用户名: 密码: 验证码:
香樟木材提取物的成分及其防腐机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香樟木材具有很强的耐腐性能,究其原因主要是由于其内部含有的各种抑菌活性成分,但迄今为止香樟材提取物对木材腐朽菌(彩绒革盖菌和密粘褶菌)的抑制作用机制还不为人知。因此,本论文将各种溶剂提取香樟木质部得到的提取物作用于木材腐朽菌并测试其抑菌及耐腐性能,再采用XRD, FTIR, TG等进行表征,系统分析了香樟木质部提取物抑制木材腐朽菌生长的生理生化机制、分子生物学以及香樟材挥发性成分的释放规律,以揭示香樟材次生代谢产物与木材腐朽菌之间的关系,为香樟木质部提取物及人工合成同类物质在木材防腐方面的应用提供了理论依据。论文研究的主要结论及创新点如下:
     1.采用响应面法优化超声波-微波协同提取香樟木质部提取物,得到最佳工艺参数为:液料比60mL/g,提取时间30min,粒径大小40~50目,在此条件下的得率为4.65%。采用生长速率法分析了香樟木质部的5种溶剂提取物对木材腐朽菌的毒力,结果表明:香樟木质部三氯甲烷提取物、甲醇提取物分别对彩绒革盖菌和密粘褶菌的抑制效果最强,在8g/L浓度下的抑菌率分别为57.5%和64.87%,EC50值分别为7.8g/L和0.3g/L。对香樟木质部甲醇提取物的GC/MS分析共鉴定出27种成分,主要包括:芳樟醇(2.9%)、樟脑(14.29%)、a-松油醇(9.88%)、反式-氧化芳樟醇(7.66%)等。在香樟木质部三氯甲烷提取物中共鉴定出20种化学成分,其中含量较高有:芳樟醇(5.9%),樟脑(17.6%),a-松油醇(11.8%),肉豆蔻醛(5.6%),(-)-g-杜松烯(7.4%)等。
     2.通过木材防腐剂对腐朽菌毒性实验室试验方法进行耐白腐试验,结果表明:香樟木质部5种溶剂提取物在浓度为10%(w/v)时均达到Ⅰ级强耐腐水平,在浓度为1%时的耐腐效果都达到Ⅱ级。显微镜观察香樟木质部提取物处理白腐菌菌丝,发现其细胞形态皱缩扭曲变形,菌体表面出现破裂。SEM观察发现,三氯甲烷提取物处理试样白腐后在结构方面保持较完整,具有较好的耐白腐效果。XRD对比各试样结晶度大小顺序为:毛白杨素样>乙酸乙酯提取物>ACQ>三氯甲烷提取物>丙酮提取物>甲醇提取物>蒸馏水提取物>樟脑。FTIR结果分析表明:与纤维素和半纤维素相关的谱峰其相对强度变化不明显或略有降低,而表征木质素的一系列特征峰峰高出现不同程度降低。通过耐褐腐试验发现,4%ACQ、4%硼酸、4%樟脑以及10%蒸馏水提取物、10%甲醇提取物、10%乙酸乙酯提取物、10%丙酮提取物处理材的失重率分别为1.78%,5.7%,13.08%,40.85%,9.39%,18.66%和21.45%。香樟木质部甲醇提取物处理褐腐菌菌丝会导致细胞壁变粗糙,细胞扩张变形,说明甲醇提取物影响了菌丝的结构和功能。甲醇提取物处理材其结构相对其他提取物处理材在褐腐后更完整,显示了其较好的防腐效果。XRD对比发现,4种香樟木质部提取物的防腐效果与相对结晶度大小呈正相关。FTIR研究发现表征纤维素和半纤维素的特征峰值越低,则被降解的量也越大,相对应的防腐剂防腐效果越差。热重分析表明,最大失重量越大则对应试样所用的香樟提取物防腐效果越好。各试样的一级热解反应活化能大小比较反映出防腐剂防腐效果越好,则纤维素含量保留得越多,活化能也越高。
     3.检测分析了香樟木质部提取物对腐朽菌的生理生化机制,结果表明:香樟木质部甲醇与三氯甲烷提取物均对密粘褶菌和彩绒革盖菌菌丝的氧呼吸作用有抑制效果。乙酸乙酯提取物处理浓度越高,对褐腐菌分泌的纤维素酶的抑制越强。乙酸乙酯提取物会使密粘褶菌的菌丝电导率提高,且浓度越高其电导率越大。乙酸乙酯提取物浓度越高,其处理后的褐腐菌蛋白渗透量就越大。
     4.采用双向电泳技术和质谱技术分别对香樟木质部甲醇及丙酮提取物处理白腐菌,甲醇以及乙酸乙酯提取物处理褐腐菌的抑菌机制进行蛋白质组学分析。结果表明:①对香樟木质部甲醇提取物处理白腐菌鉴定出的差异蛋白进行细胞定位,生物学过程以及功能分析发现:9个在细胞质,6个在细胞内,5个在线粒体等;22%为生物合成,15%为小分子代谢,10%为细胞的氨基酸代谢等;25%与离子结合有关,15%与氧化还原酶活性有关,15%与ATP酶活性以及跨膜运输活性有关。②对香樟木质部丙酮提取物处理白腐菌的差异蛋白的细胞定位,生物学过程以及功能分析发现:11个在细胞器,8个在细胞质,8个在蛋白质络合物等;18%参与了小分子代谢过程,14%参与了细胞氮化合物代谢过程,13%参与了生物合成的过程等;30%与离子结合有关,14%与翻译因子活性,核酸结合有关,12%与ATP酶活性有关。③由香樟木质部甲醇提取物处理褐腐菌差异表达蛋白的功能分析可知:酸性核糖体蛋白出现下调表达,说明褐腐菌在蛋白质合成方面受到了抑制,生命稳定性遭到破坏;磷酸丙酮酸水合酶是经过甲醇提取物处理后的褐腐菌中出现的特异性蛋白。④对香樟木质部乙酸乙酯提取物处理褐腐菌差异蛋白进行了鉴定,eIF-5A酶、NAD-苹果酸酶、GMP合成酶、富含甘氨酸RNA结合蛋白等的上调或下调表明褐腐菌在能量代谢、核糖体合成等方面发生了变化。
     5.采用固相微萃取结合气质联用(SPME-GC/MS)技术检测了香樟木质部挥发性成分,比较分析了两种色谱柱对分离效果的影响。结果表明:采用弱极性DB-5MS色谱柱共分离出51个组分,解析出43种挥发性成分,其峰面积占总峰面积的97.04%,分离效果和所得的峰形比采用DB-WAXetr色谱柱更好;分析鉴定出含量较高的成分包括:左旋-α-蒎烯(4.57%)、双环[3.1.0]-4-甲基-1-异丙基-2-己烯(4.16%)、D-柠檬烯(7.49%)、桉叶油醇(13.85%)、樟脑(38.71%)等。运用顶空气相色谱(HS-GC)测试分析了香樟木质部樟脑的挥发机制,推导出在40~70℃加热范围,0~1.4h检测时间内,顶空气相色谱检测到的樟脑含量y(μg)与温度T(℃)和时间t(h)的耦合关系为:Y=-75.369+2.3786T+(41.125-1.1972T)t。
Cinnamomum camphora (L.) Presl.(C. camphora) is one of the most important hardwood species indigenous to China that possesses significant antifungal activity. C. camphora contain essential oil which can kill many types of harmful bacteria. Studies have reported on the chemical components of extractives, as well as their antimicrobial and insecticidal effects. The mechanism of the C. camphora xylem extractives inhibit Gloeophyllum trabeum (G trabeum) and Coriolus versicolor (C. versicolor) is unknown up to now. In order to reveal the relation between secondary metabolite of C. camphora and wood-decaying fungi and provide the theory basis to the application of the C. camphora extractives in wood preservatives. In this paper, various C. camphora xylem extractives were used to inhibit G. trabeum and C. versicolor to obtain decay resistance activity. Then all kinds of samples were characterized by XRD, FTIR and TG analysis. Last physiological and biochemical mechanism of the extractives antifungal activity, proteome research and release regulation of the volatile components was conducted by the author. The main conclusions and innovations as follows:
     1. The extraction process for microwave-ultrasound assisted extraction of extractives from C. camphora wood by response surface methodology. The results showed that the optimum extraction condition was as follows:liquid-solid ratio60ml/g, extraction time30min, and particle size40~50mesh. Under above optimum condition, the extraction yield was4.65%.The antifungal activity of C. camphora extracts was tested against two wood-rot fungus by the growth rate of poison medium culture method. Chloroform extracts had the best antifungal effect on C. versicolor among these five extracts. This growth inhibition ratio of chloroform extracts was calculated in the ranges of8mg/mL to57.5%for C. versicolor. The growth inhibition ratios for methanol extracts were8mg/mL to64.9%for G. trabeum. Methanol extracts possessed the greatest inhibition of hyphal growth of G. trabeum among these five extracts. Further bioassays of the extracts revealed some inhibitory effect on the two wood-decaying fungi, with the chloroform and the methanol extracts showing the best results. The EC50of chloroform extracts on white-rot fungus and brown-rot fungus were7.8mg/mL and4.53mg/mL, respectively.27different components accounting for73.02%of the total MeOH extracts from the xylem of C. camphora were identified by gas chromatography-mass spectrometry. The major chemical components of MeOH extracts are linalool (2.9%), camphor (14.29%), a-terpineol (9.88%), trans-linalool oxide (furanoid)(7.66%), etc. A total of20compounds were identified which accounting for80.76%of the total chloroform extracts from the xylem of C. camphora, and the major constituents were: cineole (2.0%), linalool (5.9%), camphor (17.6%), a-terpineol (11.8%), tetradecanal (5.6%),(-)-g-cadinene (7.4%), etc.
     2. Populus tomentosa was impregnated with different preservatives, and the decay resistance performance was studied. The results showed that the samples impregnated with five preservatives of the concentration10%(w/v) meet the demand of degree Ⅰ. The samples impregnated with five preservatives of the concentration1%meet the demand of degree Ⅱ. G. trabeum was observed microscopically after treatment with methanol extracts at a concentration of8mg/mL. After24h of treatment, the morphological characteristics of aerial hyphae appeared uneven, with swollen and excessive branching; part of the swollen hyphal areas continued to expand, which resulted in the formation of extremely swollen bodies of irregular shape; some of the hyphae had apoptosis and condensed endosomes, which leaked out and formed voids. The SEM micrograph clearly shows the structural integrity of the decay samples which treated with methanol extractive is better than another, treatment with chloroform extracts showed strong decay resistance. The XRD comparison showed that the order of crystal degree was:untreated samples> ethyl acetate extracts> ACQ> chloroform extracts> acetone extracts> methanol extracts> hot water extracts> camphor. The FTIR analysis showed that the spectral peak of cellulose and hemicellulose decreased not obviously, while that of lignin displayed reductions in different degrees compared to the untreated samples. The analysis results proved that the degradation activity of lignin is stronger than that of cellulose and hemicelluloses by white-rot fungi. Ethyl acetate extracts and ACQ inhibited good effect of anti-fungi. Masson pine which was impregnated with these different extracts and the decay resistance performance of the wood treated with the extracts was studied. The results showed that the mass loss of wood treated with4%ACQ,4%boric acid,4%camphor, and10%hot water extracts,10%methanol extracts,10%ethyl acetate extracts, and10%chloroform extracts were1.78%,5.7%,13.08%,40.85%,9.39%,18.66%, and21.45%, respectively. The brown rot fungi mycelium which treated with methanol extracts that hyphae exhibited an obvious morphological change:the cell wall became rough, and the cell expanded, became twisted, and exhibited uneven growth of hyphae, indicating that the extracts affected the structure and function of the hyphae. The samples treated with methanol extract have more complete wood structures than other extracts, shows a good decay resistance effect. Through XRD analysis shows that the preservative effects of four extracts are proportional to the degree of crystallinity. According to FTIR analysis, the amount of degraded cellulose and hemicellulose increased with the decline of characteristic absorption peak of cellulose and hemicellulose, which means that the corresponded preservative is worse. Using the thermal analysis to study and compared the pyrolysis characteristics and thermodynamics of Pinus massoniana and different sapwood of preservative-treated P. massoniana and treatment of brown rot. The more the maximum weight loss, the decay resistance effect of wood preservative is better. The large of activation energy of sample in primary pyrolysis reaction, the decay resistance effect of wood preservative is better.
     3. Physiological and biochemical mechanism of the extracts of C. camphor a was detected. The results indicated that the methanol and chloroform extracts had oxygen consumption inhibition effect on C. versicolor and G. trabeum. The inhibition of cellulase secreted by G. trabeum was increased with the augment of the concentration. The ethyl acetate extracts could improve the electric conductivity of the G. trabeum hyphae, and the higher the concentration, the conductivity was higher as well. Protein permeability increased with the promotion of the concentration of the ethyl acetate extracts.
     4. Proteomics analysis the antifungal mechanism of C. camphora extracts was conducted by two-dimensional electrophoresis and mass spectrometry. The results as follows:①For the identified protein which was produced by C. versicolor treated with methanol extracts, the cell localization results showed that9protein exited in cytoplasm,6in intracellular and5in mitochondrion; the biological process and functional analysis indicated that22%identified protein involved in the biosynthetic process,15%participated in the process of small molecule metabolic process,10%took part in cellular amino acid metabolic process,25%related to ion binding,15%related to oxidoreductase activity and15%related to ATPase activity and transmembrane transporter activity.②For the identified protein which was produced by C. versicolor treated with acetone extracts, the cell localization results showed that11proteins in organelle,8proteins exited in cytoplasm and8proteins belonged to protein complex; the biological process and function analysis indicated that18%participated in the process of small molecule metabolic process,14%took part in the process of cellular nitrogen compound metabolic process,13%identified protein involved in the biosynthetic process,30%related to ion binding,14%had something to translation factor activity, nucleic acid binding and12%related to ATPase activity.③The function analysis of the identified protein which was produced by G. trabeum treated with methanol extracts results showed that down-regulating the expression of60S acidic ribosomal protein P2was happened, which indicated G. trabeum was inhibited in terms of protein synthesis. Phosphopyruvate hydratase was emerged when G. trabeum was inhibited by methanol extracts.④The appraisal of the identified protein which was produced by G. trabeum treated with ethyl acetate extracts that was conducted by author. The rise or down of eukaryotic translation initiation factor5A, NAD-malate dehydrogenase, GMP synthase, glycine-rich RNA binding protein up-regulation or down-regulation expression which indicated the energy metabolism and ribosomal synthesis of G. trabeum was changed during the treatment.
     5. In this paper, solid phase microextraction (SPME) was put to use absorbing the volatile components of C. camphora xylem, separation and identification of the volatile components was conducted by GC/MS, the author compared the effects of different chromatographic column on separation efficiency as well. The results showed that GC/MS spectrometric analysis with DB-5MS isolated51components which contains43kinds of volatile content, the peak area of volatile components accounted for97.04%of the total peak area. The separation efficiency and the peak shape of GC/MS spectrometric analysis with DB-5MS is superior to GC/MS spectrometric analysis with DB-WAXetr. Based on the identification of the volatile components, ls-alpha-Pinene (4.57%), Bicyclo[3.1.0]hex-2-ene,4-methyl-1(1-methylethyl)-(4.16%), D-Limonene (7.49%), Eucalyptol (13.85%), Camphor (38.71%) accounted for most of them. Using the method of headspace gas chromatography (HS-GC) to test and analyze the volatilization mechanism of camphor. The coupling relation among the detection of camphor y(μg), the temperature T (℃) and the time t (h) was deduced:Y=-75.369+2.3786T+(41.125-1.1972T)t.
引文
[1]李坚,木材科学研究[M].北京:科学出版社,2009.
    [2]J. O. Brito, F. G Silva, M. M. Leao, et al. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment [J]. Bioresource Technology,2008,99(18): 8545-8548.
    [3]HakkouM, Petrissans M, Gerardin P, et al. Investigations of the reasons for fungal durability of heat-treated beech wood [J]. Polymer Degradation and Stability,2006,91(2): 393-397.
    [4]马星霞,蒋明亮,吴玉章,等.樟子松热处理材耐久性能的评价[J].木材工业,2011,25(1):44-46.
    [5]Militz H. Thermal treatment of wood:European processes and their background [C]. International Research Group on Wood Preservation. Cardiff, Wales:IRG/WP,2002:135-138.
    [6]曹金珍.国外木材防腐技术和研究现状[J].林业科学,2006,42(7):120-126.
    [7]邢嘉琪.木材生物防腐研究的现状与展望[J].世界林业研究,2004,17(3):32-35.
    [8]Bruce, A. Biological control of wood decay [C]. International Research Group on Wood Preservation Document No. IRG/WP:1531.
    [9]M. Schubert, T. Volkmer, C. Lehringer, et al. Resistance of bioincised wood treated with wood preservatives to blue-stain and wood-decay fungi [J]. International Biodeterioration and Biodegradation.2011,65(1):108-115.
    [10]Seifert K A, Breuil C, Rossignol L, et al. Screening for microorganisms with the potential for biological control of sapstain on unseasoned lumber [J]. Material und Organismen (Germany, FR),1988, (23):81-95.
    [11]Bruce A., King B. Biological control of decay in creosote treated distribution poles. II. Control of decay in poles by immunizing commensal fungi [J]. Material und Organismen, 1986,21(3):165-179.
    [12]Hulme, M. A.& Shields, J. K. Biological control of decay fungi in wood by competition for non-structural carbohydrates [J]. Nature,1970(227):300-301.
    [13]李玉栋.美国宣布将限制CCA防腐剂处理木材[J].国际木业,2002,(4):7-8.
    [14]曹金珍.国外木材防腐技术和研究现状[J].林业科学,2006,42(7):120-126.
    [15]李坚,吴玉章,马岩,等.功能性木材[M].北京:科学出版社,2011.
    [16]卡虞金,索科尔尼科夫.精油工业操作工人教材[M].北京:轻工业出版社,1958.
    [17]E坤斯.精油[M].北京:轻工业出版社,1960.
    [18]苏文强.树木提取物的功能性合成及其在木材防腐中的应用[D].东北林业大学,2008.
    [19]吴传万,杜小凤,徐建明,等.植物源抑菌活性成分研究新进展[J].西北农业学报,2004,13(3):81-88.
    [20]刘一星.木质环境学[M].北京:科学出版社,2007.
    [21]Swain T. Secondary compounds as protective agents [J]. Annual Review of Plant Physiology,1977,28(1):479-501.
    [22]Kathleen Park Talaro. Foundations in Microbiology [M].北京:高等教育出版社,2005.
    [23]Scheffer, T. C., Cowling, E. B. Natural Resistance of Wood to Microbial Deterioration[J]. Annual Review of Phytopathology,1966(4):147-168.
    [24]Hart, J.M., Hillis, W. E. Inhibition of wood-rotting fungi by stillbenes and other polyphenols in Eucalyptus sideroxylon [J]. Phytopath,1974,64(7):939-948.
    [25]Haslam E. Tannins Polyphenols and molecular complexion [J].林产化学与工业,1992,12(1):1-23.
    [26]Lijiang S, Ying D, Bi S. The significance and development trend in research of plant polyphenols [J]. PROGRESS IN CHEMISTRY-BEIJING-,2000,12(2):161-170.
    [27]Spencer C M, Cai Y, Martin R, et al. Polyphenol complexation-some thoughts and observations [J]. Phytochemistry,1988,27(8):2397-2409.
    [28]韩淑琴,杨洋,黄涛.仙人掌提取物的抑菌机理[J].食品科技,2007,32(3):130-134.
    [29]吴楚材,郑群明.植物精气研究[J].中国城市林业,2005,3(4):61-63.
    [30]KIM Y S, SHIN D H. Volatile components and antibacterial effects of pine needle (Pinuse densiflora S. and Z.) extracts [J]. Food Microbiology,2005,22(1):37-45.
    [31]Manosroi A, Saraphanchotiwitthaya A, Manosroi J. Immunomodulatory activities of Clausena excavata Burm. f. wood extracts [J]. Journal of ethnopharmacology,2003,89(1): 155-160.
    [32]Geoffroy de la Rebiere de Pouyade, Laura M. Riggs, James N. Moore. Equine neutrophil elastase in plasma, laminar tissue, and skin of horses administered black walnut heartwood extract [J]. Veterinary Immunology and Immunopathology,2010,135(3):181-187.
    [33]You-Zhi Wang. Shi-Qin Sun. Ya-Bin Zhou. Extract of the dried heartwood of Caesalpinia sappan L. attenuates collagen-induced arthritis [J]. Journal of Ethnopharmacology,2011, 136(1):271-278.
    [34]李爱民,唐永勤,卿玉波.樟油的提取及其抑菌性研究[J].福建林业科技,2006,33(4):121-123.
    [35]蒋庭玉,杨亚,孟祥贤.拐芹当归提取物抗菌活性的研究[J].时珍国医国药,2010, 21(8):1878-1879.
    [36]Sye Hee Ahn, Sei Chang Oh, In-gyu Choi, et al. Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts [J]. Journal of Hazardous Materials,2010,178(1-3):604-611.
    [37]Pino P. Alvarez-Castellanos, Chris D. Bishop, Maria J. Pascual-Villalobos. Antifungal activity of the essential oil of flower heads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens [J]. Phytochemistry,2001,57(1):99-102.
    [38]Bajpai V K, Shukla S, Kang S C. Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L. [J]. Bioresource technology,2008, 99(18):8903-8908.
    [39]Barnes H M, Murphy R J. Wood preservation:the classics and the new age [J]. Forest products journal,1995,45, (9):16-23.
    [40]George L. Barron. Predatory fungi, wood decay, and the carbon cycle [J]. Biodiversity, 2003,4(1):3-9.
    [41]SurenderKumar Bhardwaj, SushilKumar Singla, RakeshKumar Bhardwaj. Evaluation of plant extracts as antifungal agents against wood rotting fungi Coriolus versicolor (L.:Fr.) Quelet [J]. Journal of the Indian Academy of Wood Science,2012,9(1):62-65.
    [42]C. F. Carson, T. V. Riley. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia [J]. Journal of Applied Bacteriology,1995,78(3):264-269.
    [43]Sen-Sung Cheng, Hui-Ting Chang, Shang-Tzen Chang, et al. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae [J]. Bioresource Technology,2003,89(1):99-102.
    [44]Meng-Thong Chua, Yu-Tang Tung, Shang-Tzen Chang. Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum [J]. Bioresource Technology, 2008,99(6):1918-1925.
    [45]Notburga Gierlinger, Dominique Jacques, Manfred Schwanninger, et al. Heartwood extractives and lignin content of different larch species (Larix sp.) and relationships to brown-rot decay-resistance [J]. Trees,2004,18(2):230-236.
    [46]AnniM Harju, Martti Venalainen, Seija Anttonen, et al. Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood [J]. Trees,2003,17(3):263-268.
    [47]D. P. Kamdem. Fungal decay resistance of aspen blocks treated with heartwood extractives [J]. Forest Products Journal,1994,44:30-32.
    [48]C. H. Liu, A. K. Mishra, R. X. Tan, et al. Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean [J]. Bioresource Technology,2006,97(15):1969-1973.
    [49]A. K. Mishra, Suresh K. Dwivedi, N. Kishore, et al. Fungistatic Properties of Essential Oil of Cinnamomum camphora [J]. Pharmaceutical Biology,1991,29(4):259-262.
    [50]Makoto Ohkoshi, Atsushi Kato, Kentaro Suzuki, et al. Characterization of acetylated wood decayed by brown-rot and white-rot fungi [J]. Journal of Wood Science,1999,45(1): 69-75.
    [51]H. Oumzil, S. Ghoulami, M. Rhajaoui, et al. Antibacterial and antifungal activity of essential oils of Mentha suaveolens [J]. Phytotherapy Research,2002,16(8):727-731.
    [52]Cihat Tascioglu, Mesut Yalcin, Selim Sen, et al. Antifungal properties of some plant extracts used as wood preservatives [J]. International Biodeterioration & Biodegradation, 2013,85(0):23-28.
    [53]Chuanmao Wu, Zhouhe Wu, Yesong Wu. Study on antibacterial activity of ethanol extract of Cinamomum camphora [J]. Amino Acids and Biotic Resources,2000,22(2):41-42.
    [54]Ruo-Yun Yen, Ya-Li Shiu, Shu-Chiu Shei, et al. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei [J]. Fish & Shellfish Immunology,2009,27(1):26-32.
    [55]Tao Yu, Sabin Lee, Woo Seok Yang, et al. The ability of an ethanol extract of Cinnamomum cassia to inhibit Src and spleen tyrosine kinase activity contributes to its anti-inflammatory action [J]. Journal of Ethnopharmacology,2012,139(2):566-573.
    [56]Butcher J. A. The ecology of fungi infecting untreated sapwood of Pinus radiate [J]. Can. J. Botany,1968, (46):1577-1588.
    [57]Jane, F. W. The structure of wood. Adam and Charles Black [M]. London.1970.
    [58]Selim Sen, Cihat Tascioglu, Kamile Trak. Fixation, leachability, and decay resistance of wood treated with some commercial extracts and wood preservative salts [J]. International Biodeterioration and Biodegradation,2009, (63):135-141.
    [59]Rudman, P., Da Costa, E. W. B. Variation in extractive content and decay resistance in the heartwood of Tectona grandis L.f. [J]. J. Inst. Wood Sci.,1958, (1):33-42.
    [60]R. W. Philp, A. Bruce, A. G. Munro. The Effect of Water Soluble Scats Pine (Pinus sylvestris L.) and Sitka Spruce [Picea sitchensis (Bong.) Carr.] Heartwood and Sapwood Extracts on the Growth of Selected Trichoderma Species [J]. International Biodeterioration and Biodegradation,1995,35(4):355-367.
    [61]Eugene Onyekwe Onuorah. The wood preservative potentials of heartwood extracts of Milicia excelsa and Erythrophleum suaveolens [J]. Bioresource Technology,2000,75(2): 171-173.
    [62]Eugene Onyekwe Onuorah. Relative efficacy of heartwood extracts and proprietory wood preservatives as wood protectants [J]. Journal of Forestry Research,2002,13(3):183-190.
    [63]Dag Ekeberg, Per-Otto Flaete. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinussylvestris L.) by gas chromatography [J]. Journal of Chromatography A.,2006,1109(2):267-272.
    [64]B. Bergstrom, G. Gustafsson, R. Gref, Seasonal changes of pinosylvin distribution in the sapwood/heartwood boundary of Pinus sylvestris [J]. Trees Structure and Function,1999, 14(2):65-71.
    [65]F.J. Ellera, C.A. Clausen, F. Green. Critical fluid extraction of Juniperus virginiana L. and bioactivity of extracts against subterranean termites and wood-rot fungi [J]. Industrial Crops and Products,2010(32):481-485.
    [66]Chunya L., Chilin W., Shangtzen C. Evaluating the potency of cinnamaldehyde as a natural wood preservative [C]. The International Research Group on Wood Preservation, Wyoming, USA,2007.
    [67]Sadhna T., Kangchan R., Swati D., et al. Poential oiLantana Camara Linn Weed against wood destorying fungi [J]. Indian Forester,2009,3(135):403-410.
    [68]Gokay Nemli, E. Derya Gezer, Sibel Ylldlz, et al. Evaluation of the mechanical, physical properties and decay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives [J]. Bioresource Technology,2006,97(16):2059-2064.
    [69]李坚.长白落叶松提取物对木材防腐作用的研究[J].林产化学与工业,2007,27(5):49-52.
    [70]苏文强.树木提取物的功能性合成及其在木材防腐中的应用[D].黑龙江:东北林业大学,2008.
    [71]张玲.银杏树木提取物对木材防腐作用的研究[D].南京:南京林业大学,2009.
    [72]李素英,王伦,刘连新,等.4种耐腐性树种心材提取物抑菌作用的研究[J].河北农业大学学报,2009,32(3):76-80.
    [73]于文喜,康迎昆,靳春波.暴马丁香心材提取物中有效抗菌成分的研究[J].林业科技,1996,5:23-24.
    [74]B. O. Ejechi, C. O. Obuekwe. Preliminary Studies on the Effects of Crude Opepe (Nauclea diderrichii) Timber Extractives on Timber Biodeterioration[J]. International Biodeterioration & Biodegradation,1993, (31):71-75.
    [75]Scalbert A., Cahill D., Dirol D. A tannin/Copper Preservation Treatment for Wood [J]. Holzforschung,1998,52:133-138.
    [76]Tor P. Schultz, Darrel D. Nicholas. Naturally durable heartwood:evidence for a proposed dual defensive function of the extractives [J]. Phytochemistry,2000,54(1):47-52.
    [77]Tor P. Schultz, Darrel D. Nicholas. Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators [J]. Phytochemistry,2002,61(5):555-560.
    [78]Hafizoglu, H. Wood extractives of Pinus sylvestris L., Pinus nigra Arn. and Pinus brutia Ten. with special reference to nonpolar components [J]. Holzforschung,1983(37):321-326.
    [79]张静,张梦华,刘晴晴,等.中药提取物对耐药大肠杆菌MIC及acrA基因表达量的影响[J].中国兽医学报,2012,32(5):728-732.
    [80]龙丽,唐良萏.绿茶提取物表没食子儿茶素-3-没食子酸酯对人卵巢癌HO-8910细胞增殖及Wnt/β-catenin信号通路相关基因表达的影响[J].中国生物制品学杂志,2012,25(9):1165-1170.
    [81]岳静,高杰,徐树军,等.变形链球菌超声提取物对牙髓细胞增殖和天然免疫受体基因mRNA表达的影响[J].实用口腔医学杂志,2013,29(1):16-19.
    [82]陶承光,杨涛,杨镇,等.植物内生菌活性提取物对粳稻基因表达的影响[J].辽宁农业科学,2012,(6):13-16.
    [83]吴慧娟,黄杨名,陈科廷,等.神农香菊全草精油的化学成分及抑菌机理研究[J].食品科学,2012,33(17):35-39.
    [84]黄秀丽,刘力行,翟羽红,等.不同抗性玉米自交系对玉米弯孢菌侵染应答反应差异蛋白分析[J].2008.
    [85]石江涛,刘一星,聂玉哲,等.正常木与应压木木材形成组织中差异表达蛋白质的鉴定[J].北京林业大学学报,2013,35(3):137-142.
    [86]苏晓云.压榨法在精油提取中的应用[J].价值工程,2010,(1):51-52.
    [87]公谱,邓干然,曹建华.棕榈油的螺旋压榨提取及其性质研究[J].热带作物学报,2011,32(6):1168-1171.
    [88]张学愈,盛勇,邹俊.压榨法提取温莪术挥发油收率及药效学研究[J].四川中医杂志,2007,25(9):44-45.
    [89]张丽.水蒸汽蒸馏法提取产生姜精油的生产工艺研究[J].现代商贸工业,2007,19(12):25-26.
    [90]李丽梅,李景明,孙亚青.同时蒸馏-萃取法(SDE)提取洋葱精油的研究[J].食品工业科技,2004,(6):86-88.
    [91]史云东,贾琳,李祥.压榨法与热浸提法提取普洱茶籽油的对比研究[J].粮油食品科技,2011,19(4):17-19.
    [92]Li X M, Tian S L, Pang Z C, et al. Extraction of Cuminum cyminum essential oil by combination technology of organic solvent with low boiling point and steam distillation [J]. Food chemistry,2009,115(3):1114-1119.
    [93]Aniko Felfoldi-Gava, Szabolcs Szarka, Bela Simandi. Supercritical fluid extraction of Alnus glutinosa (L.) Gaertn [J]. The Journal of Supercritical Fluids,2012, (61):55-61.
    [94]Sonia A.O. Santos, Juan J, Carlos M. Silva. Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark [J]. The Journal of Supercritical Fluids, 2012, (71):71-79.
    [95]Abdelmoez W, Abdelfatah R, Tayeb A, et al. Extraction of cottonseed oil using subcritical water technology [J]. AIchE Journal,2011,57(9):2353-2359.
    [96]Mustafa.Z. Ozel, Fahrettin Gogus, Alistair C. Lewis. Subcritical water extraction of essential oils from Thymbra spicata [J]. Food Chemistry,2003,82(3):381-386.
    [97]郭丽,朱林,杜先锋.微胶囊双水相提取柑桔精油的工艺优化[J].农业工程学报,2007,23(1):229-233.
    [98]马力,陈永忠,陈隆升.茶油不同提取方法的比较分析[J].农产品加工·学刊,2010,(11):11-13.
    [99]Zhang Y, Li S, Yin C, et al. Response surface optimisation of aqueous enzymatic oil extraction from bayberry (Myrica rubra) kernels [J]. Food Chemistry,2012,135(1):304-308.
    [100]Liu S, Jiang L, Li Y. Research of aqueous enzymatic extraction of watermelon seed Oil of ultrasonic pretreatment assisted [J]. Procedia Engineering,2011,15:4949-4955.
    [101]Hassan Sereshti, Yahya Izadmanesh, Soheila Samadi. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent. [J]. Journal of Chromatography A, 2011,1218(29):4593-4598.
    [102]陈文伟,张中伟,赵静.杨梅叶总黄酮超声-微波协同萃取研究[J].江苏农业科学,2011,39(4):332-334.
    [103]马翠,廖克俭,赵志添.微波萃取侧柏叶中黄酮类化合物的工艺研究[J].化学工业与工程,2011,28(2):45-48.
    [104]陈源,余亚白,王琦.葡萄柚柚皮苷微波提取工艺[J].山地农业生物学报,2012,31(1):28-32.
    [105]Zhong K, Lin W, Wang Q, et al. Extraction and radicals scavenging activity of polysaccharides with microwave extraction from mung bean hulls [J]. International journal of biological macromolecules,2012,51(4):612-617.
    [1]Liu C H, Mishra A K, He B, et al. Composition and antifungal activity of essential oils from Artemisia princeps and Cinnamomum camphor a [J]. International pest control,2001, 43(2):72-74.
    [2]Liu H., Mishra A.K., He B., Tan R.X. Composition and antifungal activity of essential oils from Artemisia princeps and C. camphora [J]. International Pest Control,2001, (47):72-74.
    [3]胡生辉,徐国祺,付跃进.植物源提取物木材防腐剂的研究现状与展望[J].世界林业研究,2011,24(1):51-55.
    [4]王笃政,于娜娜.微波-超声波协同萃取技术在中药有效成分提取中的研究进展[J].化工中间体,2011,(5):5-9.
    [5]杨胜丹,付大友,谭文渊.超声-微波协同萃取川木通中齐墩果酸的工艺研究[J].应用化工,2010,39(1):87-89.
    [6]Hassan Sereshti, Yahya Izadmanesh, Soheila Samadi. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent [J]. Journal of Chromatography A, 2011,1218(29):4593-4598.
    [7]Kui Zhong, Weijing Lin, Qiang Wang. Extraction and radicals scavenging activity of polysaccharides with microwave extraction from mung bean hulls [J]. International Journal of Biological Macromolecules,2012,51(4):612-617.
    [8]励建荣,韩晓祥.超高压提取桑叶芦丁[J].分析化学,2008,36(3):365-368.
    [9]唐丽荣,欧文,林雯怡,等.酸水解制备纳米纤维素工艺条件的响应面优化[J].林产化学与工业,2011,31(6):61-65.
    [10]Subhalaxmi Pradhan, C.S. Madankar, Pravakar Mohanty. Optimization of reactive extraction of castor seed to produce biodiesel using response surface methodology [J]. Fuel, 2012, (97):848-855.
    [11]Davoud Salar Bashi, Seyyed Ali Mortazavi, Karamatollah Rezaei. Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea beibrestinii) by response surface methodology [J]. Food Science and Biotechnology,2012,21(4):1005-1011.
    [12]孙崇鲁,黄克瀛,陈丛瑾,等.GC-MS分析樟叶和枝中挥发油的化学成分[J].香料香精化妆品,2007,(1):7-9.
    [13]Pandey A K, Bora H R, Deka S C, et al. Composition of the essential oil of the bark of Cinnamomum camphor a [J]. Journal of Medicinal and Aromatic Plant Sciences,1997,19(2): 408-409.
    [14]Baruah A K S, Bhagat S D, Hazarika J N, et al. Examination of volatile oil of Cinnamomum camphora grown at Jorhat, Assam [J]. Indian journal of pharmacy,1975,37(2): 39-41.
    [15]Pattnaik S, Subramanyam V R, Bapaji M, et al. Antibacterial and antifungal activity of aromatic constituents of essential oils [J]. Microbios,1997,89(358):39-46.
    [16]国家医药管理局中草药情报中心站.植物药有效成分手册[M].北京:人民卫生出版社,1986.
    [17]马桢红,陈淑玉.樟脑油精药效及其安全性评价[J].中国媒介生物学及控制杂志,2001,12(1):58-60.
    [18]Schattner P, Randerson D. Tiger Balm as a treatment of tension headache. A clinical trial in general practice [J]. Australian family physician,1996,25(2):216-220.
    [19]郭林林,张党权,谷振军.樟树根材苯/醇提取物的Py-GC/MS分析[J].中南林业科技大学学报,2011,31(1):142-147.
    [20]Shunying Z, Yang Y, Huaidong Y, et al. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum [J]. Journal of ethnopharmacology,2005, 96(1):151-158.
    [21]Wu C, Wu Z, Wu Y. Study on antibacterial activity of ethanol extract of Cinamomum camphora [J]. Amino Acids and Biotic Resources,1999,22(2):41-42.
    [22]Liu C H, Mishra A K, He B, et al. Composition and antifungal activity of essential oils from Artemisia princeps and Cinnamomum camphora [J]. International pest control,2001, 43(2):72-74.
    [23]Pandey, A.K., Bora, H.R., Deka, S.C., et al. Composition of the essential oil of the bark of Cinnamomum camphora [J]. Journal of Medicinal and Aromatic Plant Sciences,1997, (19): 408-409.
    [24]Singh P, Srivastava B, Kumar A, et al. Fungal contamination of raw materials of some herbal drugs and recommendation of Cinnamomum camphora oil as herbal fungitoxicant [J]. Microbial ecology,2008,56(3):555-560.
    [25]Ekeberg D, Flaete P O, Eikenes M, et al. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography [J]. Journal of Chromatography A,2006,1109(2):267-272.
    [1]Hara S, Yamakawa M. Moricin. A novel type of antibacterial peptide isolated from the silkworm, Bombyx mori [J]. Journal of Biological Chemistry,1995,270(50):29923-29927.
    [2]Miyazawa M, Hashimoto Y, Taniguchi Y, et al. Headspace constituents of the tree remain of Cinnamomum camphora [J]. Natural product letters,2001,15(1):63-69.
    [3]Ye Q, Deng C. Determination of camphor and borneol in traditional Chinese medicines by microwave-assisted extraction and gas chromatography with flame ionization detector [J]. Analytical Letters,2008,41(13):2387-2401.
    [4]段丹萍,乔勇进,鲁莉莎,等.香樟叶提取物对草莓灰霉病菌的抑制效果及保护酶活性的影响[J].湖北农业科学,2011,50(4):723-727.
    [5]Mishra A K, Dwivedi S K, Kishore N, et al. Fungistatic properties of essential oil of Cinnamomum camphora [J]. Pharmaceutical Biology,1991,29(4):259-262.
    [6]Liu C H, Mishra A K, Tan R X, et al. Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean [J]. Bioresource technology,2006,97(15):1969-1973.
    [7]Chua M T, Tung Y T, Chang S T. Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum [J]. Bioresource technology,2008,99(6):1918-1925.
    [8]Pandey A K, Bora H R, Deka S C, et al. Composition of the essential oil of the bark of Cinnamomum camphora [J]. Journal of Medicinal and Aromatic Plant Sciences,1997,19(2): 408-409.
    [9]Jinyao G, Xiaoling Y. Herbicide and Antibacterial Activity of the Extracts from Leaves of Cinnamomum Camphora [J]. Crops,2012,1:017.
    [10]Yeh R Y, Shiu Y L, Shei S C, et al. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp [J]. Fish & shellfish immunology,2009,27(1):26-32.
    [11]赵桂华,宋桢.杨木上彩绒革盖菌的研究[J].林业科学研究,1992,5(1):100-103.
    [12]池玉杰.东北林区64种木材腐朽菌木材分解能力的研究[J].林业科学,2001,37(5):107-112.
    [13]刘欣,赵敏,王秋玉.5种木材腐朽菌的生物学特性及对白桦木材腐朽能力的分析[J].东北林业大学学报,2008,36(3):41-44.
    [14]李坚.木材波谱学[M].科学出版社,2003.
    [15]Caitlin Howell, Anne Christine Steenkjaer Hastrup, Jody Jellison. The use of X-ray diffraction for analyzing biomodification of crystalline cellulose by wood decay fungi [C]. 2007.
    [16]Matteo Antorini, Isabelle Herpoel-Gimbert, Thomas Choinowski. Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi [J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2002,1594(1):109-114.
    [17]Makoto Ohkoshi, Atsushi Kato, Kentaro Suzuki, et al. Characterization of acetylated wood decayed by brown-rot and white-rot fungi [J]. Journal of Wood Science,1999,45(1): 69-75.
    [18]K. K. Pandey, A. J. Pitman. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi [J]. International Biodeterioration& Biodegradation, 2003,52(3):151-160.
    [19]Chi Yujie. FTIR analysis on function groups of david poplar wood and lignin degraded by 6 species of wood white--rot fungi [J]. Scientia Silvae Sinicae,2004,41(2):136-140.
    [20]王宏勋,杜甫佑,张晓昱.白腐菌选择性降解秸秆木质纤维素研究[J].华中科技大学学报(自然科学版),2006,3:029.
    [21]J. George Buta, Frantisek Zadrazil, Guido C. Galletti. FT-IR determination of lignin degradation in wheat straw by white rot fungus Stropharia rugosoannulata with different oxygen concentrations [J]. Journal of Agricultural and Food Chemistry,1989,37(5): 1382-1384.
    [22]杜甫佑,张晓昱,王宏勋,等.白腐菌降解木质纤维素顺序规律的研究[J].纤维素科学与技术,2005,13(1):17-25.
    [23]Wang W, Gao P J. Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose [J]. Journal of Biotechnology,2003, 101(2):119-130.
    [24]Lucchesi M E, Chemat F, Smadja J. Solvent-free microwave extraction of essential oil from aromatic herbs:comparison with conventional hydro-distillation [J]. Journal of Chromatography A,2004,1043(2):323-327.
    [25]Reverchon E, Ambruosi A, Senatore F. Isolation of peppermint oil using supercritical CO2 extraction [J]. Flavour and Fragrance Journal,1994,9(1):19-23.
    [26]Taylor A M, Freitag C, Cadot E, et al. Potential of near infrared spectroscopy to assess hot-water-soluble extractive content and decay resistance of a tropical hardwood [J]. Holz als Roh-und Werkstoff,2008,66(2):107-111.
    [27]Qi W, Jellison J. Characterization of a transplasma membrane redox system of the brown rot fungus Gloeophyllum trabeum [J]. International biodeterioration & biodegradation,2004, 53(1):37-42.
    [28]Wang S Y, Chen P F, Chang S T. Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi [J]. Bioresource Technology,2005,96(7):813-818.
    [29]Zhang Y, Chang J, Feng D, et al. Optimization of wood preservation process of fast-growing Pinus massoniana [J]. Journal of Northwest Forestry University,2010,25(1): 142-145.
    [30]Weis J S, Weis P, Proctor T. The extent of benthic impacts of CCA-treated wood structures in Atlantic coast estuaries [J]. Archives of Environmental Contamination and Toxicology,1998,34(4):313-322.
    [31]Ahn S H, Oh S C, Choi I, et al. Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts [J]. Journal of hazardous materials,2010,178(1):604-611.
    [32]Schultz T P, Nicholas D D. Naturally durable heartwood:evidence for a proposed dual defensive function of the extractives [J]. Phytochemistry,2000,54(1):47-52.
    [33]Schultz T P, Nicholas D D. Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators [J]. Phytochemistry,2002,61(5):555-560.
    [34]YaFei W, QiJun A, Meng Z, et al. Inhibition effects of four kinds of Chinese herbal medicine extracts containing pyrola (Pyrola rotundifolia) against Monilinia fructicola [J]. Plant Diseases and Pests,2011,2(3):52-55.
    [35]Howell C, Hastrup A C S, Jara R, et al. Effects of hot water extraction and fungal decay on wood crystalline cellulose structure [J]. Cellulose,2011,18(5):1179-1190.
    [36]Kim Y S, Wi S G, Lee K H, et al. Cytochemical localization of hydrogen peroxide production during wood decay by brown-rot fungi Tyromyces palustris and Coniophora puteana [J]. Holzforschung,2002,56(1):7-12.
    [37]Cho C H, Lee K H, Kim J S, et al. Micromorphological characteristics of bamboo (Phyllostachys pubescens) fibers degraded by a brown rot fungus (Gloeophyllum trabeum) [J]. Journal of wood science,2008,54(3):261-265.
    [38]Highley T L, Murmanis L, Palmer J G Micromorphology of degradation in western hemlock and sweetgum by the brown-rot fungus Poria placenta [J]. Holzforschung International Journal of the Biology, Chemistry, Physics and Technology of Wood,1985, 39(2):73-78.
    [39]Highley T L, Murmanis L, Palmer J G. Electron microscopy of cellulose decomposition by brown-rot fungi [J]. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood,1983,37(6):271-277.
    [40]Patel R. N., Rao K. K. Ultrastructural changes during wood decay by Antrodiella sp. RK1 [J]. World Journal of Microbiology and Biotechnology,1993,9(3):332-337.
    [41]Klemm D., Heublein B., Fink H. P., et al, Angewandte Chemie International Edition, 2005,44(22):3358.
    [42]Colom X, Carrillo F, Nogues F, et al. Structural analysis of photodegraded wood by means of FTIR spectroscopy [J]. Polymer Degradation and Stability,2003,80(3):543-549.
    [43]Pandey K K, Pitman A J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi [J]. International Biodeterioration & Biodegradation,2003, 52(3):151-160.
    [44]李改云,江泽慧,任海青,等.茯苓褐腐过程中木材化学成分的变化[J].林业科学研究,2009,22(4):592-596.
    [45]李改云,黄安民,秦特夫,等.马尾松木材褐腐降解的红外光谱研究[J].光谱学与光谱分析,2010,30(8):2133-2136.
    [46]Zhao Haibo, Kwak Ja Hun, Zhang Z. Conrad. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis [J]. Carbohydrate Polymers,2007,68(2):235-341.
    [47]任红玲,陆方,张禄晟.腐朽过程中毛竹主要化学成分的变化[J].林产工业,2013,40(1):52-54.
    [48]Kleman-Leyer K, Agosin E, Conner A H, et al. Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi [J]. Applied and environmental microbiology,1992,58(4):1266-1270.
    [49]蒋明亮,费本华.木材防腐的现状及研究开发方向[J].世界林业研究,2002,15(3):44-48.
    [50]Selim S, Cihat T, Kamile T. Fixation, leachability, and decay resistance of wood treated with some commercial extracts and wood preservative salts [J]. International Biodeterioration and Biodegradation,2009(63):135-141.
    [51]曹金珍.国外木材防腐技术和研究现状[J].林业科学,2006,42(7):120-126.
    [52]Zema D., Andiloro S., Bombino G, et al. Depuration in aerated ponds of citrus processing wastewater with a high concentration of essential oils [J]. Environmental Technology,2012,33(11):1255-1260.
    [53]Eylem D. Tomak, Ergun Baysal, Huseyin Peker. et al. The effect of some wood preservatives on the thermal degradation of Scots pine [J]. Thermochimica Acta,2012, 547(10):76-82.
    [54]吕当振,姚洪,王泉斌,等.纤维素、木质素含量对生物质热解气化特性影响的实验研究[J].工程热物理学报,2008,29(10):1771-1774.
    [55]阎昊鹏,陆熙娴,秦特夫.热重法研究木材热解反应动力学[J].木材工业,1997,11(2):14-18.
    [56]H. Yunchu, Z. Peijang, Q. Songsheng. TG-DTA studies on wood treated with flame-retardants [J]. Holz Roh Werkst,2000,58(1-2):35-38.
    [57]黄娜,高岱巍,李建伟.生物质三组分热解反应及动力学的比较[J].北京化工大学学报,2007,34(5):462-465.
    [58]杨海平,陈汉平,晏蓉.油棕废弃物及生物质三组分的热解动力学研究[J].太阳能学报,2007
    [1]刘德海,陈小鸽.纤维素酶酶活的测定方法[J].中国饲料,2002,(17):27-28.
    [2]张瑞萍.纤维素酶的滤纸酶活和CMC酶活的测定[J].印染助剂,2002,19(5):51-53.
    [3]杨沁,陈敏珠.黄芪总苷的抗炎与镇痛作用及其作用机制[J].安徽医科大学学报,2000,35(5):376-376.
    [4]孙艳军,郭世荣.根际低氧逆境对网纹甜瓜幼苗生长及根系呼吸代谢途径的影响[J].植物生态学报,2006,30(1):112-117.
    [5]李璟,郭世荣,胡晓辉.外源亚精胺对低氧胁迫下黄瓜根系多胺含量和呼吸代谢酶活性的影响[J].西北植物学报,2006,26(1):92-97.
    [6]周磊,云宝仪,汪业菊,等.大黄素对金黄色葡萄球菌的抑菌作用机制[J].中国生物化学与分子生物学报,2011,27(12):1156-1160.
    [7]王琳,刘国生,王林嵩,等.DNS法测定纤维素酶活力最适条件研究[J].河南师范大学学报:自然科学版,1998,26(3):66-69.
    [8]刘妙莲,王洁.影响纤维素酶活力测定的几个问题[J].食品与发酵工业,2000,26(6):37-39.
    [9]Murray M B, Cape J N, Fowler D. Quantification of frost damage in plant tissues by rates of electrolyte leakage [J].New phytologist,1989,113(3):307-311.
    [10]Bailey B A, Dean J F D, Anderson J D. An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves [J]. Plant physiology,1990,94(4):1849-1854.
    [11]童富淡,胡家恕.不同育秧方式对早稻叶片SOD活性、电解质渗透率和发根力的影响[J].浙江农业大学学报,1997,23(6):682-686.
    [12]胡晓静,马琴,牛攀新.低温胁迫对沙棘电解质渗出率和丙二醛含量的影响[J].安徽农业科学,2008,36(17):7091-7092.
    [1]Kirsch J F, Eichele G, Ford G C, et al. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure [J]. Journal of molecular biology,1984,174(3): 497-525.
    [2]宋科秀,曲伸.ATP合成酶β链与高密度脂蛋白代谢的研究进展[J].中华临床医师杂志(电子版),2012(13):3849-3851.
    [3]Gong Z H, Su Y, Huang L, et al. Cloning and analysis of glyceraldehyde-3-phosphate dehydrogenase gene from Cordyceps militaris [J]. Afr J Agric Res,2009,4:402-408.
    [4]Danshina P V, Schmalhausen E V, Avetisyan A V, et al. Mildly Oxidized Glyceraldehyde-3-Phosphate Dehydrogenase as a Possible Regulator of Glycolysis [J]. IUBMB life,2001, 51(5):309-314.
    [5]梁颖,李玉花.植物中磷酸甘油醛-3-磷酸脱氢酶(GAPDH)在氧化胁迫下的生理功能[J].植物生理学通讯,2009(10):1027-1032.
    [6]张建苓.番茄DEAD-box解旋酶基因S1DEAH1的克隆与功能研究[D].重庆大学,2013
    [7]吴德,吴忠道,余新炳.磷酸甘油酸激酶的研究进展[J].中国热带医学,2005,5(2):385-387.
    [8]周冰,曹诚,刘传暄.翻译延伸因子1A的研究进展[J].生物技术通讯,2007,18(2):281-284.
    [9]Hammond J W, Cai D, Verhey K J. Tubulin modifications and their cellular functions [J]. Current opinion in cell biology,2008,20(1):71-76.
    [10]Giannakakou P, Sackett D, Fojo T. Tubulin/microtubules:still a promising target for new chemotherapeutic agents [J]. Journal of the National Cancer Institute,2000,92(3):182-183.
    [11]Wynn J P, bin Abdul Hamid A, Ratledge C. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi [J]. Microbiology,1999,145(8):1911-1917.
    [12]Song Y, Wynn J P, Li Y, et al. A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides [J]. Microbiology,2001,147(6): 1507-1515.
    [13]Wheeler M C G, Tronconi M A, Drincovich M F, et al. A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis [J]. Plant physiology,2005,139(1):39-51.
    [14]侯志波,王洪辉,徐少峰.原肌球蛋白,波形纤维蛋白和热休克蛋白70在肝癌转移亚细胞中表达上调[J]. Chinese Journal of Biochemistry and Molecular Biology,2005,2: 244-249.
    [15]赵晓峰,王舒,石学敏.蛋白质组学研究技术进展[J].北京生物医学工程,2005,24(1):74-78.
    [16]肖瑞琳,胡苗清,柴宝峰,等.真核生物酸性核糖体P蛋白的结构和功能[J].生命的化学,2012,32(006):546-549.
    [17]胡苗清,肖瑞琳,张志云,等.八肋游仆虫酸性核糖体蛋白基因克隆与特征分析[J]. 水生生物学报,2012,36(3):546-551.
    [18]王欣,邢春燕,杨艳平.血清磷酸丙酮酸水合酶检测对诊断侵袭性白念珠菌感染的临床价值[J].山东大学学报:医学版,2009,47(6):92-94.
    [19]杜丽莉,韩存芝,荆结线,等.血清磷酸丙酮酸水合酶检测在颅内恶性肿瘤患者放射性脑损伤诊断中的价值[J].肿瘤研究与临床,2012,24(7):472-474.
    [20]魏群,曹江.真核翻译起始因子与肿瘤[J].细胞生物学杂志,2007,29(2):197-201.
    [21]李卫东,蔡植华,谭业葵,等.真核翻译起始因子-5A2在乳腺癌中的表达及其临床意义[J].解剖学研究,2011,33(4):271-273.
    [26]Nishiyama H, Itoh K, Kaneko Y, et al. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth [J]. The Journal of cell biology,1997, 137(4):899-908.
    [22]Campo S, Carrascal M, Coca M, et al. The defense response of germinating maize embryos against fungal infection:a proteomics approach [J]. Proteomics,2004,4(2):383-396.
    [23]Tronconi M, Gerrard W M, Maurino V, et al. NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control [J]. Biochem. J,2010,430:295-303.
    [24]董庆龙,余贤美,刘丹丹,等.苹果NAD-苹果酸酶基因的克隆及在不同组织和果实发育阶段的表达分析[J].园艺学报,2013,40(4):739-748.
    [25]Wheeler M C G, Tronconi M A, Drincovich M F, et al. A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis [J]. Plant physiology,2005,139(1):39-51.
    [1]Miyazawa M, Hashimoto Y, Taniguchi Y, et al. Headspace constituents of the tree remain of Cinnamomum camphora [J]. Natural Product Letters,2001,15(1):63-69.
    [2]Liu H, Mishra A K., He B, et al. Composition and antifungal activity of essential oils from Artemisia princeps and Cinnamomum camphora [J]. International Pest Control,2001,47:72-74.
    [3]Wenli P, Shanglian Z. Extraction and determination of volatile constituents of wood from Cinnamomum camphora by Agilent-GC/MS [C]. Industrial and Information Systems (IIS),2010 2nd International Conference on. IEEE,2010,1: 557-560.
    [4]D P Bezerra, A C S Britto, A C A Oliveira, et al.998 Assessment of antitumor properties of the essential oil From the leaves of Guatteria Friesiana [J]. European Journal of Cancer,2012,48(5):S241.
    [5]Zema DA, Andiloro S, Bombino G, et al. Depuration in aerated ponds of citrus processing wastewater with a high concentration of essential oils [J]. Environmental Technology,2012,33(11):1255-1260.
    [6]Johann S, Cisalpino P S, Watanabe G A, et al. Antifungal activity of extracts of some plants used in Brazilian traditional medicine against the pathogenic fungus Paracoccidioides brasiliensis [J]. Pharmaceutical Biology,2010,48(4):388-396.
    [7]Bukvicki D, Gottardi D, Veljic M, et al. Identification of volatile components of liverwort (Porella cordaeana) extracts using GC/MS-SPME and their antimicrobial activity [J]. Molecules,2012,17(6):6982-6995.
    [8]Korukluoglu M, Gurbuz O, Sahan Y, et al. Chemical characterization and antifungal activity of Origanum onites L. essential oils and extracts [J]. Journal of Food Safety,2009,29(1):144-161.
    [9]何莲,张宏,李琪,等.枇杷花系统溶剂提取物抑菌作用研究[J].食品科学,2007,28(12):109-112.
    [10]Diaz-Maroto M C, Sanchez-Palomo E, Perez-Coello M S. Fast screening method for volatile compounds of oak wood used for aging wines by headspace SPME-GC-MS (SIM) [J]. Journal of agricultural and food chemistry,2004,52(23): 6857-6861.
    [11]Nezhadali A, Parsa M. Study of the volatile compounds in Artemisia absinthium from Iran using HS/SPME/GC/MS [J]. Advances in Applied Science Research,2010, 1:174-179.
    [12]Deng C, Wang A, Shen S, et al. Rapid analysis of essential oil from Fructus Amomi by pressurized hot water extraction followed by solid-phase microextraction and gas chromatography-mass spectrometry [J]. Journal of Pharmaceutical and Biomedical analysis,2005,38(2):326-331.
    [13]Zhou T, Yang B, Zhang H, et al. Identification of volatile compounds in Chrysanthemum morifolium by microwave distillation solid-phase microextraction coupled with GC/MS [J]. Journal of AOAC International,2009,92(3):855-861.
    [14]Mishra A K, Dwivedi S K, Kishore N, et al. Fungistatic properties of essential oil of Cinnamomum camphora [J]. Pharmaceutical Biology,1991,29(4):259-262.
    [15]Roszaini K, Azah M A N, Mailina J, et al. Toxicity and antitermite activity of the essential oils from Cinnamomum camphora, Cymbopogon nardus, Melaleuca cajuputi and Dipterocarpus sp. against Coptotermes curvignathus [J]. Wood Science and Technology,2013,47(6):1273-1284.
    [16]YONG Yang, TAO Wenyi. Head-Space Solid Phase Micro-extraction Followed by GC/MS Analysis of the Volatile Components in Seeds of Cinnamonum camphora [J]. American Journal of Biochemistry and Biotechnology,2005,1(3):173-175.
    [17]Singh P, Srivastava B, Kumar A, et al. Fungal contamination of raw materials of some herbal drugs and recommendation of Cinnamomum camphora oil as herbal fungitoxicant [J]. Microbial ecology,2008,56(3):555-560.
    [18]Estevez M, Ventanas S, Ramirez R, et al. Analysis of volatiles in porcine liver pates with added sage and rosemary essential oils by using SPME-GC-MS [J]. Journal of Agricultural and Food Chemistry,2004,52(16):5168-5174.
    [19]Pandey A K, Bora H R, Deka S C, et al. Composition of the essential oil of the bark of Cinnamomum camphora [J]. Journal of Medicinal and Aromatic Plant Sciences,1997,19(2):408-409.
    [20]Dong L, Wang J, Deng C, et al. Gas chromatography-mass spectrometry following pressurized hot water extraction and solid-phase microextraction for quantification of eucalyptol, camphor, and borneol in Chrysanthemum flowers [J]. Journal of Separation Science,2007,30(1):86-89.
    [21]Deng C, Mao Y, Yao N, et al. Development of microwave-assisted extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for quantification of camphor and borneol in Flos Chrysanthemi Indici [J]. Analytica Chimica Acta,2006,575(1):120-125.
    [22]Li L, Zhao J. Determination of the volatile composition of Rhodobryum giganteum (Schwaegr.) Par.(Bryaceae) using solid-phase microextraction and gas chromatography/mass spectrometry (GC/MS) [J]. Molecules,2009,14(6):2195-2201.
    [23]徐峰.木材鉴定图谱[M].化学工业出版社.出版时间:2008-3-1
    [24]汪佑宏,洪安东,王传贵,等.香樟干、枝材木射线及导管的研究[J].安徽农业大学学报,2007,34(1):85-87.
    [25]高振忠,孙瑾,吴鸿,等.樟科10属14种木材解剖学特征的比较研究[J].林业科学研究,2009,22(3):413-417.
    [26]Moteki H, Hibasami H, Yamada Y, et al. Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line [J]. Oncology Reports,2002,9(4):757-760.
    [27]F A Santos, V S N Rao. Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils [J]. Phytotherapy Research,2000,14(4):240-244.
    [28]Alvarez-Castellanos P P, Bishop C D, Pascual-Villalobos M J. Antifungal activity of the essential oil of flowerheads of garland chrysanthemum(Chrysanthemum coronarium) against agricultural pathogens[J]. Phytochemistry,2001,57(1):99-102.
    [29]de Sousa D P, Quintans Jr L, de Almeida R N. Evolution of the anticonvulsant activity of a-terpineol[J]. Pharmaceutical Biology,2007,45(1):69-70.
    [30]马桢红,陈淑玉.樟脑油精药效及其安全性评价[J].中国媒介生物学及控制杂志,2001,12(1):58-60.
    [31]Schattner P, Randerson D. Tiger Balm as a treatment of tension headache. A clinical trial in general practice [J]. Australian Family Physician,1996,25(2):216-218.
    [32]Hye Ja Lee, Eun-A Hyun, Weon Jong Yoon. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts [J]. Journal of Ethnopharmacology,2006,103:208-216.
    [33]郭林林,张党权,谷振军.樟树根材苯/醇提取物的Py-GC/MS分析[J].中南林业科技大学学报,2011,31(1):142-147.
    [34]唐庆华.顶空气相色谱法测定依莫法宗中溶剂残留[J].国外分析仪器技术与应用,2002(2):54-57.
    [35]许瑛华,朱炳辉,钟秀华,等.顶空气相色谱法测定化妆品中15种挥发性有机溶剂残留[J].色谱,2010,28(1):73-77.
    [36]李英华,吕秀阳,吕丽丽,等.顶空气相色谱法在药物分析中的应用[J].药物分析杂志,2005,25(11):1404-1408.
    [37]Page B D, Lacroix G. Application of solid-phase microextraction to the headspace gas chromatographic analysis of semi-volatile organochlorine contaminants in aqueous matrices [J]. Journal of Chromatography A,1997,757(1): 173-182.
    [38]高鹏程,张一平,张国云,等.水热耦合作用下氨扩散挥发动力学研究[J].西北农业学报,2002,11(3):116-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700