用户名: 密码: 验证码:
全球海洋季节内振荡分布特征及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过分析卫星高度计海表面高度异常SLA数据、OFES模式输出的海表面高度异常SLA数据以及TMI的海表面温度SST数据得到在海洋中不同周期的显著季节内振荡信号具有纬向带状分布特征。如周期为1个月的信号主要分布在以南北纬7°为中心的两个纬度带上,周期为2个月的信号主要分布在以南北纬14°为中心的两个纬度带上,周期为3个月的信号主要分布在以南北纬20°为中心的两个纬度带上,周期为4个月的信号主要分布在以南北纬26°为中心的两个纬度带上,周期为5个月的信号主要分布在以南北纬32°为中心的两个纬度带上。随着周期的增加,显著季节内振荡信号所在的纬度也相应增加。基于线性波动理论,通过垂直模态分解方法和WKB近似方法利用WOA01温度、盐度资料计算得到第一斜压模Rossby变形半径和群速为零时第一斜压模Rossby波的周期,即阈值周期。结果显示不同周期的季节内振荡信号显著分布的纬度带与对应的第一斜压模Rossby波阈值周期等值线所在的纬度一致。进一步通过对海表面高度异常和海表面温度进行二维傅氏变换得到波数-频率功率谱,结果表明海洋中季节内显著振荡信号基本符合群速为零的第一斜压模Rossby波的频散关系。对海洋中的31个验潮站水位时间序列的分析结果亦显示许多验潮站资料的功率谱在该站点的第一斜压模Rossby波阈值周期附近存在谱峰。
     为了进一步证明全球大洋中显著季节内振荡信号是群速为零的第一斜压模Rossby波,本文基于一层半约化重力模式设计了数值实验。数值实验主要通过以下三个方面进行:第一,验证一层半约化重力模式是否能够模拟出海洋中显著季节内振荡信号有纬向带状分布特征,并且通过在模式中选择不同的侧摩擦系数,分析侧摩擦项对显著季节内振荡信号纬向带状特征的影响;第二,考虑模式中非线性项对海洋中显著季节内振荡信号纬向带状分布特征的影响;第三,选择不同的海水上下两层的密度差和上层海水的初始层厚值来改变模式中第一斜压模Rossby波的阈值周期,通过分析模式输出的海表面高度异常时间序列来验证不同周期的季节内振荡信号显著分布的纬度带是否随着阈值周期的改变而改变。通过对以上数值实验的结果分析得到以下结论:一层半约化重力模式可以模拟出海洋中显著季节内振荡信号的纬向带状分布特征;模式中非线性项的存在与否对显著季节内振荡信号的纬向带状分布特征没有很大的影响;当模式中第一斜压模Rossby波的理论阈值周期发生改变时,实验结果中显著季节内振荡信号分布的纬度带也随之改变,并且显著信号所分布的纬度带与对应的第一斜压模Rossby波阈值周期等值线的分布保持一致。
     本文的研究工作通过资料分析、数值模拟和理论推导,首次证实了大洋中观测到的显著季节内振荡信号是群速为零的第一斜压模Rossby波,从而有力地说明了群速为零的第一斜压模Rossby波是不同周期、不同纬度上带状显著季节内振荡信号的主导产生机制。同时本文的研究结果还解释了大洋中岛屿验潮站存在的显著季节内振荡信号。
Analysis of the Sea Level Anomaly (SLA) from satellite altimeter and OFES, and Sea Surface Temperature (SST) from TMI shows that the dominant intraseasonal oscillations in the ocean have latitudinal distribution characteristic. The frequency of the most energetic SSH variability decreases polarward. For example, the variability with period around 1 month dominates at the latitudinal band centered along 7°N(S). The variability with period around 2 months dominates at the latitudinal band centered along 14°N(S). The most energetic latitudinal bands move polarward to 20°N(S) for 3-month period variability, to 26°N(S) for 4-month period variability, and to 32°N(S) for 5-month period variability. In each latitudinal band, the dominant-frequency signal usually contributes more than 40% to the total power spectrum of the intraseasonal variability. Based on the linear Rossby wave theory, through vertical eigenmode decomposition method and WKB approximation method, using the WOA01 temperature and salinity data, the first baroclinic Rossby radius of deformation and the critical periods of the first baroclinic Rossby wave are calculated. The results show that the intraseasonal oscillations dominate at the latitudinal band centered along the isolines of the corresponding first baroclinic Rossby wave’s critical periods. The two-dimension Fourier Transform of SLA proves that the intraseasonal oscillations basically accord with the dispersive relation of the first baroclinic Rossby wave. Analysis of 31 tidal stations in the ocean indicates that most of the tidal stations’peak-spectrum frequency is nearly identical to the stations’critical frequency at which the latitudinal group velocity of Rossby wave becomes zero.
     To further prove that the dominant intraseasonal oscillations in the oceans are first baroclinic Rossby wave with zero group velocity, several numerical experiments are designed based on the 1.5-layer reduced gravity model. These experiments are as follows: firstly, to check whether the 1.5-layer numerical model could reproduce the latitudinal distribution characteristic of dominant intraseasonal oscillations in Pacific Ocean; the lateral friction’s impact on the latitudinal distribution characteristic of intraseasonal oscillations is analyzed. Secondly, the nonlinear term’s impact on the latitudinal distribution characteristic of dominant intraseasonal oscillations is analyzed. Finally, the first baroclinic Rossby wave’s critical periods in the model are changed by choosing different reduced gravitational acceleration and the initial value of upper layer’s thickness; through analyzing the SLA of these experiments, whether the distribution of dominant intraseasonal oscillations change when the first baroclinic Rossby wave’s critical periods change is tested. The results of these experiments reveal that the 1.5-layer model could well reproduce the latitudinal distribution of intraseasonal oscillations in Pacific Ocean; the nonlinear term in the model has little impact on the latitudinal distribution of dominant intraseasonal oscillations; when the first baroclinic Rossby wave’s critical periods change, the latitudes where the dominant intraseasonal oscillations center along also change; and the dominant intraseasonal oscillations are in good agreement with the first baroclinic Rossby wave’s critical periods.
     The work in this thesis proves that the dominant intraseasonal oscillations in global oceans are the first baroclinic Rossby wave with zero group velocity through data analysis, numerical simulation and formula deduction for the first time, which strongly supports the conclusion that the first baroclinic Rossby wave with zero group velocity is the main mechanism of latitudinal distribution of dominant intraseasonal oscillations in the oceans. This work also explains the power spectrum peak at the first baroclinic Rossby wave’s critical periods at the island tidal station.
引文
[1]陈海英.太平洋Rossby波特征的时空分布特征:[硕士学位论文].青岛:国家海洋局第一海洋研究所,2003
    [2]林霄沛.副热带海区季节内Rossby长波及其对东海黑潮的影响:[博士学位论文].青岛:中国海洋大学,2004
    [3]刘秦玉,王启.热带太平洋海平面高度季节内振荡的空间分布特征.青岛海洋大学学报,1999,29(4):549-555
    [4]潘爱军,刘秦玉,胡瑞金,王韶霞.北太平洋副热带逆流区海流的准90天振荡.青岛海洋大学学报,2002, 32(1):18~24
    [5]钱慧.Argo浮标资料及海洋垂直模态结构特征分析:[硕士学位论文].青岛:中国海洋大学,2007
    [6]乔方利,Tal Ezer,袁业立.全球海洋高频波动主振荡周期的纬向带状分布特.海洋学报,2004, 26(3):1~7
    [7]王斌,翁衡毅.地球物理流体动力学导论.北京:海洋出版社,1981
    [8]叶志敏,张铭.中、低纬太平洋ARGO测站Rossby内波垂直模态的数值计算.海洋通报,2004,第23卷第6期,1~7
    [9] Anderson, D. L. T. and A. E. Gill. Spin-up of a stratified ocean, with application to upwelling, Deep-Sea Research, 1975, 22, 583~596.
    [10] Anderson D.L.T and P. D. Killworth, Non-linear propagation of long Rossby waves. Deep-Sea Res., 1979, 26A,1033~1049
    [11] Boulanger, J.-P., and L.-L. Fu, Evidence of boundary reflection of Kelvin and first-mode Rossby waves from TOPEX/Poseidon sea level data. J. Geophys. Res., 1996, 101, 16 361~16371
    [12] Busalacchi, A. J., and F. Blanc. On the role of closed and open boundaries in a model of the tropical Atlantic Ocean. J. Phys. Oceanogr. 1989, 19: 831~841
    [13] Challenor, P.G., Cipollini, P. and Cromwell, D.. Use of the 3D radon transform to examine the properties of oceanic Rossby waves. Journal of Atmospheric and Oceanic Technology, 2001, 18, (9): 1 558~1 566
    [14] Chelton, D. B., and M. G. Schlax. Global observations of oceanic Rossby waves. [J]. Science, 1996, 272: 234~238
    [15] Chelton D B, DeSzoeke R A, Schlax M G..Geographical variability of the first baroclinic Rossby radius of deformation. J Phys. Oceanogr, 1998, 28:433~460
    [16] Chelton, D. B., M. G. Schlax, R M. Samelson, and R. A. deSzoeke, Global observations of large oceanic eddies, Geophys. Res. Lett., 2007, 34, L15606.
    [17] Chen, H. Y., F. L. Qiao and Y. G. Wang, Zonal Propagation Velocity Distribution Characteristics of Oceanic Rossby Waves, Advances in Marine Science, 2003,21, 387~392.
    [18] Cipollini P., D. Cromwell, M. S. Jones, G.D. Quartly, and P.G. Challenor. Concurrent altimeter and infrared observations of Rossby wave propagation near 34°N in the Northeast Atlantic, Geophys. Res. Lett., 1997,24, 8, 889~892
    [19] Cipollini,P., D.Cromwell, P.G.Chanselor, and S. Raffago. Rossby waves detected in global oceancolor data. Geophys. Res. Lett., 2001,28.2, 323~326
    [20] Clarke A. J., The reflection of equatorial waves from oceanic boundaries. J. Phys. Oceanogr., 1983, 13, 1193~1207
    [21] Clarke A. J., C. Shi, Critical frequencies at ocean boundaries, J. Geophys. Res., 1991, 96, 10731~10738
    [22] Conkright, M.E., R. A. Locarnini, H.E. Garcia, T.D. O’Brien, T.P. Boyer, C. Stephens, J.I. Antonov (2002), World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation, 17 pp., National Oceanographic Data Center, Silver Spring, MD.
    [23] De Szoeke, R. A., and D. B. Chelton, The modification of long planetary waves by homogeneous potential layers, J. Phys. Oceanogr., 1999,29, 500~511.
    [24] Dewar W.. On too-fast baroclinic planetary waves in the general circulation. J. Phys. Oceanogr., 1998, 28: 1 739~1 758
    [25] Dewar, W.. On the propagation of baroclinic waves in the general circulation. J. Phys. Oceanogr., 1999, 30,2 637~2 649
    [26] Fu, L.-L., and D. B. Chelton. Large- scale ocean circulation. Satellite Altimetry and Earth Sciences: A Handbook for Techniques and Applications, L.-L. Fu and A. Cazenave, Eds., Academic Press, 2001: 133~169
    [27] George Platzman. The Rossby wave. Quart. J. Roy. Meteorol. Soc., 1968,94:?~248
    [28] Grimshaw R., J. S. Allen, Low-frequency baroclinic waves of coastal boundaries, J. Phys Oceanogr., 1988, 18, 1124~1143
    [29] Hill.K.L., I.S. Robinson, and P.Cipollini. Propogation characteristics of extera-tropical planetary waves observed in the ATSR global sea surface temperature record. J. Geophys. Res., 2000, 105, C9, 21927~21945
    [30] Inoue, M., and S. Welsh. Modeling seasonal variability in the wind-driven upper-layer circulation in the Indo-Pacific region. J. Phys. Oceanogr. 1993, 23: 1412~1436
    [31] James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput., 1965, 19, 297~301.
    [32] Joseph pedlosky. Geophysical Fluid Dynamics. Spinger-Verlag,1987
    [33] Killworth, P. D., D. B. Chelton and R. de Szoeke, The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 1997, 27, 1946~1966
    [34] Killworth, P. D. and J. R. Blundell Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography, PartI: The local problem, J. Phys. Oceanogr. , 2003, 33, 784~801.
    [35] Killworth,P.D., P.Cipollini, B. Mete Uz, and J.R. Blundell. Physical and biological mechanisms for planetary waves observed in satellite-derived chlorophyll. J.Geophys.Res., 2004,C07002,1~18
    [36] Kuo H. L. Dynamics of quasigeostrophic flows and instability theory. Advances in Applied Mech.,1973,13:-330
    [37] Large W. G., and Pond S., Open ocean momentum flux measurement in moderate to strong winds. J. Phys. Oceanogr., 1981, 11, 324~336
    [38] Le Traon, P.-Y., and J.-F. Minster. Sea level variability and semiannual Rossby waves in the southAtlantic subtropical gyre. J. Geophys. Res.,1993, 98: 12 315~12 326
    [39] Lin, X., D. Wu, and J. Lan, 2004: The intrusion and influence of introseasonal long Rossby waves in the East China Sea. J. Hydrodynamics, Ser.B, 16, 621~631
    [40] Longuet-Higgins, M. S. Planetary Waves on a Rotating Sphere, Philos. Trans. R. Soc. London Ser. A, 1964,279, 446~473.
    [41] Longuet-Higgins, M. S. Planetary Waves on a Rotating Sphere II, Philos. Trans. R. Soc. London Ser. A, 1965, 284, 40~68
    [42] Masumoto, Y., H. Sasaki, T. Kagimoto, N. Komori, A. Ishida, Y. Sasai, T. Miyama, T. Motoi, H. Mitsudera, K. Takahashi, H. Sakuma, and T. Yamagata, A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator), J. Earth Simulator, 2004, 1, 35~56.
    [43] McWilliams, J. C. and G. R. Flierl. On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 1979, 9, 1155~1182.
    [44] Mitehum G. T.,The source of90-day oscillations at Wake Island,J. Geophys. Res.,1995,100(C2),2459~2475
    [45] O’Brien, J. J., D. Adamec, and D. W. Moore. A simple model of upwelling in the Gulf of Guinea. Geophys. Res. 1978, Lett. 5: 641~644
    [46] Polito P.S. and P.Cornillon. Long baroclinic Rossby wave detected by TOPEX/POSEIDON. J.Gerophys.Res.,1997,102 C2,3215~3235
    [47] Polito, P. S. and W. T. Liu,: Global characterization of Rossby waves at several spectral bands. J. Geophys Res., 2003, 108: 18-1~18-18
    [48] Qiu, B., W. Miao, and P. Muller. Propagation and decay of forced and free baroclinic Rossby waves in off- equatorial oceans. J. Phys. Oceanogr., 1997, 27, 2405~2417
    [49] Rossby C.G.,Collaborators, Relations between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action, J.Mar.Res., 1939,2,38~55
    [50] Rossby C.G., Planetary flow patterns in the atmosphere. O.J.Roy.Meter.Soc., 1940, 66, 68~87.
    [51] Robert E. Dickinson. Rossby waves - long-period oscillations of oceans and atmospheres. Ann. Rev. Fluid Mech., 1978, 10:-195
    [52] Sasaki, H., Y. Sasai, S. Kawahara, M. Furuichi, F. Araki, A. Ishida, Y. Yamanaka, Y. Masumoto, and H. Sakuma, A series of eddy-resolving ocean simulations in the world ocean: OFES (OGCM for the Earth Simulator) project, OCEAN'04, 2004, 3, 1535~1541.
    [53] Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator, in High resolution numerical modelling of the atmosphere and ocean, edited by W. Ohfuchi and K. Hamilton, 2007, Springer, New York, in press.
    [54] Tokmakian, R. T., and P. G. Challenor. Observations in the Canary Basin and the Azores Frontal Region using Geosat data. J. Geophys. Res., 1993, 98: 4 761~4 773
    [55] Vladimir Osychny, Peter Cornillon. Properties of Rossby Waves in the North Atlantic Estimated from Satellite Data. J Phys Oceangr.,2004, 34(1), 61~76
    [56] Wunsch, C. and A. E. Gill. Observations of equatorially trapped waves in Pacific sea level variations. Deep-Sea Research. 1976, Vol 23, 371~390
    [57] Wunsch, C.. The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 1997, 27, 1770~1794
    [58] Wunsch, C., 1999: A summary of North Atlantic baroclinic variability. J. Phys. Oceanogr., 29, 3161~3166
    [59] Zang, X., and C. Wunsch. The observed dispersion relationship for North Pacific Rossby wave motions. J. Phys. Oceanogr., 1999, 29, 2 183~2 190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700