章吉良,杨春生.微机电系统及其相关技术[M],上海:上海交通大学出版社,1999.
    2.刘广玉,樊尚春,周浩敏.微机械电子系统及其应用[M],北京:北京航空航天大学出版社,2003.
    3.Lyshevski,S.E.Nano-and Microelectromechanical Fundamentals of Nano- and Microengineering[M],Boca Raton:CRC Press,2001.
    4.Lofdahl,L.;Gad-el-Hak,M.MEMS applications in turbulence and flow control[J].Progress in Aerospace Science,1999,35:101-203.
    5.Menz,M.;Mohr,J.;Paul,O.;王春海,于杰译注.微系统技术[M],北京:化学工业出版社.2003.
    6.田中群.展望21世纪的化学-微系统与化学[M],北京:化学工业出版社,2000.
    7.Feynman,R.In There's Plenty of Room at the Bottom The annual meeting of the American Physical Society at the California Institute of Technology(Caltech),1959.
    8.Terry,S.C.;Jerman,J.H.;Angell,J.B.A gas chromatographic air analyzer fabricated on a silicon wafer[J].Electron Devices,IEEE Transactions on,1979,26:1880-1886.
    9.Peterson,K.Silicon as a mechanical material[J].Proceedings of the IEEE,1982,70:420-457.
    10.Fluitman,J.Microsystems technolgy:objectives[J].Sensors and Actuators A,1996,56:151-166.
    11.Esashi,M.;Ono,T.From MEMES to nanomachine[J].Journal of physics D,2005,38:R223-R230.
    12.王力鼎,刘冲.微机电系统科学与技术的发展趋势[J].大连理工大学学报,2000,40(5):5050-508.
    13.田中群.微系统与电化学[J].电化学,2000,6(1):1-9.
    14.丁衡高.微米/纳米技术-面向21世纪的军民两用技术[J].仪器仪表学报,1995,16(1):1-7.
    15.Amato,I.Fomenting a revolution in miniature[J].Science,1998,282:402-405.
    16.王渭源.小如蚂蚁-半导体传感器与微电子机械系统[M],长沙:湖南科学技术出版社,1999.
    17.石庚生.微机电系统技术[M],北京:国防工业出版社,2002.
    18.梅涛,伍小平.微机电系统[M],北京:化学工业出版社,2003.
    19.孙立宁,孙绍云,荣伟彬,蔡鹤皋.微操作机器人的发展现状[J].机器人。2002,24(2):184-187.
    20.谢晖,孙立宁,荣伟彬,陈立国.MEMS微装配机器人系统的研究[J].机械与电子,2005,3:7-10.
    21.王琪民.微型机械导论[M],合肥:中国科学技术大学出版社,2003.
    22.王振龙等.微细加工技术[M],北京:国防工业出版社,2005.
    23.Bern,A.;Buder,U.;Obermeier,E.;et al.AeroMEMS sensor array for high-resolution wall pressure measurements[J].Sensors and Actuators A-physical,2006,132:104-111.
    24.Ni,X.Q.;Wang,M.;Chen,X.X.;et al.An optical fibre MEMS pressure sensor using dual-wavelength interrogation[J].Measurement Science & Technology,2006,17(9):2401-2404.
    25.Jain,M.K.;Grimes,C.A.A wireless magnetoelastic micro-sensor array for simultaneous measurement of temperature and pressure[J].IEEE transactions on magnetics,2001,37(4):2022-2024.
    26.Shen,L.P.;Uchiyama,T.;Mohri,K.;et al.Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire[J].IEEE transactions on magnetics,1997,33(5):3355-3357.
    27.De Brabander,G.N.;behein,G.;Boyd,J.T.Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation[J].Applied Optics,1998,37(15):3264-3267.
    28.Kim,I.S.;Kim,O.S.;Jeong,Y.J.;et al.A study on the thermal behavior of fabrication processes for micro-accelerometer by SOI wafers[J].Journal of Materials Processing Technology,2002,130:680-684.
    29.Chae,J.;Kulah,H.;Najafi,K.A COMS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer[J].Journal of Micromechanics and Microengieering,2005,15(2):336-345.
    30.Yee,Y.J.;Bu,J.U.;Chun,K.J.;et al.An integrated digital silicon micro-accelerometer with MOSFET-type sensing elements[J].Journal of Micromechanics and Microengieering,2000,10(3):350-358.
    31.Xiao,Z.;Chen,M.;Wu,G.Y.;et al.Silicon micro-accelerometer with rug resolution,high linearity and large frequency bandwidth fabricated with two mask bulk process [J]. Sensors and Actuators A-physical, 1999, 77 (2):113-119.
    32. Lim, M. K..; Du, H.; Su, C; et al. A micromachined piezoresistive accelerometer with high sensitivity: design and modeling [J]. Microelectronic Engineering, 1999,49 (3-4):263-272.
    
    33. Kromer, O. High-precision readout circut for LIGA acceleration sensors [J]. Sensors and Actuators A-physical, 1995, 46:196-200.
    34. Lapadatu, D. A. A double-sided capacitive miniaturized accelerometer based on photovoltaic etch-stop technique [J]. Sensors and Actuators A-physical, 1996, 53:261-266.
    35. Fang, Q.; Chetwynd, D. G.; Covington, J. A.; et al. Micro-gas-sensor with conducting polymer [J]. Sensors and Actuators B-chemical, 2002, 84 (1):66-71.
    36. Guenat, O. T.; Fiaccabrino, G. C.; Morf, W. E.; et al. Microfabricated chemical analysis systems for enviromental applications [J]. Chimia, 1999, 53 (3):87-90.
    37. Van Steenkiste, F.; Baert, K.; Debruyker, D.; et al. A microsensor array for biochemical sensing [J]. Sensors and Actuators B-chemical, 1997,44 (1-3):409-412.
    38. Feng, Y.; Wang, M. Micro hydrogen sensor based on Pd-Ag nanofilm [J]. Rare Metal Materials and Engineering, Suppl., 2006, 35:25-28.
    39. Norlin, P.; Ohman, O.; Ekstrom, B.; et al. A chemical micro analysis system for the measurement of pressure, flow rate, temperature, conductivity, UV-absorption and fluorescence [J]. Sensors and Actuators B-chemical, 1998, 49 (l-2):34-39.
    40. Chuang, W. H.; Hui, J.; Young, M.; et al. An electrostatic actuator for fatigue testing of flow-stress LPCVD silicon nitride thin film [J]. Sensors and Actuators A-physical, 2005, 121 (2):557-565.
    41. Van der Wijngaart, W.; Ask, H.; Enoksson, P.; et al. A high-stoke, high-perssure electrostatic actuator for valve applications [J]. Sensors and Actuators A-physical, 2002, 100 (2-3):264-271.
    42. Wu, X. T.; Hui, j.; Young, M.; et al. Electrostatic micromembrane actuator arrays as motion generator [J]. Applied Physical letters, 2004, 84 (22):4418-4420.
    43. Sattler, R.; Plotz, F.; Fattinger, G.; et al. Modeling of an electrostatic torsional actuator:demonstrated with an RF MEMS switch [J]. Sensors and Actuators A-physical, 2002, 97:337-346.
    44. Byun, J. K.; Park, I. H.; Hah, S. Y. Topology optimization of electrostatic actuator using design sensitivity[J].IEEE transactions on magnetics,2002,38(2):1053-1056.
    45.Kim,B.H.;Chun,K.J.Fabrication of an electrostatic track-following micro actuator for hard disk drives using SOI wafer[J].Journal of Micromechanics and Microengieering,2001,11(1):1-6.
    46.Chan,E.K.;Dutton,R.W.Electrostatic micromechnical actuator with extended range of travel[J].Journal of Microelectromechanical Systems,2000,9(3):321-328.
    47.Yeh,J.L.A.;Jiang,H.R.;Tien,N.C.Intergrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator[J].Journal of Microelectromechanical Systems,1998,8(4):456-465.
    48.马信周.[D].厦门大学理学硕士论文,2007.
    49.刘柱方.[D].厦门大学理学硕士论文,2003.
    50.蒋利民.[D].厦门大学理学博士论文,2007.
    51.苏连永.[D].厦门大学理学博士论文,1995.
    52.蒋欣荣.微细加工技术[M],北京:科学出版社,1990.
    53.黄庆安.硅微机械加工技术[M],北京:科学出版社,1996.
    54.Moreau,W.M.Semiconductor lithography/M],Plenum Press,New York,London,1988.
    55.Becker,E.W.;Ehrfeld,W.;Hagmann,P.;Maner,A.;Munchmeyer,D.Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography,galvanoforming,and a plastic moulding(LIGA process)[J].Microelectronic Engineering,1986,4:35-36.
    56.Elliott,D.J.Microlithography/M],McGraw-Hill,New YorE,1986.
    57.Maluf,N.An introduction to microelectromechanical systems engineering[M],Boston:Artech House,2000.
    58.Kovacs,G.T.A.;Maluf,N.;Petersen,K.Bulk micromachining of silicon[J].Proceedings of the IEEE,1998,86:1552-1574.
    59.Bustillo,J.M.;Hower,R.T.;Muller,R.S.Surface micromachining for microelectromechanical system[J].Proceedings of the IEEE,1998,86:1552-1557.
    60.万遇良.机电一体化技术概览Pg],北京:北京工业出版社,1999.
    61.周兆英,叶雄英,李勇,杨岳,江小宁,王晓浩,张联.微系统和微型制造技术[J].微米纳米科学与技术,1996,1:1.
    62.Rodgers,M.S.;Sniegowski,J.J In 5-level polysilicon surface micromachine technology:application to complex mechanical systems Technical digest of the 1998 solid-state sensor and actuator workshop Hilton Head,SC,USA,1998,144-149.
    63.Yeh,E.;Kruglick,J.J.;Pister,K.S.J.In Microelectromechanical components for Articulated microrobots Proc.Transducers 95/ Eurosensors])(,Stockholm,Sweden,June 25-29,1995,346-349.
    64.Romankiw,L.T.A path:from electroplating through lithographic masks in electronics to LIGA in MEMS[J].Electrochimica acta,1997,42:2985-3005.
    65.Takahata,K.;Shibaike,N.;Guckel,H.High-aspect-ratio WC-Co microstructure produced by the combination of LIGA and micro-EDM[J.].Microsystem Technologies,2000,6(5):175-178.
    66.Malek,C.K.;Saile,V.Applications of LIGA technology to precision manufactuing of high-aspect-ratio micro-compnents and -systems:a review[J].Microelectronics Journal,2004,35(2):131-134.
    67.陈迪,李昌敏,章吉良,伊福廷,周狄,郭晓芸.LIGA技术X光深层光刻工艺研究[J].微细加工技术,2000,2:66-70.
    68.刘刚,田扬超,张新夷.LIGA技术制作微反应器的研究[J].微细加工技术,2002,2:68-71.
    69.Ledworuski,R.;Lehr,H.;Niederfeld,G.;et al.A new ultrasonic catheter system with LIGA geared micromotor[J].Microsystem Technologies,2002,9(1-2):133-136.
    70.Yi,F.;Peng,L.;Zhang,J.;et al.A new process to fabricate the electromagnetic stepping micromotor using LIGA process and surface sacrificial layer technology[J].Microsystem Technologies,2001,7(3):103-106.
    71.Lee,K.C.;Lee,S.S.Deep X-ray mask with integrated actuator for 3D microfabrication[J].Sensors and Actuators A-physical,2003,108(1-3):121 - 127.
    72.Makarova,O.V.;Mancini,D.C.;Moldovan,N.;et al.Microfabrication of freestanding metal structures using graphite substrate[d].Sensors and Actuators A-physical,2003,103(1-2):182-189.
    73.Jing,X.M.;Chen,D.;Fang,D.M.Multi-layer microstructure fabrication by combining bulk silicon micromachining and UV-LIGA technology[J].Microelectronics Journal,2007,38(1):120-124.
    74.Cheng,C.;Chen,S.C.;Chen,Z.S.Multilevel electroforming for the components of a microdroplet ejector by UV-LIGA technolgy[J].Journal of Micromechanics and Microengieering,2005,15(4):843-848.
    75.Yang,C.R.;Hsieh,G W.;Hsieh,Y.S.;Lee,Y.D.Microstructuring characteristics of a chemically amplified photoresist sythesized for ultra-thick UV-LIGA applications[J].Journal of Micromechanics and Microengieering,2004,14(8):1126-1134.
    76.方肇伦等.微流控分析芯片的制作与应用[M],北京:化学工业出版社,2005.
    77.Effenhauser,C.S.;Bruin,G.J.M.;Paulus,A.;et al.Integrated Capillary Electrophoresis on Flexible Silicone Microdevices:Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips[J].Anal.Chem.,1997,69(17):3451-3457.
    78.Duffy,D.C.;McDonald,J.C.;Schueller,O.J.A.;et al.Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)[J].Anal.Chem.,1998,70(23):4974-4984.
    79.Chou,S.Y.;Krauss,P.R.;Renstrom,P.J.Imprint of sub-25 nm vias and trenches in polymer [J].Appl.Phys.Lett.,1997,67(21):3144-3166.
    80.Becker,H.;Gartner,C.Polymer microfabrication methods for microfluidic analytical applications[J].Electrophoresis,2000,21(1):12-26.
    81.Martynova,L.;Locascio,L.E.;Gaitan,M.;et al.Fabrication of plastic microfluid channels by imprinting methods[J].Anal.Chem.,1997,69(23):4783-4789.
    82.Becker,H.;Heim,U.Hot embossing as a method for the fabrication of polymer high aspect ratio structures[J].Sensors and Actuators A-physical,2000,83(1-3):130-135.
    83.McCormick,R.M.;Nelson,R.J.;Hooper,H.H.Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates[J].Anal.Chem.,1997,69(14):2626-2630.
    84.周海宪,王永年,程云芳,周华君.译注.微光学元件、系统与应用[M],北京:国防工业出版社,2002.
    85.Kley,E.B.Continuous profile writing by electron and optical lithography[J].Microelectronic Engineering,1997,34:261-298.
    86.Sun,H.W.;Liu,J.Q.;Chen,D.;Gu,P.Optimization and experimentation of nanoimprint lithography based on FIB fabricated stamp[J].Microelectronic Engineering,2005,82:175-179.
    87.Harriott,L.R.;Scotti,R.E.;Cummings,K.D.;Ambrose,A.F.Micromachining of integrated optical structures[J].Applied Physical letters,1986,48:1704-1706.
    88. Grzybowski, B.; Haag, R.; Bowden, N. Generation of micrometer-sized patterns for microanalytical applications using a laser direct-write method and microcontact printing [J]. Anal. Chem., 1998, 70 (22):4645-4652.
    89. Fogarty, B.; Heppert, K.; Cory, T. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO_2 laser ablation [J]. Analyst, 2005, 130:924-930.
    90. Roberts, M. A.; Rossier, J. S.; Bercier, P. UV laser machined polymer substrates for the development of microdiagnostic systems [J]. Anal. Chem., 1997, 69 (11):2035-2042.
    91. Srinvasan, R.; Braren, B. Ultraviolet Laser Ablation of Organic Polymers [J]. Chem. Rev., 1998, 89(6):1303-1316.
    92. Ho, K. H.; Newman, S. T. State of the art electrical discharge machining (EDM) [J]. International Journal of Machine Tools & Manufacture, 2003,43:1287-1300.
    93. Kim, D. J.; Yi, S. M.; Lee, Y. S.; Chu, C. N. Straight hole micro EDM with a cylindrical tool using a variable capacitance method accompanied by ultrasonic vibration [J]. Journal of Micromechanics and Microengieering, 2006, 16:1092-1097.
    94. Hung, J. C; Yan, B. H.; Liu, H. S.; Chow, H. M. Micro-hole machining using micro-EDM combined with electropolishing [J]. Journal of Micromechanics and Microengieering, 2006, 16:1480-1486.
    95. Kim, B. H.; Park, B. J.; Chu, C. N. Fabrication of multiple electrodes by reverse EDM and their application in micro ECM [J]. Journal of Micromechanics and Microengieering, 2006, 16:843-850.
    96. Zhang, L.; Ma, X. Z.; Lin, M. X.; Lin, Y.; Cao, G. H.; Tang, J.; Tian, Z. W. A comparative study on electrochemical micromachining of n-GaAs and p-Si by using confined etchant layer technique [J]. J. Phys. Chem. B, 2006, 110:18432-18439.
    97. Wilbur, J. L.; Kumar, A.; Biebuyck, H. A.; Whitesides, G. M.; et al. Microcontact printing of self-assembled monolayer: Applications in microfabrication [J]. Nanotechnology, 1996, 7 (4):452-457.
    98. Yan, L.; Huck, W. T. S.; Whitesides, G. M. Self-assembled monolayer (SAMS) and synthesis of planar micro- and nanostructures [J]. Journal of Macromolecular Science-Polymer Reviews, 2004, 44 (2): 175-206.
    99.Wolfe,D.B.;Love,J.C.;Gates,B.D.;et al.fabrication of planar optical waveguides by electrical microcontact printing[J].Applied Physical letters,2004,84(10):1623-1625.
    100.Odom,T.W.;Love,J.C.;Wolfe,D.B.;et al.Improved pattern transfer in soft lithography using composite stamps[J].Langmuir,2002,18(13):5314-5320.
    101.Jeon,N.L.;Choi,I.S.;Whitesides,(2 M.;et al.Patterned polymer growth on silicon surfaces using microcontact printing and surface-initiated polymerization[J].Applied Physical letters,1999,75(26):4201-4203.
    102.Lahiri,J.;Ostuni,E.;Whitesides,(2 M.Patterning ligands on reactive SAMS by microcontact printing[J].Langmuir,1999,15(6):2055-2060.
    103.Goetting,L.B.;Deng,T.;Whitesides,G.M.Microcontact printing of alkanephosphonic acids on alumium:Pattern transfer by wet chemical etching[J].Langmuir,1999,15(4):1182-1191.
    104.Campbell,C.J.;Baker,E.;Fialkowski,M.;Grzybowski,B.A.Arrays of microlenses of complex shapes prepared by reaction-diffusion in thin films of ionically doped gels[J].Appl.Phys.Lett.,2004,85:187 l-1873.
    105.Campbell,C.J.;Fialkowski,M.;Klajn,R.;Bensemann,I.T.;Grzybowski,B.A.Color Micro- and Nanopatterning with Counter-Propagating Reaction-Diffusion Fronts[J].Adv.Mater.,2004,16:1912-1917.
    106.Fialkowski,M.;Campbell,C.J.;Bensemann,I.T.;Grzybowski,B.A.Absorption of Water by Thin,Ionic Films of Gelatin[d].Langmuir,2004,20:3513-3516.
    107.Campbell,C.J.;Smoukov,S.K.;Bishop,K.J.M.;Baker,E.;Grzybowski,B.A.Direct Printing of 3D and Curvilinear Micrometer-Sized Architectures into Solid Substrates with Sub-micrometer Resolution[J].Adv.Mater.,2006,18:2004-2008.
    108.Grzybowska,K.K.;Campbell,C.J.;Mahmud,(2;Komarova,Y.;Soh,S.;Grzybowski,B.A.Cell motility on micropatterned treadmills and tracks[J].Soft.Matter,2007,3:672-679.
    109.Jackman,R.J.;Brittain,S.T.;Adams,A.;Prentiss,M.G.;Whitesides,G.M.Design and fabrication of topologically complex,three-dimensional microstructure[J].Science,1998,280:2089-2091.
    110.崔铮.微纳米加工技术及其应用[M],北京:高等教育出版社,2005.
    111.章小鸽编著,张俊喜,张大全,徐群杰等译.硅及其氧化物的电化学-表面反应、结构和微加工[M],化学工业出版社,2004.
    112.Stem,M.B.;Medeiros,S.S.Deep three-dimensional microstructure fabrication for IR binary optics[J].J.Vac.Sci.Technol.B,1992,10:2520-2525.
    113.Stern,M.B.;Delaney,W.F.;Holz,M.;Kunz,K.P.;Maschhoff,K.P.;Wlwsch,J.Binary optics microlens arrays in CdTe[J].Mater.Res.Soc.Symp.Proc.,1991,216:107.
    114.Fu,Y.;Q.;Bryan,N.K.A.Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology[J].Opt.Eng.,2001,40(4):511-526.
    115.Bowen,J.P.;Blough,C.G;Wong,V.In Fabrication of optical surfaces by laser pattern generations OSA Technical Digest Series:Optical Fabrication and Testing,Washington,D.C.,1994,153-156.
    116.Wu,M.H.;Whitesides,G.M.Fabrication of Diffractive and Micro-optical Elements Using Microlens Projection Lithography[.1].Adv.Mater.,2002,14:1502-1506.
    117.Bhadriraju,K.;Chen,C.S.Engineering cellular microenvironments to improve cell-based drug testing[J].Drug Discovery Today,2002,7:612-620.
    118.Langer,R.;Vacanti,J.P.Tissue engineering[.1].Science,1993,250:920-926.
    119.陈良格.光刻法及激光诱导法制作细胞微图案[D].2006.
    120.Jiang,X.Y.;Bruzewicz,D.A.;Wong,A.P.;Piel,M.;Whitesides,G.M.Directing cell migration with asymmetric micropatterns[J].PNAS,2005,102(4):975-978.
    121.Jiang,X.Y.;Ferrigno,R.;Mrksich,M.;Whitesides,G.M.Electrochemical desorption of self-assembled monolayers noninvasively Releases patterned cells from geometrical confinements [J].J.Am.Chem.Soc.,2003,125:2366-2367.
    122.Chiu,D.T.;Jeon,N.L.;Huang,S.;Kane,R.S.;Wargo,C.J.;Choi,I.S.;Ingbei,D.E.;Whitesides,G.M.Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems[J].PANS,2000,97(6):2408-2413.
    123.Whitesides,G.M.;Ostuni,E.;Takayama,S.C.;Jiang,X.Y.;Ingber,D.E.Soft Lithography in biology and biochemistry[J].Annu.Rev.Biomed.Eng.,2001,3(335-373).
    124.Datta,M.;landolt,D.Fundamental aspects and applications of electrochemical microfabrication[J].Electrochimica acta,2000,45:2523-2558.
    125.Bhattacharyya,B.;Munda,J.;Malapati,M.Advancement in electrochemical micro-machining[J].International Journal of Machine Tools & Manufacture,2004,44:1577-1589.
    126. Cohen, A.; et al In SPIE 1999 Symposium on Micromachining and Microfabrication, Santa Clara, CA, 1999.
    127. Cohen, A.; et al In 12th IEEE International Microelectro-mechanical Systems Conference Technical Digest, IEEE, 1999.
    128. Cohen, A.; et al In Solid Freeform Fabrication Symposium 1998, The university of Texas at Austin, 1998.
    129. Landolt, D.; Chauvy, P. F.; Zinger, O. Electrochemical micromachining, polishing and surface structuring of metals: Fundamental aspects and new developments [J]. Electrochimica acta, 2003, 48:3185-3201.
    130. Madore, C.; Landolt, D. Electrochemical micromachining of controlled topographies on titanium for biological applications [J]. Journal of Micromechanics and Microengieering, 1997, 7:270-275.
    131. Chauvy, P. R; Hoffmann, P.; Landolt, D. Applications of laser lithography on oxide film to titanium micromachining [J]. Applied Surface Science, 2003, 208-209:165-170.
    132. Schuster, R.; Kirchner, V.; Allongue, P.; Ertl, G Electrochemical Micromachining [J]. Science, 2000, 289:98-101.
    133. Allongue, P.; Jiang, P.; Kirchner, V.; Trimmer, A. L.; Schuster, R. Electrochemical micromachining of p-type silicon [J]. J. Phys. Chem. B, 2004, 108:14434-14439.
    134. Schuster, R.; Kirchner, V; Xia, X. H.; Bittner, A. M; Ertl, G Nanoscale Electrochemistry [J]. Phys. Rev. Lett., 1998, 80:5599-5602.
    135. Schuster, R. Electrochemical micromachining with short voltage pulses [J]. ChemPhysChem, 2007, 8:34-39.
    136. Kirchner, V; Cagnon, L; Schuster, R.; Ertl, G Electrochemical machining of stainless steel microelements with short voltage pulses [J]. Appl Phys. Lett., 2001, 79:1721-1723.
    137. Lehmann, V. The physics of Macropore Formation in low doped n-type silicon [J]. J. Electrochem. Soc., 1993, 140:2836-2843.
    138. Lehmann, V; Foll, H. Formation Mechanism and Properties of Electrochemically etched trenches in n-type silicon [J]. J. Electrochem. Soc., 1990, 137:653-658.
    139. Lehmann, V.; Stengl, R.; Luigart, A. On the morphology and the electrochemical formation mechanism of mesoporous silicon [J]. Mater. Sci. Eng., B, 2000, 69:11-22.
    140. Gruning, U.; Lehmann, V.; Ottow, S.; Busch, K. Macroporous silicon with a complete two-dimensional photonic band gap centered 5μm [J]. Appl. Phys. Lett., 1996, 68 (6):747-748.
    141. Kleimann, P.; Badel, X.; Linnros. Toward the formation of three-dimensional nanostructures by electrochemical etching of silicon [J]. Appl. Phys. Lett., 2005, 86:183108-1 - 183108-3.
    142. Kleimann, P.; Linnros, J.; Juhasz, R. Formation of three-dimensional microstructures by electrochemical etching of silicon [J]. Appl. Phys. Lett., 2001, 79 (11):1727-1729.
    143. Mandler, D.; Bard, A. J. Scanning electrochemical microscopy: the application of the feedback mode for high resolution copper etching [J]. J. Electrochem. Soc, 1989, 136:3143-3144.
    144. Mandler, D.; Bard, A. J. High resolution etching of semiconductors by the feedback mode of the scanning electrochemical microscope [J]. J. Electrochem. Soc, 1990, 137:2468-2472.
    145. Mandler, D.; Bard, A. J. Hole injection and etching studies of gallium arsenide using the scanning electrochemical microscope [J]. Langmuir, 1990, 6:1489-1494.
    146. Meltzer, S.; Mandler, D. Study of silicon etching in HBr solutions using a scannning electrochemical microscope [J]. J. Chem. Soc, Faraday Trans., 1995, 91:1019-1024.
    147. Borgwarth, K.; Heinze, J. Increasing the Resolution of the Scanning Electrochemical Microscope Using a Chemical Lens: Application to Silver Deposition [J]. J. Electrochem. Soc, 1999, 146 (9):3285-3289.
    148. Marck, C; Borgwarth, K.; Heinze, J. Generation of Polythiophene Micropatterns by Scanning Electrochemical Microscopy [J]. Chem. mater., 2001, 13:747-752.
    149. Kim, Y.; Choi, I.; Kang, S. K.; Lee, J.; Yi, J. Fabrication of submicron size electrode via nonetching method for metal ion detection [J]. Appl. Phys. Lett., 2005, 86:073113-1 - 073113-3.
    150. Kim, Y.; Kang, S. K.; Choi, I.; Lee, J.; Yi, J. In situ negative patterning of p-silicon via scanning probe lithography in HF/EtOH liquid bridges [J]. J. Am. Chem. Soc, 2005, 127:9380-9381.
    151. Kolb, D. M.; Simeone, F. C. Nanostructure formation at the solid/liquid interface [J]. Current opinion in solid state and materials science, 2005, 9:91-97.
    152. Kolb, D. M.; Ullmann, R.; Will, T. Nanofabrication of Small Copper Clusters on Gold(111) Electrodes by a Scanning Tunneling Microscope [J]. Science, 1997, 275:1097-1099.
    153. Li, W.; Virtanen, J. A.; Penner, R. M. A nanometer-scale galvanic cell [J]. The Journal of Physical Chemistry, 1992, 96:6529-6532.
    154.LaGraff,J.R.;Gewirth,A.A.Enhanced electrochemical deposition with an atomic force microscope[J].The Journal of Physical Chemistry,1994,98:11246-11250.
    155.Petri,M.;Kolb,D.M.Nanostructuring of a solid dodecyl sulfate-coverd Au(111) electrode [J].Physical Chemistry and Chemical Physics,2002,4:1211-1216.
    156.Xie,Z.X.;Kolb D.M.Spatially confined copper dissolution by an STM tip:a new type of electrochemical reaction?[J].J.Electroanal.Chem.,2000,481:177-182.
    157.Garcia,S.G.;Salinas,D.R.;Mayer,C.E.;Lorenz,W.J.;Staikov,G.STM tip-induced local electrochemical dissolution of silver[J].Electrochimica acta,2003,48:1279-1285.
    158.Schindler,W.;Hofmann,D.;Kirschner,J.Localized electrodeposition using a scanning tunnelling microscope tip as a nanoelectrode[J].J.Eiectrochem.Soc.,2001,148:C124-C130.
    159.Bloeβ,H.;Staikov,G.;Schultze,.1.W.AFM induced formation of SiO2 structrues in the electrochemical nanocell[J].Eiectrochimica acta,2001,47:335-344.
    160.Dagata,J.A.Device fabrication by scanned probe oxidation[J].Science,1995,270:1625-1626.
    161.Tian,Z.W.;Fen,Z.D.;Tian,Z.Q.;Zhuo,X.D.;Mu,J.Q.;Li,C.Z.;Lin,H.S.;Ren,B.;Xie,Z.X.;Hu,W.L.Confined etchant layer technique for two dimensional lithography at high resolution using ECSTM[J].Faraday Discuss.,1992,94:37-41.
    162.Sun,J.J.;Huang,H.G.;Tian,Z.Q.;Xie,L.;Luo,J.;Ye,X.Y.;Zhou,Z.Y.;Xia,S.H.;Tian,Z.W.Three-dimensional micromachining for microsystems by confined etchant layer technique [J].Electrochim.Acta,2001,47:95-101.
    163.Zhang,L.;Ma,X.Z.;Tang,J.;Qu,D.S.;Ding,Q.Y.;Sun,L.J.;Tian,Z.W.Three-dimensional electrochemical microfabrication of n-GaAs uing L-cystine as a scavenger[J].Electrochim.Acta,2006,52:630-635.
    164.Zu,Y.B.;Xie,L.;Mao,B.W.;Mu,J.Q.;Tian,Z.W.Studies on silicon etching using the confined etchant layer technique[J].Electrochim.Acta,1998,43:1683-1690.
    165.汤儆,马信周,何辉忠,张力,林密璇,曲东升,丁庆勇,孙立宁.微圆盘电极技术测定表面化学微加工时的约束刻蚀剂浓度分布[J].物理化学学报,2006,22(4):507-512.
    166.Shi,K.;Tang,J.;Zhang,L.;Zhou,Y.L.;Qu,D.S.;Sun,L.N.;Tian,Z.Q.A preliminary study on chemically micro-machining of complex 3-dimensional patterns of silicon substrates[J].J.Solid State Electrochem.,2005,9:398-402.
    167.刘柱方,蒋利民,汤儆,张力,田中群,田昭武.镍表面三维微图形的复制加工凹.电化学,2004,10:249-253.
    168.刘柱方,蒋利民,汤儆,刘品宽,孙立宁,田中群,田昭武.金属铜表面的三维齿状图形的化学微加工[J].应用化学,2004,21:227-230.
    169.Jiang,L.M.;Liu,Z.F.;Tang,J.;Zhang,L.;Shi,K.;Tian,Z.Q.;Liu,P.K.;Sun,L.N.;Tian,Z.W.Three-dimensional micro-fabrication on copper and nickel[J].Journal of Electroanalytical Chemistry,2005,581:153-158.
    1.章小鸽编著,张俊喜,张大全,徐群杰等译.硅及其氧化物的电化学-表面反应、结构和微加工[M],化学工业出版社,2004.
    2.Zinger,O.;Chauvy,P.F.;Landolt,D.J.Scale-Resolved Electrochemical Surface Structuring of Titanium for Biological Applications[J].J.Electrochem.Soc.,2003,150:B495-B503.
    3.王振龙,赵万生.微细电火花加工中电极材料蚀除机理研究[J].机械科学与技术,2002,21:124-126.
    4.Sheu,D.Y.Micro-spherical probes machining by EDM[J].J.Micromech.Mircroeng.,2005,15:185-189.
    5.Chou,S.Y.;Krauss,P.R.;Renstrom,P.J.Imprint of sub-25 nm vias and trenches in polymer [J].Appl.Phys.Lett.,1997,67(21):3144-3166.
    6.Campbell,C.J.;Smoukov,S.K.;Bishop,Kyle J.M.;Baker,E.;Grzybowski,B.A.Direct printing of 3D and curvilinear Micrometer-sized architecture into solid substrates with sub-micrometer resolution[J].Adv.Mater.,2006,18:2004-2008.
    7.田昭武.电化学研究方法[M],北京:科学出版社,1984.
    8.陈体衔.实验电化学[M],厦门:厦门大学出版社,1993.
    9.陈震,姚建年(译).电化学测定方法[M],北京:北京大学出版社,1995.
    10.田民波.薄膜技术与薄膜材料[M],北京:清华大学出版社,2006.
    11.张龙,朱健,吴璟,卓敏,陈辰.磁控溅射制备低应力金属膜的工艺研究[J].中国机械工程,2005,16(14):1313-1315.
    12.Tamulevicius,S.Stress and strain in the vacuum deposited thin films[J].Vacuum,1998,51(2):127-139.
    13.李明德.自组装构筑SERS活性基底细胞膜的SERS和基于SERS的细胞内pH传感研究[D].厦门大学硕士学位论文,2007.
    14.王春梅,黄晓峰,杨家骥,陈志南.激光共聚焦显微镜技术[M],西安:第四军医出版社.2004.
    15.Skoog,D.A.;West,D.;M.Principle of instrumental analysis-second edition[M],Saunders College,Philadelphia,1980.
    16.左演声,陈文哲,梁伟.材料现代分析方法[M],北京工业大学出版社,2000.
    17.李佳.制备高性价比微阵列芯片的新技术[D].厦门大学理学硕士论文,2005.
    1. Spephen, A. C. The science and engineering of micro-electronic fabrication (2Ed) [M], Oxford University, 2001.
    2. Xue, C. Y.; Zhang, W. D.; Xiong, J. J. New type piezoresistors based on undoped-barrier resonant tunneling microstructure [J]. IWMF, 2004, 1:498.
    3. Hjort, K.; Ericson, F.; Schweitz, J. A. Micromechanical fracture strength of semi-insulating GaAs [J]. Sensors. and Materials, 1994, 6:359-367.
    4. Peiner, E.; Fricke, K.; Behrens, I.; Bakin, A.; Schlachetzki, A. Hetero-Micromachining of Epitaxial III/V-Semiconductors [J]. Sens. Actuators, A, 2000, 85:324-329.
    5. Hascik, S.; Mozolova, Z.; Lalinsky, T.; Tomaska, M; Kostic, I. Patterning of a micromechanical coplanar waveguide using a dry etching technique [J]. Vacuum, 2003, 69:283-287.
    6. Dehe, A.; Fricke, K.; Hartnagel, H. L. Infrared thermopile sensor based on AlGaAs—GasAs micromachining [J]. Sens. Actuators, A, 1995,46-47:432-436.
    7. Fricke, K. Piezoelectric properties of GaAs for application in stress transducers [J]. J. Appl. Phys., 1991,70:918-918.
    8. Hjort, K.; Soderkvist, J.; Schweitz, J. A. Gallium arsenide as a mechanical material [J]. J. Micromech. Microeng., 1994, 4:1-13.
    9. Ribas, R. P.; Leclercq, J. L.; Karam, J. M.; Courtois, B.; Viktorovitch, P. Bulk micromachining characterization of 0.2μm HEMT MMIC technology for GaAs MEMS design [J]. Mater. Sci. Eng., B 1998, B51:267-273.
    10. Hjort, K. Sacrificial etching of III-V compounds for micromechanical devies [J]. J. Micromech. Microeng., 1996, 6:370-375.
    11. Collins, S. D. Etch stop techniques for micromachining [J]. J. Electrochem. Soc, 1997, 144 (6):2242-2262.
    12. Mori, Y.; Watanabe, N. A new etching solution system, H_3PO_4-H_2O_2-H_2O, for GaAs and its kinetics [J]. J. Electrochem. Soc, 1978, 125 (9):1510-1514.
    13. Hoyle, P. C.; Cleaver, J. R. A.; Ahmed, H. Fabrication of free-standing microtransducer in GaAs with an electron-beam-induced oxide mask and C12 etching [J]. Sens. Actuators, A, 1995, 50:31-37.
    
    14. Zhang, Z. L.; Macdonald, N. C. Fabrication of sub-micron high-aspect-ratio GaAs actuators [J]. J. MicroElectroMechanical Systems, 1993,2 (2):66-73.
    15. Fricke, K.; Wurf, J.; Miao, J. Fabrication of microstructures for integrated sensors on GaAs [J]. J. Micromech. Microeng., 1993, 3:131-134.
    16. Schuster, R.; Kirchner, V.; Xia, X. H.; Bittner, A. M.; Ertl, G. Nanoscale Electrochemistry [J]. Phys. Rev. Lett., 1998, 80:5599-5602.
    17. Schuster, R.; Kirchner, V.; Allongue, P.; Ertl, G Electrochemical Micromachining [J]. Science, 2000, 289:98-101.
    18. Mandler, D.; Bard, A. J. Hole injection and etching studies of gallium arsenide using the scanning electrochemical microscope [J]. Langmuir, 1990, 6:1489-1494.
    19. Mandler, D.; Bard, A. J. High resolution etching of semiconductors by the feedback mode of the scanning electrochemical microscope [J]. J. Electrochem. Soc, 1990, 137:2468-2472.
    20. Kolb, D. M.; Ullmann, R.; Will, T. Nanofabrication of Small Copper Clusters on Gold (111) Electrodes by a Scanning Tunneling Microscope [J]. Science, 1997,275:1097-1099.
    21. Xie, Z. X.; Kolb D. M. Spatially confined copper dissolution by an STM tip: a new type of electrochemical reaction? [J]. J. Electroanal. Chem., 2000,481:177-182.
    22. Alqaradawi, S. Y.; Aljaber, A. S.; Khader, M. A. Activation and stabilization of gallium arsenide anode in an aqueous photoelectrochemical cell [J]. Thin solid films, 2003, 444 (1-2):282-289.
    23. Tian, Z. W.; Fen, Z. D.; Tian, Z. Q.; Zhuo, X. D.; Mu, J. Q.; Li, C. Z.; Lin, H. S.; Ren, B.; Xie, Z. X.; Hu, W. L. Confined etchant layer technique for two dimensional lithography at high resolution using ECSTM [J]. Faraday Discuss., 1992, 94:37-41.
    24. Zu, Y. B.; Xie, L.; Mao, B. W.; Mu, J.Q.; Tian, Z. W. Studies on silicon etching using the confined etchant layer technique [J]. Electrochim. Acta, 1998,43:1683-1690.
    25. Fuller, C. S.; Allison, H. W. A polishing etchant for III-V semiconductors [J]. ibid, 1962, 109:880.
    26. Sullivan, M. V; Kolb, G. A. The chemical polishing of gallium arsenide in bromine-methanol [J]. J. Electrochem. Soc, 1963, 110 (6):585-587.
    27.Sun,J.J.;Huang,H.G.;Tian,Z.Q.;Xie,L.;Luo,J.;Ye,X.Y.;Zhou,Z.Y.;Xia,S.H.;Tian,Z.W.Three-dimensional micromachining for microsystems by confined etchant layer technique [J].Electrochim.Acta,2001,47:95-101.
    28.谢雷.用于三维微细图形复制加工的新技术--约束刻蚀剂层技术探索[D].厦门大学理学博士论文,1996.
    29.Sanchezcano,G.;Montiel,V.;Aidaz,A.Synthesis of l-cysteic acid by indirect electrooxidation and an example of paired synthesis:L-cysteic and l-cysteine from l-cystine[J].Tetrahedron,1991,47(877-886).
    30.Casalbore,G.;Mastragostino,M.;Valcher,S.Anodic bromination of aromatic compounds in anhydrous acetic acid:Toluene and p-xylene[J].J.Electroanal.Chem.,1975,61:33-46.
    31.Rauwel,F.;Thevenot,D.Use of Ring-disc Electrodes for the Determination of Aqueous Solutions of Sulphur-Containing Compounds:Thiols,Disulphides,Sulphides,Thiol-Esters,Proteins and Various Inorganic Ions[J].Bioelectrochem.Bioenerg.,1976,3:284.
    32.赵崇涛,王清萍,林婉珍,陈平.间接电解氧化法合成L-磺基丙氨酸[J].精细化工.2003,20(4):237-239.
    33.李非,王西新.电化学合成L-磺基丙氨酸的机理研究[J].南阳师范学院学报,2004,3(3):43-44.
    34.顾登平,贾振斌.有机电合成进展[M],北京:中国石化出版社,2001.
    35.Marcella,C.;Claudia,E.;Pier,G.R.Oxidation of cystine to cysteic acid in proteins by peroyacids as monitored by immobilized pH gradients[J].Electrophoresis,1991,12:376-377.
    36.田昭武.电化学研究方法[M],北京:科学出版社,1984.
    37.吴浩青,李永舫.电化学动力学[M],北京:高等教育出版社,1995.
    38.Zhang,L.;Ma,X.Z.;Lin,M.X.;Lin,Y.;Cao,G.H.;Tang,J.;Tian,Z.W.A comparative study on electrochemical micromachining of n-GaAs and p-Si by using confined etchant layer technique[J].J.Phys.Chem.B,2006,110:18432-18439.
    39.Zhang,L.;Ma,X.Z.;Tang,J.;Qu,D.S.;Ding,Q.Y.;Sun,L.J.;Tian,Z.W.Three-dimensional electrochemical microfabrication of n-GaAs uing L-cystine as a scavenger[J].Electrochim.Acta,2006,52:630-635.
    40.汤儆,马信周,何辉忠,张力,林密璇,曲东升,丁庆勇,孙立宁.微圆盘电极技术测定表面化学微加工时的约束刻蚀剂浓度分布[J].物理化学学报,2006,22(4):507-512.
    41. Zinger, O.; Chauvy, P. F.; Landolt, D. J. Scale-Resolved Electrochemical Surface Structuring of Titanium for Biological Applications [J]. J. Electrochem. Soc, 2003, 150:B495-B503.
    42. Decker, F.; Pettinger, B.; Gerischer, H. Hole injection and electroluminescence of n-GaAs in the presence of aqueous redox electrolytes [J]. J. Electrochem. Soc, 1983, 130 (6):1335-1339.
    43. Tarui, Y.; Komiya, Y.; Harada, Y. Preferetial etching and etched profile of GaAs [J]. J. Electrochem. Soc, 1971, 118 (1):118-122.
    44. Minks, B. P.; Oskam, G; Vanmaekelbergh, D.; Kelly, J. J. Current-doubling,chemical etching and the mechanism of two-electron reduction reactions at GaAs Part 1. Experimental results for H_2O_2 and Br_2[J]. J. Electroanal. Chem., 1989,273:119-131.
    45. Minks, B. P.; Oskam, G.; Vanmaekelbergh, D.; Kelly, J. J. Current-doubling,chemical etching and the mechanism of two-electron reduction reactions at GaAs Part 2. a unified model [J]. J. Electroanal. Chem., 1989, 273:133-145.
    1.王春海,于杰,付建军等.微系统技术[M],化学工业出版社,2003.
    2.Gardner,J.W.;Varadan,V.K.;Awadelkarim,O.O.In microsystems,MEMS,and smart devices[M],John Wiley & Sons:Chichester,U.K.,2001.
    3.黄庆安.硅微机械加工技术fM],北京:科学出版社,1996.
    4.Petersen,K.E.Silicon as a mechanical material[J].Proc.IEEE,1982,70:420-457.
    5.Kovacs,G.T.A.;Maluf,N.I.;Petersen,K.E.Bulk micromachining of silicon[J].Proc.IEEE,1998,86:1536-1551.
    6.Lang,W.Silicon microstructuring technology[J].Mater.Sci.Eng.,R,1996,17:1-55.
    7.Sparks,D.R.plasma etching of Si,SiO_2,Si_3N_4,and resist with fluorine,chlorine,and bromine compounds[J].J.Electrochem.Sot.,1992,139:1736-1741.
    8.Rodgers,M.S.;Sniegowski,J.J.In 5-level polysilicon surface micromachine technology:approach to complex mechanical systems,Technical digests of the 1998 solid-state sensor and actuator workshop,Hilton Head,SC,USA,1998,144-149.
    9.Monk,D.J.;Soane,D.S.;Howe,R.T.Hrdrofluoric acid etching of silicon dioxide sacrifical layers.I.experimental observations[J].J.Electrochem.Soc.,1994,141:270-274.10.Westberg,D.;Paul,O.;Andersson,G.I.;Baltes,H.Surface micromachining by sacrifical aluminium etching[J].J.Micromech.Microeng.,1996,6:376-384.
    11.Becker,E.W.;Ehrfeld,W.;Hagrnann,P.;Maner,A.;Munchmeyer,D.Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography,galvanoforming,and a plastic moulding(LIGA process)[d].Microelectronic Engineering,1986,4:35-36.
    12.Romankiw,L.T.A path:from electroplating through lithograghic masks in electronics to LIGA in MEMS[J].Electrochinica acta,1997,42:2985-3005.
    13.马炳和,范伟政,李铁军,李晓莹,王丽戈.准分子激光直接刻蚀单晶硅研究[J].西北工业大学学报,2000,18(3):491-495.
    14.Watson,T.A.;Rowan,C.Industrial excimer laser beam properties/J].Appl.Phys.Lett.,1996,96-98:532-536.
    15. Schuster, R.; Kirchner, V.; Xia, X. H.; Bittner, A. M.; Ertl, G. Nanoscale Electrochemistry [J]. Phys. Rev. Lett., 1998, 80:5599-5602.
    16. Schuster, R.; Kirchner, V; Allongue, P.; Ertl, G Electrochemical Micromachining [J]. Science, 2000, 289:98-101.
    17. Allongue, P.; Jiang, P.; Kirchner, V; Trimmer, A. L.; Schuster, R. Electrochemical micromachining of p-type silicon [J]. J. Phys. Chem. B, 2004, 108:14434-14439.
    18. Mandler, D.; Bard, A. J. Hole injection and etching studies of gallium arsenide using the scanning electrochemical microscope [J]. Langmuir, 1990, 6:1489-1494.
    19. Mandler, D.; Bard, A. J. High resolution etching of semiconductors by the feedback mode of the scanning electrochemical microscope [J]. J. Electrochem. Soc, 1990, 137:2468-2472.
    20. Meltzer, S.; Mandler, D. Study of silicon etching in HBr solutions using a scannning electrochemical microscope [J]. J. Chem. Soc, Faraday Trans., 1995, 91:1019-1024.
    21. Lehmann, V. The physics of Macropore Formation in low doped n-type silicon [J]. J. Electrochem. Soc., 1993, 140:2836-2843.
    22. Lehmann, V.; Foll, H. Formation Mechanism and Properties of Electrochemically etched trenches in n-type silicon [J]. J. Electrochem. Soc., 1990, 137:653-658.
    23. Lehmann, V.; Stengl, R.; Luigart, A. On the morphology and the electrochemical formation mechanism of mesoporous silicon [J]. Mater. Sci. Eng., B, 2000, 69:11-22.
    24. Grunig, U.; Lehmann, V.; Ottow, S.; Busch, K. Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 urn [J]. Appl. Phys. Lett., 1996, 68 (6):747-749.
    25. Kleimann, P.; Badel, X.; Linnros. Toward the formation of three-dimensional nanostructures by electrochemical etching of silicon [J]. Appl. Phys. Lett., 2005, 86:183108-1 - 183108-3.
    26. Kleimann, P.; Linnros, J.; Juhasz, R. Formation of three-dimensional microstructures by electrochemical etching of silicon [J]. Appl. Phys. Lett., 2001, 79 (11):1727-1729.
    27. Kolb, D. M.; Ullmann, R.; Will, T. Nanofabrication of Small Copper Clusters on Gold(111) Electrodes by a Scanning Tunneling Microscope [J]. Science, 1997,275:1097-1099.
    28. Xie, Z. X.; Kolb D. M. Spatially confined copper dissolution by an STM tip: a new type of electrochemical reaction? [J]. J. Electroanal. Chem., 2000,481:177-182.'
    29. Kim, Y.; Choi, I.; Kang, S. K.; Lee, J.; Yi, J. Fabrication of submicron size electrode via nonetching method for metal ion detection [J]. Appl. Phys. Lett., 2005, 86:073113-1 - 073113-3.
    30.Kim,Y.;Kang,S.K.;Choi,I.;Lee,J.;Yi,J.In situ negative patterning of p-silicon via scanning probe lithography in HF/EtOH liquid bridges[J].J.Am.Chem.Soc.,2005,127:9380-9381.
    31.Tian,Z.W.;Fen,Z.D.;Tian,Z.Q.;Zhuo,X.D.;Mu,J.Q.;Li,C.Z.;Lin,H.S.;Ren,B.;Xie,Z.X.;Hu,W.L.Confined etchant layer technique for two dimensional lithography at high resolution using ECSTM[J].Faraday Discuss.,1992,94:37-41.
    32.Sun,J.J.;Huang,H.Ct;Tian,Z.Q.;Xie,L.;Luo,J.;Ye,X.Y.;Zhou,Z.Y.;Xia,S.H.;Tian,Z.W.Three-dimensional micromachining for microsystems by confined etchant layer technique [J].Electrochim.Acta,2001,47:95-101.
    33.谢雷.用于三维微细图形复制加工的新技术--约束刻蚀剂层技术探索[D].厦门大学理学博士论文,1996.
    34.Zu,Y.B.;Xie,L.;Mao,B.W.;Mu,J.Q.;Tian,Z.W.Studies on silicon etching using the confined etchant layer technique[,I].Electrochim.Acta,1998,43:1683-1690.
    35.Shi,K.;Tang,J.;Zhang,L.;Zhou,Y.L.;Qu,D.S.;Sun,L.N.;Tian,Z.Q.A preliminary study on chemically micro-machining of complex 3-dimensional patterns of silicon substrates[,1].J.Solid State Electrochem.,2005,9:398-402.
    36.Robbins,H.;Schwartz,B.Chemical etching of silicon.Ⅰ.the system HF,HNO_3,H_2O,and HCO2CO3O_2[J].J.Electrochem.Soc.,1959,106:505-508.
    37.Robbins,H.;Schwartz,B.Chemical etching of silicon.Ⅱ.the system HF,HNO_3,H_2O,and HC_2C_3O_2[J].J.Electrochem.Soc.,1960,107:108-111.
    38.van den Meerakker,J.E.A.M.;van Vegchel,J.H.C.Silicon etching in CrO_3-HF solutions Ⅰ.high[HF]/[CrO_3]ratios[J].J.Electrochem.Soc.,1989,136(7):1949-1953.
    39.van den Meerakker,J.E.A.M.;van Vegchel,J.H.C.Silicon etching in CrO_3-HF solutions Ⅱ.low[HF]/[CrO_3]ratios[J].J.Electrochem.Soc.,1989,136(7):1954-1957.
    40.Schimmel,D.G.;Elkind,M.J.An examination of the chemical staining of silicon[J].J.Electroanal.Chem.:solid-state science and technology,1978,125(1):152-155.
    41.Bressers,P.M.M.C.;Plakman,M.;Kelly,J.J.Etching and electrochemistry of silicon in acidic bromine solutions[J].J.Electroanal.Chem.,1996,406:131-137.
    42.Van den Meerakker,J.E.A.M.;Van den Straaten,M.H.M.A mechanistic study of etching in NH_3/H_2O_2 cleaning solution[J].J.Electrochem.Soc.,1990,137.
    43.Van den Meerakker,J.E.A.M.The reduction of hydrogen peroxide at silicon in weak alkaline solutions[J].Electrochim.Acta,1990,35:1267-1272.
    44.Gerischer,H.;Lubke,M.On the etching of silicon by oxidants in Almmonium Fluoride solutions[J].J.Electrochem.Soc.,1988,135(11):2782-2786.
    45.Seo,Y.H.;Nahm,K.S.;Lee,K.D.Mechanistic Study of Silicon Etching in HF-KBrO3-H20Solution[J].J.Electrochem.Soc.,1993,140:1453-1458.
    46.章小鸽编著,张俊喜,张大全,徐群杰等译.硅及其氧化物的电化学-表面反应、结构和微加工[M],化学工业出版社,2004.
    47.Kooij,E.S.;Vanmaekelbergh,D.Catalysis and pore initiation in the anodic dissolution of silicon in HF[J].J.Electrochem.Soc.,1996,144:1296-1301.
    48.Theunissen,M.J.J.;Appels,J.A.;Verkuylen,W.H.C.G.Application of preferential electrochemical etching of silicon to semiconductor device technology[3].J.Eiectrochem.Soc.,1970,117:959-965.
    49.田昭武.电化学研究方法[M],北京:科学出版社,1984.
    50.吴浩青,李永舫.电化学动力学[M],北京:高等教育出版社,1995.
    51.Venkateswara Rao,A.;Ozanam,F.;Chazalviel,J.N.In situ Fourier-transform electromodulated infrared study of porous silicon formation:Evidence for solvent effects on the vibrational linewidths[J].J.Electrochem.Soc.,1991,138:153-159.
    52.Gardelis,S.;Rimmer,J.S.;Dawson,P.;Hamilton,B.;Kubiak,R.A.;Whall,T.E.;Parker,E.H.C.Evidence for quantum confinement in the photoluminescence of porous Si and GaAs[3].Appl.Phys.Lett.,1991,59(17):2118-2120.
    53.Rappich,J.;Lewerenz,H.J.Photo- and potential-controlled nanoporous silicon formation on n-Si(111):an in-situ FTIR investigation[J].Thin solid films,1996,276:25-28.
    54.Sanchezcano,G.;Montiel,V.;Aldaz,A.Synthesis of l-cysteic acid by indirect electrooxidation and an example of paired synthesis:L-cysteic and l-cysteine from l-cystine[J].Tetrahedron,1991,47(877-886).
    55.Bomchil,G.;Herino,R.;Barla,K.;Pfister,J.C.Pore Size Distribution in Porous Silicon Studied by Adsorption Isotherms[J].J.Electrochem.Soc.,1983,130:1611-1614.
    56.Bjorklund,R.B.;Zangooie,S.;Arwin,H.Adsorption of Surfactants in Porous Silicon Films [J].Langrnuir,1997,13:1440-1445.
    57. Ohalloran, G. M.; Kuhl, M.; Trimp, P. J.; French, P. The effect of additives on the adsorption properties of porous silicon [J]. Sens. Actuators, A, 1997, 61:415-420.
    58. Sotgiu, G.; Schirone, L.; Rallo, F. On the use of surfactants in the electrochemical preparation of porous silicon [J]. Thin solid films, 1997, 297:18-21.
    59. Borgwarth, K; Heinze, J. Increasing the resolution of the scanning electrochemical microscope using a chemical lens: application to silver deposition [J]. J. Electrochem. Soc, 1999, 146:3285-3289.
    60. Marck, C; Borgwarth, K.; Heinze, J. Micropatterns of poly (4,4'-dimethoxy-2,2'-bithiophene) generated by the scanning electrochemical microscope [J]. Adv. Mater., 2001, 13:47-51.
    61. Borgwarth, K; Ricken, C; Ebling, D.G;Heinze, J. Surface analysis by scanning electrochemical microscopy: resolution studies and applications to polymer samples [J]. Fresenius J. Anal. Chem., 1996, 356:288-294.
    62. Mandler, D.; Bard, A. J. Scanning electrochemical microscopy: the application of the feedback mode for high resolution copper etching [J]. J. Electrochem. Soc, 1989, 136:3143-3144.
    63. Zhang, L.; Ma, X. Z.; Lin, M.X.; Lin, Y.; Cao, G H.; Tang, J.; Tian, Z. W. A comparative study on electrochemical micromachining of n-GaAs and p-Si by using confined etchant layer technique [J]. J. Phys. Chem. B, 2006, 110:18432-18439.
    64. Zhang, L.; Ma, X. Z.; Tang, J.; Qu, D. S.; Ding, Q. Y.; Sun, L. J.; Tian, Z. W. Three-dimensional electrochemical microfabrication of n-GaAs uing L-cystine as a scavenger [J]. Electrochim. Acta, 2006, 52:630-635.
    1.Hutley,M.C.Microlens array:Proceeding of a One Day Seminar[M],Inst.of Physics Pub.Inc.,Teddington,1991.
    2.Sun,J.J.;Huang,H.G.;Tian,Z.Q.;Xie,L.;Luo,J.;Ye,X.Y.;Zhou,Z.Y.;Xia,S.H.;Tian,Z.W.Three-dimensional micromachining for microsystems by confined etchant layer technique [J].Electrochim.Acta,2001,47:95-101.
    3.Tian,Z.W.;Fen,Z.D.;Tian,Z.Q.;Zhuo,X.D.;Mu,J.Q.;Li,C.Z.;Lin,H.S.;Ren,B.;Xie,Z.X.;Hu,W.L.Confined etchant layer technique for two dimensional lithography at high resolution using ECSTM[J].Faraday Discuss.,1992,94:37-41.
    4.Zhang,L.;Ma,X.Z.;Lin,M.X.;Lin,Y.;Cao,G.H.;Tang,J.;Tian,Z.W.A comparative study on electrochemical micromachining of n-GaAs and p-Si by using confined etchant layer technique[J].J.Phys.Chem.B,2006,110:18432-18439.
    5.Zhang,L.;Ma,X.Z.;Tang,J.;Qu,D.S.;Ding,Q.Y.;Sun,L.J.;Tian,Z.W.Three-dimensional electrochemical microfabrication of n-GaAs uing L-cystine as a scavenger[J].Electrochim.Acta,2006,52:630-635.
    6.谢雷.用于三维微细图形复制加工的新技术--约束刻蚀剂层技术探索[D].厦门大学理学博士论文,1996.
    7.吕俊峰,张静娟,梁文锡.在GaAs材料上制备衍射光学元件[J].光电子·激光,2001, 12(7):762-764.
    8.Motamedi,M.E.;Southwell,W.H.;Anderson,R.J.;Hale,L.G.;Gunning,W.J;Holz,M.High speed binary optic micro lens array in GaAs[J].Proc.SPIE-Int.SOC.Opt.Eng,1991,1544:33-44.
    9.Poll,L.C.;Kondek,C.A.;Novembre,A.E.Novel 3D resist shaping process via e-beam lithography,with application for the formation of biased planar waveguide gratings and planar lenses on GaAs[J].Proc.SPIE,1995,2438:867-878.
    10.Poli,L.C.;Kondek,C.A.A high contrast deep submicro e-beam lithography process for fabricating planar waveguide optical gratings on GaAs[J].Proc.SPIE,1994,2195:858-865.
    11.Tamulevicius,S.Stress and strain in the vacuum deposited thin films[J].Vacuum,1998,51(2):127-139.
    12.张龙,朱健,吴璟,卓敏,陈辰.磁控溅射制备低应力金属膜的工艺研究[J].中国机械工程,2005,16(14):1313-1315.
    13.Chou,S.Y.;Krauss,P.R.;Renstrom,P.J.Imprint of sub-25 nm vias and trenches in polymer [J].Appl.Phys.Lett.,1997,67(21):3144-3166.
    14.Zhang,L.;Ma,X.Z.;Zhuang,J.L.;Qiu,C.K.;Du,C.L.;Tang,J.;Tian,Z.W.Microfabrication of a diffractive microlens array on n-GaAs by an efficient electrochemical method[J].Adv.mater.,2007,19:3912-3918.
    15.司卫华,董晓文,顾文琪.纳米压印技术的工艺和图形精度研究[J].半导体光电,2006,27(4):441-444.
    16.Meltzer,S.;Mandler,D.Study of silicon etching in HBr solutions using a scannning electrochemical microscope[J].J.Chem.Soc.,Faraday Trans.,1995,91:1019-1024.
    17.Alqaradawi,S.Y.;Aljaber,A.S.;Khader,M.A.Activation and stabilization of gallium arsenide anode in an aqueous photoelectrochemicai cell[J].Thin solid films,2003,444(1-2):282-289.
    18.田昭武.电化学研究方法[J],北京:科学出版社,1984.
    19.吴浩青,李永舫.电化学动力学[M],北京:高等教育出版社,1995.
    20.Denuault,G.;Fleischmann,M.;Pletcher,D.Development of the theory for the interpretation of steady state limiting at a microelectrode EC' process:first and second order reactions[J].J.Electroanal.Chem.,1990,280:243-254.
    21. Fleischmann, M.; Lassere, F.; Robinson, J.; Swan, D. The application of microelectrodes to the study of homogeneous process coupled to electrode reactions Part I . EC and CE reactions [J]. J. Electroanal. Chem., 1984, 177:97-114.
    22. Dong, S. J.; Che, G L. The application of an ultramicroelectrode in homogeneous catalytic reaction-part I . general characteristic of a homogeneous catalytic reaction at an ultramicroelectrode with arbitrary geometry under steady state [J]. Electrochim. Acta, 1992, 37:2587-2589.
    23. Che, G. L.; Dong, S. J. The application of an ultramicroelectrode in homogeneous catalytic reaction-part II .A theory of quasi-first and second-order homogeneous catalytic reactions [J]. Electrochim. Acta, 1992, 37:295-2699.
    24. Akoi, K.; Ishida, M.; Tokuda, K. Voltammetry at microcylinder electrode part VI. second-order catalytic reaction of Fe(edta) with H_2O_2 [J]. J. Electroanal. Chem., 1988, 245:39-50.
    25. Tarui, Y.; Komiya, Y.; Harada, Y. Preferential etching and etched profile of GaAs [J]. J. Electrochem. Soc, 1971, 118:118-122.
    26. Sullivan, M. V.; Kolb, G. A. The chemical polishing of gallium arsenide in bromine-methanol [J]. J. Electrochem. Soc, 1963, 110 (6):585-587.
    27. Rauwel, R; Thevenot, D. Use of Ring-disc Electrodes for the Determination of Aqueous Solutions of Sulphur-Containing Compounds:Thiols, Disulphides, Sulphides, Thiol-Esters, Proteins and Various Inorganic Ions [J]. Bioelectrochem. Bioenerg., 1976, 3:284.
    1.Tian,Z.W.;Fen,Z.D.;Tian,Z.Q.;Zhuo,X.D.;Mu,J.Q.;Li,C.Z.;Lin,H.S.;Ren,B.;Xie,Z.X.;Hu,W.L.Confined etchant layer technique for two dimensional lithography at high resolution using ECSTM[J].Faraday Discuss.,1992,94:37-41.
    2.Campbell,C.J.;Fialkowski,M.;Klajn,R.;Bensemann,I.T.;Grzybowski,B.A.Color Micro- and Nanopatterning with Counter-Propagating Reaction-Diffusion Fronts[J].Adv.Mater.,2004,16:1912-1917.
    3.Campbell,C.J.;Baker,E.;Fialkowski,M.;Grzybowski,B.A.Arrays of microlenses of complex shapes prepared by reaction-diffusion in thin films of ionically doped gels[J].Appl.Phys.Lett.,2004,85:1871-1873.
    4.Campbell,C.J.;Smoukov,S.K.;Bishop,K.J.M.;Baker,E.;Grzybowski,B.A.Direct Printing of 3D and Curvilinear Micrometer-Sized Architectures into Solid Substrates with Sub-micrometer Resolution[J].Adv.Mater.,2006,18:2004-2008.
    5.Fialkowski,M.;Campbell,C.J.;Bensemann,I.T.;Grzybowski,B.A.Absorption of Water by Thin,Ionic Films of Gelatin[J].Langmuir,2004,20:3513-3516.
    6.Zhang,L.;Zhuang,J.L.;Ma,X.Z.;Tang,J.;Tian,Z.W.Microstructuring of p-Si(100) by localized electrochemical polishing using patterned agarose as a stamp[J].Electrochemistry Communications,2007,9:2529-2533.
    7.Schuster,R.;Kirchner,V.;Allongue,P.;Ertl,G.Electrochemical Micromachining[d].Science,2000,289:98-101.
    8.Meltzer,S.;Mandler,D.Study of silicon etching in HBr solutions using a scannning electrochemical microscope[J].J.Chem.Soc.,Faraday Trans.,1995,91:1019-1024.
    9.Lehmann,V.;Foll,H.Formation Mechanism and Properties of Electrochemically etched trenches in n-type silicon[J].J.Electrochem.Soc.,1990,137:653-658.
    10.Kleimann,P.;Linnros,J.;Juhasz,R.Formation of three-dimensional microstructures by electrochemical etching of silicon[J].Appl.Phys.Lett.,2001,79(11):1727-1729.
    11.Kolb,D.M.;Ullmann,R.;Will,T.Nanofabrication of Small Copper Clusters on Gold(111)Electrodes by a Scanning Tunneling Microscope[J].Science,1997,275:1097-1099.
    12.章小鸽编著,张俊喜,张大全,徐群杰等译.硅及其氧化物的电化学-表面反应、结构和微加工[M],化学工业出版社,2004.
    13.Aliongue,P.;Jiang,P.;Kirchner,V.;Trimmer,A.L.;Schuster,R.Electrochemical micromachining of p-type silicon[J].J.Phys.Chem.B,2004,108:14434-14439.
    14.Zhang,L.;Ma,X.Z.;Lin,M.X.;Lin,Y.;Cao,G.H.;Tang,J.;Tian,Z.W.A comparative study on electrochemical micromachining of n-GaAs and p-Si by using confined etchant layer technique[J].J.Phys.Chem.B,2006,110:18432-18439.
    15.Andricacos,P.C.;Uzoh,C.;Dukovic,J.O.;et al.Damascene copper electroplating for chip interconnections[J].IBM Journal of Research and Development,1998,42(5):567-574.
    16.Andricacos,P.C.Copper on-chip interconnections:A breakthrough in electrodeposition to make better chips[J].Interface,1999,8:32-37.
    17.Schwartz,G.C.;Schaible,P.M.Reactiveion etching of copper films[J].J.Electrochem.Soc.,1983,130(8):1777-1782.
    18.Sesselmann,W.;Marinero,E.E.;Chuang,T.J.Laser-induced desorption and etching processes on chlorinated Cu and solid CuCI surfaces[J].Appl.Phys.A,1986,41:209-221.
    19.Alkire,R.C.;Deligianni,H.The role of mass transport on anisotropic electrochemical pattern etching[J].J.Electrochem.Soc.,1988,135:1093-1100.
    20.Shenoy,R.C.;Datta,M.;Romankiw,L.T.Application of chemical and electrochemical micromachining in the electronics industry[J].J.Electrochem.Soc.,1989,136(6):285C-292C.
    21.West,A.C.;Madore,C.;Matlosz,M.;landolt,D.Shape changes during through-mask electrochemical micromachining of thin metal films[J].J.Electrochem.Soc.,1992,139(2):499-506.
    22.Datta,M.Fabrication of an array of precision nozzles by through-mask electrochemical micromachining[J].J.Electrochem.Soc.,1995,142(11):3801-3805.
    23.Shanley,C.W.;Hummel,R.E.;Verinke,E.D.Differental reflectometry of copper[J]. Corros.Sci.,1980,20(4):481-487.
    24.唐安平,秦毅红,.铜阳极钝化机理及其影响因素[J].湖南有色金属2001,17(1):21-24.
    25.蒋利民.约束刻蚀剂层技术用于金属材料表面复杂三维微结构的加工研究倒.厦门大学理学博士论文,2007.
    26.Chang,H.K.;Kim,Y.K.UV-LIGA process for high aspect ratio structure using stress barrier amd C-shaped etch hole[J].Sensors & Actuators:A.Physical,2000,84(3):342-350.
    27.Leith,S.D.;Schwartz,D.T.High-rate through-mold electrodeposition of thick(>200 μm)NiFe MEMS components with uniform composition[J].Journal of Microelectromechanical Systems 1999,8(4):384-392.
    28.Nigg,H.L.;Masel,R.I.Temperature-programmed desorption study of the etching of Ni(l 10)with 2,4-pentanedione[J].J.Vac.Sci.Technol.A,1998,16(4):2581-2584.
    29.赵雪松,李文江.镍铬合金钢脉冲电流电化学抛光工艺研究[J].安徽机电学院学报,2002,17(1):11-15.
    30.李晓伟,吴蒙华.微秒级脉冲电流电化学加工研究[J].电加工,1996,4:11-14.
    31.冯春梁,马爱莲.不同电解质溶液对Ni腐蚀行为的影响[J].辽宁师范大学学报,2006,29:200-203.
    32.宋诗哲.腐蚀电化学研究[M],化学工业出版社,1994.
    33.Nelson,J.C.;Oriani,R.A.Stresses produced by the anodic oxidation of nickel[J].Electrochim.Acta,1992,137(11):2051-2057.
    34.Jiang,X.Y.;Ferrigno,R.;Mrksich,M.;Whitesides,G.M.Electrochemical desorption of self-assembled monolayers noninvasively Releases patterned cells from geometrical confinements [J].J.Am.Chem.Soc.,2003,125:2366-2367.
    35.Jiang,X.Y.;Bruzewicz,D.A.;Wong,A.P.;Piel,M.;Whitesides,G.M.Directing cell migration with asymmetric micropatterns[J].PNAS,2005,102(4):975-978.
    36.Grzybowska,K.K.;Campbell,C.J.;Mahmud,G.;Komarova,Y.;Soh,S.;Grzybowski,B.A.Cell motility on micropatterned treadmills and tracks[J].Soft.Matter,2007,3:672-679.
    37.Qian,X.M.;Peng,X.H.;Ansari,D.O.;Goen,Q.Q.;Chen,G.Z.;Shin,D.M.;Yang,L.;Young,A.N.;Wang,M.D.;Nie,S.M.In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J].Nature Biotechnology,2007,26:83-90.
    38.Rundqvist,J.;Hoh,J.H.;Haviland,D.B.Substrate effects in poly(ethylene glycol) self-assembled monolayers on granular and flame-annealed gold [J]. Journal of Colloid and Interface Science, 2006, 301:337-341.
    39. Ostuni, E.; Chapman. R. G.; Holmlin, R. E.; Takayama, S.;Whitesides, G. M. A Survey of Structure-Property Relationships of Surfaces that Resist the Adsorption of Protein [J]. Langmuir, 2001, 17:5605-5620.
    40. Karp, G. Cell and molecular biology : concepts and experiments [M], New York: J. Wiley, 1999.
    1.孔令杉,叶敦范,易新建,陈四海.多相位256×256衍射微透镜的设计及其光学性能研究[J].红外与激光工程,2002,31(3):253-256.
    2.邹凯,邓晓鹏,李慎.衍射光学元件的效率研究[J].光学与光电技术,2005,3(4):46-49
    3.Motamedi,M.E.;Southwell,W.H.;Anderson,R.J.;Hale,L.G.;Gunning,W.J.;Molz,M.High speed binary optic microlens array in GaAs[J].Proc.SPIE-Int.Soc.Opt.Eng.,1991,1544:33-44.
    4.Jackman,R.J.;Brittain,S.T.;Adams,A.;Prentiss,M.G.;Whitesides,G.M.Design and Fabrication of Topologically Complex,Three-Dimensional Microstructures[J].science,1998,280:2089-2091.
    5.Marck,C.;Borgwarth,K.;Heinze,J.Generation of Polythiophene Micropattems by Scanning Electrochemical Microscopy[J].Chem.mater.,2001,13:747-752.
    6.Borgwarth,K.;Heinze,J.Increasing the Resolution of the Scanning Electrochemical Microscope Using a Chemical Lens:Application to Silver Deposition[d].J.Electrochem.Soc.,1999,146(9):3285-3289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700