用户名: 密码: 验证码:
脉冲电化学微细加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统(MEMS)的发展,带动了微细加工技术的发展。电化学加工是利用金属材料发生氧化还原的电化学过程来去除材料和增加材料的,由于加工过程是以离子单位方式进行的,所以在微细加工中占有重要的位置。随着现代电力电子技术的发展,针对电化学加工对精度和表面质量的要求,逐渐采用脉冲电源替代直流电源,而且脉冲电源的频率也在不断提高。另外,计算机控制技术的发展,使采用简单形状电极加工复杂结构的工件成为可能,使电化学加工技术有了广阔的应用前景。
     通过对微细电化学加工机理的分析,探讨了脉冲电化学微细加工中的关键技术,进而进行了微细电化学加工实验研究。首先,从原理上分析和研究了电化学加工中阳极溶解和阴极沉积的加工过程。通过对脉冲电化学加工电场模型、流场特性和加工速度的分析,从微观角度解释阳极溶解的过程中单个晶粒能否从工件上被去除取决于其脱除能与电场力作用的大小;而阴极沉积是在放电时所需活化能最低的位置进行。在达到金属分解电压或沉积电压后,溶解或沉积的电极反应速度取决于单个脉冲宽度内通过的电量,同时还受脉冲电源占空比的影响。分析了双电层对电化学加工过程的影响,并且依据电化学加工等效电路实际搭接了模拟电路,验证电化学加工模型的正确性。
     根据脉冲电化学微细加工工艺的需要,研制了纳秒级的脉冲电源。该电源以CPLD为核心,以MOSFET为主开关管,用脉宽调节和频率调节相结合的方法,使输出电压、电流和电源频率连续可调。根据脉冲电化学加工的电场模型,分析了维持电压产生的原因及影响因素,维持电压不受脉冲频率和占空比影响,而只与电解液性质、加工间隙和加工电压有关,且其大小是这三者共同作用的结果。由于这种非准确的波形增大了平均加工电压,影响工件的表面质量和加工精度。因此,采用双路场效应管研制了新型脉冲电源,使其输出特性更能符合脉冲电化学微细加工的需要。
     研究了脉冲电化学微细加工工具电极的制作方法。首先研究了电火花方法加工微细电极,然后以碱性水溶液加工钨电极为例,分析了电解加工电极的机理,以及影响微细电极形状和表面质量的主要因素。并分别在酸、碱、盐电解液中进行电解加工微细电极的实验研究,成功加工出长径比大于100,锥度小于0.2的微细电极,可以稳定加工出直径5μm左右的微细电极。另外利用钨材料的特性,可以在碱性溶液中加工出尖端半径为纳米尺度的扫描探针,最小半径达到50nm。最后,比较了电火花方法和电化学方法加工微细电极的一些特性,体现了电化学方法加工微细电极的优越性。
     系统地研究了脉冲电化学微细加工的关键技术。首先以电解加工微细孔为切入点进行研究;然后提出了电解车削加工微细结构的方法,阐述了电解车削的原理和加工范围,分析了电解车削加工的工艺特点及影响因素,进而给出了电解车削的加工实例;研究了电解铣削加工微细结构的工艺,分别研究了阴极侧面铣削、阴极端面单层电解铣削和阴极端面多层电解铣削加工工艺,通过分析加工厚度、工具电极直径和电源参数等对电解铣削表面质量和形状精度的影响情况,给出了微细三维结构的加工实例;最后分析和研究了电化学沉积技术。
Developed with micro electro mechanical system (MEMS), the micro machining technology was developed. The metal was wiped off or added when the reaction of the oxidation and deoxidization were occurred in electrochemical machining (ECM). Because the minimum unit was ion in the process, ECM plays an important role in micro machining. Developed with the modern electric and electron technology, the direct current power supply was substituted by the pulse power supply aimed to satisfy the requirements of machining precision and surface roughness in ECM, and the frequency of the pulses power supply became higher and higher. The simple electrode could be used to fabricate complex structure due to the development of the computer control technology. Those made ECM widely application.
     After the electrochemical micromachining (EMM) mechanism was analyzed, the key techniques were discussed, and then the experimental investigations of the EMM were carried out. The processes of anodic dissolution and cathodic deposition were analyzed and researched firstly. In the microcosmic view, whether the single crystal particle could be wiped off from the workpiece lay on the action between escape energy and electric force during the processes of anodic dissolution. The cathodic deposition was carried out where the activation energy was least. After reached the dissolved voltage or deposited voltage, the machining rate lied on the energy during the pulse on time, and it also was influenced by the duty ratio of pulses power supply. The effect of double layer was analyzed in ECM process. Based on the ECM equivalent circuit, the stimulant circuit was put up practically. The validity of the ECM model was detected.
     Based on the requirement of the micro ECM technology, the nanosecond pulses power supply was developed. It used CPLD and MOSFET mainly, and combined the PFM and PWM, and then the output voltage, current, and the frequency of power supply could be adjusted continuously. Based on the model of electric field in ECM, the producing reason and the influencing factor of the maintaining voltage were analyzed. The maintaining voltage is disrelated with the frequency and duty ratio of the power supply, it relate with the electrolyte character, machining gap, and machining voltage, and it is decided by their collective action. The nonstandard discharging waveforms make the average voltage become big so the surface roughness and machining precision would be influenced. Therefore, the double MOSFET was used to improve the pulses power supply, and then the EMM would be satisfied with the discharging waveforms better.
     The fabrication of microelectrode was the preparative work for EMM. The microelectrode with several microns in diameter was fabricated by electrical discharge machining (EDM) firstly. The mechanism of fabricating microelectrode was analyzed by the tungsten microelectrode fabricated in the alkaline electrolyte. The factors were studied which influenced the shape and the surface roughness of the microelectrode. The microelectrodes were fabricated successfully in the acidic, alkaline, or saline electrolyte respectively. Some of them were with more 100 in length diameter ratio, and less 0.2 in taper. The microelectrode about 5 microns in diameter was fabricated stably. Otherwise, the scan probe with nanometers in top radius could be fabricated in the alkaline electrolyte based on the speciality of the tungsten, and the least radius was 50nm. At last, the properties of the microelectrodes which were fabricated by EDM or ECM were compared, and the advantages of ECM were shown.
     The key techniques of pulses EMM were researched systemly. The micro hole was fabricated by ECM drilling firstly, and the experimental investigation was carried out at the same time. The ECM turning technology was raised, and the mechanism and the machining scope were introduced. The technology characteristic and influenced factors were analyzed, and then the workpieces were fabricated by the ECM turning. The technology of ECM milling micro structure was introduced in detail. The ECM milling with cathode side, one layer ECM end milling, and multilayer ECM end milling were studied. The machining thickness, the microelectrode diameter, and the power supply parameter analyzed which influenced the shape precision and the surface roughness in the ECM milling. Several micro 3D structures were fabricated successfully. At last, the electrodeposition was researched.
引文
1 沈慕昭.电化学基本原理及其应用.第 1 版.北京师范大学出版社,1987:260-273
    2 安特罗波夫著.理论电化学.吴仲达,朱耀斌,吴万伟译.第 1 版.高等教育出版社,1984:296-305
    3 A. Zaytsev, I. Agafonov, N. Gimaev, R. Moukhoutdinov, A. Belogorsky. Precise Pulse Electrochemical Machining by Bipolar Current Aspects of Effective Technological Application. Journal of Materials Processing Technology, 2004 (149): 419–425
    4 G. D.Arrigo, S. Coffa, C. Spinella. Advanced Micromachining Processes for Micro-opto-electromechanical Components and Devices. Sensors and Actuators A 2002(99): 112–118
    5 鲍怀谦,徐家文.超纯水电解加工机理及工艺基础.化工学报,2006 年第57 卷,第 3 期:626-629
    6 李颖,徐家文,彭思平.超纯水微细电解加工的基础研究.电加工与模具,2005 年第 3 期:27-39
    7 Xinsheng Peng, Aicheng Chen. Electrochemical Fabrication of Novel Nanostructures Based on Anodic Alumina. Nanotechnology 2004 (15): 743-748
    8 C. Rosenkranz, M.M. Lohrengel, J.W. Schultze. The Surface Structure During Pulsed ECM of iron in NaNO3. Electrochimica Acta, 2005 (50): 2009-2016
    9 徐玉春,赵万生,赵家齐,刘晋春.精密脉冲电解磨削的电源和试验研究.航空精密制造技术,1999年第35卷,第3期:12-14
    10 王建业,王晓艳.MOSFET 高频、窄脉冲电解加工新型电源试验研究.航空制造技术,2001年第1期:27-29
    11 高嵩,史政记,倪原.高频脉冲电解加工电源快速短路保护电路设计.探测与控制学报,2005年第27卷,第2期:58-64
    12 高嵩,史政记,何宁,范植坚.高频脉冲电解加工电源 MOSFET 并联技术研究.电力电子技术,2005年第39卷,第4期:97-99
    13 高嵩,史政记,何宁.高频脉冲电解加工电源控制系统设计.西安工业学院学报,2005 年第25 卷,第4 期:353-355
    14 杨光,郑云飞,李勇.微细电化学加工电源的设计与研究.电加工与模具,2002 年第 2 期:25-28
    15 李小海,赵万生,王振龙.微细电解加工脉冲电源的研制.电加工与模具,2004 年第 5 期:56-58
    16 王文焕,张之敬,唐兴伦.电解加工电源的发展及特点.现代机械,2004 年第1 期:54-57
    17 唐兴伦,张之敬.王建平等.一种高频电解加工电源的研究和开发.电力电子技术,2003年第37卷,第5 期:50-52
    18 史军良,张之敬,张卫民,吴高阳,唐兴伦.高频群脉冲电源在微细孔电化学加工中的应用.现代制造工程,2005年第2期:78-80
    19 王晓明,李洪友,周锦进.脉冲电化学光整加工电源设计与研究.电加工与模具,2001年第2 期:23-25
    20 张朝阳,朱荻,王明环等.超短脉冲电流微细电解加工技术研究.中国机械工程,2005 年第16 卷,第14 期:1295-1298
    21 A.Ruszaj, J.Czekaj, M.ChuChro, G.Skrabalak. Electrochemical Machining with Short Interelectrode Voltage Pulses. Proceedings of The 13th International Symposium for Electromachining ISEM XIII Vol.1 May 9th-11th, 2001 Bilbao, Spain, CIRP: 249-259
    22 B. Bhattacharyya, J. Munda. Experimental Investigation on The Influence of Electrochemical Machining Parameters on Machining Rate and Accuracy in Micromachining Domain. International Journal of Machine Tools & Manufacture, 2003 (43): 1301-1310
    23 B. Bhattacharyya, M. Malapati, J. Munda. Experimental Study on Electrochemical Micromachining. Journal of Materials Processing Technology, 2005 (169): 485-492
    24 B. Bhattacharyya, J. Munda. Experimental Investigation into Electrochemical Micromachining (EMM) Process. Journal of Materials Processing Technology, 2003 (140): 287-291
    25 B. Bhattacharyya, J. Munda, M. Malapati. Advancement in Electrochemical Micro-machining. International Journal of Machine Tools & Manufacture, 2004 (44): 1577-1589
    26 B. Bhattacharyya, S. Mitra, A.K. Boro. Electrochemical Machining: New Possibilities for Micromachining. Robotics and Computer Integrated Manufacturing, 2002 (18): 283-289
    27 Jason A Kenney, Gyeong S Hwang. Electrochemical Machining with Ultrashort Voltage Pulses: Modelling of Charging Dynamics and feature Profile Evolution. Nanotechnology, 2005 (16): S309-S313
    28 M. Kock, V. Kirchner, R. Schuster. Electrochemical Micromachining with Ultrashort Voltage Pulses- a Versatile Method with Lithographical Precision. Electrochimica Acta, 2003 (48): 3213-3219
    29 朱荻,王明环,明平美,张朝阳.微细电化学加工技术.纳米技术与精密工程,2005年第3卷,第2期:151-155
    30 王明环,朱荻,徐惠宇.电化学腐蚀法制备针尖的试验研究.传感器技术,2005 年第 24 卷,第 3 期:7-9
    31 张朝阳,朱荻.微细电解加工的精度及定域性研究.机械科学与技术,2006 年第25卷,第2期:242-245
    32 徐惠宇,朱荻,史先传.电化学微细加工监控系统的研究.传感器技术,2005 年第 24 卷,第 7 期:7-9
    33 徐惠宇,朱荻,史先传.微细电解加工系统设计及实验研究.航空精密制造技术,2005年第41卷,第4 期:26-29
    34 徐惠宇,朱荻.微细群缝的精密电解加工研究.中国机械工程,2004 年第15 卷,第 21 期:1912-1915
    35 史先传,朱荻,徐惠宇.电解加工的间隙监测与控制.机械科学与技术,2005 年第 24 卷,第 5 期:536-539
    36 谢晓芬,朱荻,曲宁松,张朝阳.纳秒级脉冲电流电解加工定域性的试验研究.电加工与模具,2006年第2期:23-26
    37 张朝阳,朱荻.微细电解加工的精度及定域性研究.机械科学与技术,2006 年第25卷,第2期:242-245
    38 王明环,朱荻,徐惠宇.提高微细电解加工精度的研究.电加工与模具,2005 年第 3 期:30-32
    39 王明环,朱荻,徐惠宇.微螺旋电极在改善微细电解加工性能中的应用.机械科学与技术,2006年第25卷,第3期:348-351
    40 彭思平,徐家文,李颖,杨倩.微细电解加工机理探讨.电加工与模具,2005 年第 2 期:26-29
    41 钱密,徐家文.电解加工间隙中的传质过程及其对电解加工的影响.机械设计与制造,2006年第4期:94-96
    42 王希,赵东标,云乃彰.基于力信号和智能控制的电解加工间隙检测与控制.东南大学学报(自然科学版),2005 年第35 卷,第5 期:719-723
    43 王希,赵东标,云乃彰.基于神经网络和模糊控制的电解加工间隙控制.华南理工大学学报(自然科学版),2006年第34卷,第2期:37-40
    44 陆永华,赵东标,朱荻,云乃彰.基于流体力学的脉冲电解加工间隙在线检测的理论研究.机械科学与技术,2005年第24卷,第2期:244-247
    45 陆永华,赵东标,朱荻,云乃彰.基于六维力的电解加工间隙检测的数值分析.中国机械工程,2004 年第15 卷,第23 期:2142-2145
    46 陆永华,赵东标,朱荻,云乃彰.脉冲电解加工间隙测控方法的研究进展.现代制造工程,2004 年第12期:13-16
    47 李小海,王振龙,赵万生.基于多功能加工平台的微细电解加工工艺.上海交通大学学报,2006 年第40 卷,第6 期:909-913
    48 LI Xiaohai, ZHAO Wansheng, WANG Zhen-long , LI Zhi-yong, ZHANG Yong. Electrochemical Micromachining Based on Multifunction Machine Tool. Nanotechnology and Precision Engineering, 2005,Vol. 3, No. 1: 29-35
    49 吴海波,狄士春,迟关心,赵万生.高频窄脉冲电化学加工正交试验研究.电加工与模具,2005年第5期:19-21
    50 王贤成,狄士春,迟关心,吴海波.高频窄脉冲微细电解加工实验研究.机械工程师,2004年第7期:40-42
    51 王建平,张之敬,唐兴伦,张利波,王文焕.高频群脉冲电解加工控制系统研究.电加工与模具,2004 年第2 期:27-30
    52 唐兴伦,张之敬,周兆英,熊琼,徐庆新,余少东.用于微小金属零件制造的电化学加工机床.制造技术与机床,2006年1期:27-31
    53 王建业,冯倩,罗干英.高频、窄脉冲电流电解加工模具试验研究.电加工,1999 年第4 期:17-19
    54 Wang Jian- Ye. The Investigation of The Mechanism of High Frequency Short Pulse Electrochemical Machining. Journal of South China University of Technology (Natural Science Edition), 2001, 30(1): 6-11
    55 章海军,黄峰.基于扫描离子电导显微术的电化学微细加工方法,1999 年第18卷,第1期:90-93
    56 Tian Z W, Feng Z D, Tian Z Q, Et al. Confined Etchannt Layertechnique for Two-dimensional Lithography at High Resolution Using Electrochemical Scanning Tunneling Micro Scope. Faraday Discuss, 1992, Vol. 94: 37-40
    57 Tian Z W, Tian Z Q, L in Z H, Et al. Micro- (nano-) fabrication Technique forThree Dimensional Complex Patterns—their Common Difficulties and Solution. Journal of Scientific Instrument, 1996, 17 (1): 14-17
    58 Huang Hai-gou, Sin Jian-jun, Tian Zhao-wu, Et al. Three Dimensional Micro-fabrication on GaAs Using a Regular Patterns Mold. Electrochemistry, 2000, 3: 253-256
    59 Zu Y B, Xie L, Mao B W, Tian Z W. Studies on Silicon Etching Using The Confined Etchant Layertechnique. Electrochimica Acta, 1998, 43: 1683-1688
    60 谢雷,罗瑾,毛秉伟,田昭武.用于三维超微图形复制加工的约束刻蚀剂层技术研究.仪器仪表学报,1996年第17卷,第1期:193-195
    61 Li Yong, Zheng Yunfei, Yang Guang, Peng Liangqiang. Localized Electrochemical Micromachining with Gap Control. Sensors and Actuators A, 2003 (108): 144-148
    62 Wei-Hsu Chang. Micromachining of P-type 6H–SiC by Electrochemical Etching. Sensors and Actuators A, 2004 (112): 36-43
    63 Adam Cohen, Gang Zhang, Fan-Gang Tseng, Et al. EFAB: Rapid, Low-cost Desktop Micromachining of High aspect Ratio True 3-D MEMS, IEEE, 1999: 244-251
    64 Olivier L. Guise, Joachim W. Ahner, Moon-Chul Jung, Peter C. Goughnour, and John T. Yates, Jr., Reproducible Electrochemical Etching of Tungsten Probe Tips. NANO LETTERS 2002, Vol. 2, No. 3: 191-193
    65 M.C. Baykul. Preparation of Sharp Gold Tips for STM by Using Electrochemical Etching Method. Materials Science and Engineering, 2000, 74: 229-233
    66 Sophie Kerfriden, Ayssar H. Nahle, Sheelagh A. Campbell, Frank C. Walsh, James R. Smith. The Electrochemical Etching of Tungsten STM Tips. Electrochimica Acta, 1998, Vol. 43: 1939-1944
    67 M.M. Lohrengel, Chr. Rosenkranz. Microelectrochemical Surface and Product Investigations During Electrochemical Machining (ECM) in NaNO3. Corrosion Science, 2005 (47): 785-794
    68 M.M. Lohrengel, I. Kluppel, C. Rosenkranz, H. Bettermann, J.W. Schultze. Microscopic Investigations of Electrochemical Machining of Fe in NaNO3. Electrochimica Acta, 2003 (48): 3203-3211
    69 B. Bhattacharyya, J. Munda. Development of Electrochemical Micromachining(EMM) Setup for Experimental analysis. 20th All India Manufaturing Technology, Design and Research Conference, 2002: 242-247
    70 Young-Mo Lim, Soo Hyun Kim. An Electrochemical Fabrication Method for Extremely Thin Cylindrical Micropin. International Journal of Machine Tools & Manufacture, 2001 (41): 2287-2296
    71 Young-Mo Lim, Hyung-Jun Lim, Jang Ryol Liu, Soo Hyun Kim. Fabrication of Cylindrical Micropins with Various Diameters Using DC Current Density Control. Journal of Materials Processing Technology, 2003 (141): 251-255
    72 E. S. Lee, J. W. Park and Y. H. Moon. A Study on Electrochemical Micromachining for Fabrication of Microgrooves in an Air-Lubricated Hydrodynamic Bearing. Int J Adv Manuf Technol, 2002 (20): 720-726
    73 J. W. Park, E. S. Lee, C. H. Won, Y. H. Moon. Development of Electrochemical Micro Machining for Air-Lubricated Hydrodynamic Bearings. Microsystem Technologies, 2002 (9): 61-66
    74 Se Hyun Ahn, Shi Hyoung Ryu, Deok Ki Choi, Chong Nam Chu. Electro- Chemical Micro Drilling Using Ultra Short Pulses. Precision Engineering, 2004 (28): 129-134
    75 Takashi Mineta. Basic Characteristics of an Electrochemical Etching of Ni–Fe Containing Corrosion Resistant alloys. Sensors and Actuators A, 2004, 114: 536-542
    76 G. Barillaro, A. Nannini, M. Piotto. Electrochemical Etching in HF Solution for Silicon Micromachining. Sensors and Actuators A, 2002, 102: 195-201
    77 G. Barillaro, P. Bruschi, A. Diligenti, A. Nannini. Fabrication of Regular Silicon Microstructures by Photo-electrochemical Etching of Silicon. Phys. Stat, 2005, 2(9): 3198-3202
    78 G. Barillaro, F. D Angelo, G. Pennelli, F. Pieri. Fabrication of Self-aligned Gated Silicon Microtip array Using Electrochemical Silicon Etching. Phys. Stat. 2005, 202(8): 1427-1431
    79 H. Ohji, P.J. Trimp, P.J. French. Fabrication of free Standing Structure Using Single Step Electrochemical Etching in Hydrofluoric Acid. Sensors and Actuators, 1999, Vol.73: 95-100
    80 H. Ohji, P.J. French, K. Tsutsumi. Fabrication of Mechanical Structures in P-type Silicon Using Electrochemical Etching. Sensors and Actuators, 2000Vol.82: 25-258
    81 X. Badel, R.T. Rajendra Kumarb, P. Kleimann, J. Linnros. Formation of Ordered Pore Arrays at The Nanoscale by Electrochemical Etching of N-type Silicon. Superlattices and Microstructures, 2004, 36: 245-253
    82 P. Kleimann, J. Linnros, S. Petersson. Formation of Wide and Deep Pores in Silicon by Electrochemical Etching. Materials Science and Engineering, 2000, 70: 29-33
    83 R. Schuster, V. Kirchner, P. Allongue, G. Ertl. Electrochemical Micromachining. Science, 2000 (289) 98-101
    84 V. Kirchner, L. Cagnon, R. Schuster, G. Ertl. Electrochemical Machining of Stainless Steel Microelements with Ultrashort Voltage Pulses. Appl. Phys. Lett. 2001 (79): 1721-1727
    85 T. Suter, H. Bohni. A New Microelectrochemical Method To Study Pit initiation on Stainless Steels. Electrochimica Acta, 1997, Vol.42, Nos 20-22: 3275-3280
    86 Bo Hyun Kim, Shi Hyoung Ryu, Deok Ki Choi, Chong Nam Chu. Micro Electrochemical Milling. J. Micromech. Microeng, 2005 (15): 124-129
    87 杨防祖,姚士冰,周绍民.电化学沉积研究.厦门大学学报(自然科学版),2001 年第 40 卷,第 2 期:418-426
    88 单光宝,刘佑宝,李兴凯,陈福山.微陀螺仪敏感芯片的选择性电铸技术研究.传感器技术,2004年第23卷,第2期:28-30
    89 赵阳培,黄因慧.喷射电铸快速成型技术的试验研究.徐州建筑职业技术学院学报,2003年第3卷,第1期:40-42
    90 王帮峰,黄因慧,余承业.射流电铸技术的试验研究.南京航空航天大学学报,2002年第34卷,第4期:328-331
    91 王帮峰,黄因慧,余承业.选择性射流电铸技术初探.机械科学与技术,2002 年第 21 卷,第 2 期:263-265
    92 张建华,赵剑峰,田宗军,黄因慧,余承业,胡育文.选择性电铸的分层切片算法研究.南京航空航天大学学报,2003年第35卷,第6期:590-594
    93 赵阳培,黄因慧,刘志东,田宗军,赵剑峰.扫描喷射电沉积纳米晶铜的试验研究,电加工与模具.2004年第5期:26-29
    94 赵剑峰,朱荻.脉冲电流电铸技术的试验研究.航空工艺技术,1996 年 5期:5-7
    95 解西锋,朱荻.高频脉冲电铸的试验研究.航空精密制造技术,2003 年第39 卷,第 2 期:10-13
    96 徐惠宇,朱荻,曲宁松.电铸沉积层性能的试验研究.电加工与模具,2001年第1期:18-21
    97 杨建明,朱荻,曲宁松,雷卫宁.脉冲电铸纳米晶镍锰合金的拉伸性能研究.中国机械工程,2005年第16卷,第15期:1388-1390
    98 杨建明,朱荻,曲宁松,雷卫宁.镍锰合金的纳米晶电铸.机械科学与技术,2004年第23卷第1期:81-84
    99 雷卫宁,朱荻.纳米晶精密电铸层微观结构的测试与研究.中国机械工程,2004 年第 15 卷,第 14 期:1283-1286
    100 朱增伟,朱荻.硬质粒子摩擦法电铸新技术的研究.中国机械工程,2006年第17卷,第1期:60-63
    101 朱增伟,朱荻.硬质粒子扰动下铜电沉积研究.电化学,2005 年第 11 卷,第4期:412-415
    102 王立平,肖少华,高燕,刘惠文,徐洮.脉冲电流密度对电沉积纳米晶镍织构和硬度的影响.电镀与精饰,2005年第27卷,第3期:40-42
    103 李永海,丁桂甫,张永华,曹莹,赵小林.LIGA 技术微电铸镍的电化学研究.电镀与环保,2005年第25卷,第2期:8-10
    104 李永海,丁桂甫,毛海平,张永华.LIGA/准 LIGA 技术微电铸工艺研究进展.电子工艺技术,2005年第26卷第1期:1-5
    105 吕文龙,陈义华,孙道恒.微电铸及其在 MEMS 中的应用.厦门大学学报(自然科学版),2005 年第 44 卷:316-318
    106 刘益芳,崔宏巍,吕文龙,孙道恒,杨防祖.利用微电铸制作镍悬臂梁.厦门大学学报(自然科学版),2005年第44卷,第5期:5658-660
    107 乔桂英,荆天辅,周继锋,于金库,王楠,韩东生.喷射电沉积镍的阴极极化行为.材料保护,2004年第37卷,第9期:4-6
    108 韩东生,荆天辅,乔桂英,周继锋,李季辉.喷射电沉积镍阴极极化行为研究.中国腐蚀与防护学报,2005年第25卷,第1期:30-33
    109 熊毅,荆天辅,张春江,邵光杰,于升学,张芳,张春玲.喷射电沉积纳米晶镍的研究.电镀与精饰,2000年第22卷,第5期:1-4
    110 马龙,周月豪,熊良才,柳海鹏,史铁林.LIGA 工艺中微电铸工艺研究.激光技术,2006年第30卷,第1期:47-49
    111 范爱玲,高红叶,田文怀.电铸超细晶 Cu 超高速变形机理的 TEM 研究.电子显微学报,2002年第21卷,第5期:679-680
    112 范爱玲,贺怀堂,田文怀,孙起.电铸超细晶材料的微观组织研究.太原重型机械学院学报,2003年第24卷,第2期:88-91
    113 K.I. Popov, T.M. Kostic, N.D. Nikolic, E.R. Stojilkovic, M.G. Pavlovic. A New approach To Metal Electrodeposition at a Periodically Changing Rate Part I. The Reversing Overpotential Method. Journal of Electroanalytical Chemistry, 1999, 464: 245-251
    114 E.M. El-Giar, Cairo U., and D.J. Thomson, U. of Manitoba. Localized Electrochemical Plating of Interconnectors for Microelectronics. IEEE 1997 Conference on Communications. Power and Computing WESCANEX97 Proceedings; Winnipeg, MB: 321-332
    115 John D. Madden, Serge R. Lafonataine, Ian W. Hunter. Fabrication by Electrodeposition: Building 3D Structures and Polymer Actuators. Sixth International Symposium on Micro Machine and Human Science, IEEE, 1995: 77-81
    116 John D. Madden, Ian W. Hunter. Three-Dimensional Microfabrication by Localized Electrochemical Deposition. Journal of Microelectromechanical Systems, 1996, 5(1): 24-32
    117 Ra’a A. Said. Adaptive Tip-withdrawal Control for Reliable Microfabrication by Localized Electrodeposition. Journal of Microelectromechanical Systems, 2004,Vol. 13, No. 5
    118 R A Said. Microfabrication by Localized Electrochemical Deposition: Experimental Investigation and Theoretical Modeling. Nanotechnology, 2003 (14): 523-531
    119 S H Yeo, J H Choo. Effects of Rotor Electrode in The fabrication of High aspect Ratio Microstructures by Localized Electrochemical Deposition. J. Micromech. Microeng, 2001 (11): 435-442
    120 S H Yeo, J H Choo, K H A Sim. On The Effects of Ultrasonic Vibrations on Localized Electrochemical Deposition, J. Micromech. Microeng, 2002 (12): 271-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700