用户名: 密码: 验证码:
超高压对鲢鱼中关键酶与结构蛋白质构影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是淡水鱼养殖大国,鲢鱼(Hypophthalmichthys molitrix)因其生长周期短、抗病能力强、产量高等特点,养殖产量位居第二。土腥味严重一直是制约其深加工的技术“瓶颈”,脂肪氧合酶在鱼肉脂肪氧化和风味形成中有重要作用,研究发现鲢鱼中所含的脂肪氧合酶主要存在形式是12-isozyme,并且与鱼腥味紧密相关。鲢鱼质优价廉,凝胶形成能力较强,较适合加工成鱼糜,是目前加工前景最被看好的淡水经济鱼种。加工成鱼糜是提高其附加值的有效途径,也是解决鱼糜原料短缺的重要措施,但是,鲢鱼鱼糜制品在加工过程中容易发生凝胶劣化,从而导致鱼糜制品的品质下降。目前,越来越多的研究表明肌原纤维结合型丝氨酸蛋白酶(Myofibril-bound Serine Proteinases, MBSP)对肌原纤维蛋白,尤其是对肌球蛋白重链(MHC)的分解,是引起鱼糜制品弹性下降的主要原因。鲢鱼可为我国提供丰富的优质肌肉蛋白质来源,肌原纤维蛋白是肌肉蛋白中最重要的结构蛋白,肌肉蛋白的很多功能特性直接由它决定。近年来超高压技术在食品的杀菌、灭酶及改善食品品质等应用方面是最有潜力和发展前途的重点开发技术之一,超高压处理改变蛋白质构象并引起蛋白质变性、聚集或胶凝,进而影响其质构品质。本研究的目的是采用超高压技术对鲢鱼鱼腥味产生的关键酶—脂肪氧合酶的钝化作用抑制加工过程中腥味产生,同时不仅通过直接影响肌原纤维蛋白的超微结构来影响质构,还可以通过对热稳定组织蛋白酶--肌原纤维结合型丝氨酸蛋白酶的作用以防止凝胶劣化,探讨超高压钝酶与改善品质等方面的机制和在淡水鱼加工中应用的可能性。
     首先研究了超高压协同温度处理鱼腥味产生关键酶--脂肪氧合酶(LOX)的失活变化趋势,总体上,压力对鲢鱼脂肪氧合酶有显著影响,同时钝化酶的效果随温度升高而增加明显,在实验设定的所有温度范围内,随着处理压力的增大残存酶活均不断下降,而且处理压力越高,随着时间延长,LOX酶活残存率就越低。研究表明鲢鱼脂肪氧合酶的超高压失活是不可逆的并且符合一阶反应动力学规律。采用响应面分析建立了鲢鱼脂肪氧合酶粗提液的超高压LOX失活速率常数(k)失活动力学模型。经由响应面回归分析,采用CCRD设计方法,对压力和温度分别以X1及X2表示,得到超高压LOX失活速率常数(k)标准回归方程为:k0.2780.3991E004X0.01X6.167E006X X3.608E007X22121219.525E005X2
     采用超高压技术研究了不同压力不同保压时间下对肌原纤维结合型丝氨酸蛋白酶(MBSP)活力影响趋势,发现压力对MBSP酶活力有显著影响,随着时间延长,酶活的降低就越明显。结果表明MBSP的超高压失活同样符合一阶反应动力学规律。相对于粗酶液,肌原纤维蛋白对肌原纤维结合型丝氨酸蛋白酶的酶活具有一定的保护作用。通过SDS-PAGE电泳图谱分析表明,肌球蛋白重链(MHC)降解程度与高压处理导致肌原纤维结合型丝氨酸蛋白酶的酶活降低高度吻合。动态流变特性研究表明,高压处理对肌原纤维结合型丝氨酸蛋白酶活性以及肌原纤维蛋白影响显著,首次明确了300MPa(≥10分钟)的工艺条件就可以对肌原纤维结合型丝氨酸蛋白酶显著失活从而有效防止凝胶劣化。
     以鲢鱼肌原纤维蛋白作为研究对象,利用示差扫描量热法(DSC)、表面疏水性、紫外吸收光谱及其二价导图谱、内源荧光光谱、圆二色谱、拉曼光谱等方法研究超高压加工对其构象影响。DSC分析表明,当处理压力超过200MPa后,肌原纤维蛋白构象稳定性随压力不断增加而不断变差。内源荧光光谱、紫外吸收光谱及其二价导图谱分析表明,当处理压力超过300兆帕时,更多的疏水性氨基酸残基所处微环境极性增强,这种变化对表面疏水性影响明显。圆二色光谱分析表明,随着处理压力的升高,鲢鱼肌原纤维蛋白二级结构的α-螺旋含量逐渐降低,发现400MPa处理10分钟,α-螺旋破坏比较严重,同时这种变化进一步验证了蛋白质的表面疏水性和α-螺旋结构呈现负相关。拉曼光谱分析表明鲢鱼肌原纤维蛋白二级结构、三级结构均有改变。超高压影响蛋白构象变化并引起蛋白变性与胶凝等特性的改变,进而影响其质构品质,从而为开发鲢鱼新型调理食品奠定基础。
     通过对超高压与热处理对白鲢鱼糜凝胶性能的比较研究证实超高压加工的白鲢鱼糜制品鱼腥味较淡,在凝胶强度、弹性等方面都优于传统热加工,电镜扫描发现300MPa处理20min的鱼糜凝胶细腻,网状结构更趋紧密,所有这些与理论研究基本吻合。但在硬度方面超高压处理较热处理其硬度变小,显示了与理论研究相矛盾的地方。
China is the largest producer of freshwater fish in the world, and silver carp(Hypophthalmichthys molitrix) is one of the main freshwater fish species. However, it issusceptible to lipid oxidation and the subsequent development of rancid and fishy odourduring processing and storage. It has been reported that Lipoxygenase (LOX) primarilyaccounting for peroxidation participated in enzymatic reaction and resulted in lipid oxidationand the rapid formation of fishy odour in silver carp processing. High hydrostatic pressure(HHP) processing is an alternative method for enzyme inactivation. Inactivation kinetics ofendogenous lipoxygenase in crude silver carpextract was studied for thermal (50–80°C,ambient pressure) and high hydrostatic pressure combined with heat treatment (300–700MPaat50–80°C) process conditions. LOX inactivation followed first-order kinetics at allpressure–temperature combinations used. Moreover, LOX inactivation rates became lesspressure dependent with increasing pressure at all temperatures studied and also showed lesstemperature dependence of the enzyme inactivation rate at various high pressure levels tested.It is evident that inactivation kinetics is complex affected by both pressure and temperature.Therefore, response surface methodology (RSM) was attempted to investigate combinedtemperature–pressure processing conditions on LOX inactivation kinetics in crude silver carpextract samples. In conclusion, the LOX inactivation rate constant was modelled as a functionof both temperature and pressure conditions by a quadratic polynomial equation as follows:k0.2780.3991E004X0.01X6.167E006X X3.608E007X29.525E005X2121212
     Silver carp is a popular cultured freshwater fish in China, and becomes a potential rawmaterial for surimi product. However, silver carp surimi exhibits considerable gel softening(modori) and myofibril-bound serine proteinases (MBSP) involved in the degradation ofmyofibrillar proteins have been assumed to be crucial to the modori phenomenon.High-pressure technology has demonstrated its potential application to control enzyme-relatedseafood texture deterioration. Herefrom, it could be further applied to the freshwater fishprocessing and the effect of high pressure treatments on the activity of MBSP implicated intexture deterioration in myofibrils and crude enzyme extracts was evaluated. The inactivationkinetics of MBSP pressured from200MPa to500MPa at room temperature (20°C) werefitted first-order kinetics, The extent of enzyme inactivation was lower in silver carpmyofibrils in comparison with the crude enzyme extracts from myofibrils showing aprotective effect against the high pressure treatment. The effect of HHP on MBSP myofibrillardegradation shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE) was associated with a corresponding decrease coincided with the elevated highpressure levels in intensity of myosin heavy chain (MHC). Dynamic rheological measurements indicated that high-pressure treatment exerted considerable influence on MBSPactivities as well as proteins (mainly myofibrils), resulting in structural modifications andtexture changes. In this study,300MPa (≥10min) was the process condition (pressure andtime) that caused apparent MBSP inactivation derived from the first order kinetic model andhad the efficacy in controlling silver carp texture deterioration both verified by SDS-PAGEand dynamic rheological measurements.
     Silver carp is an abundant protein resource and is widely used as a material for processedfoods. Myofibrillar proteins play an important role in the quality of fish products because ofits responsibility for imparting textural attributes to fish muscle and endowing functionalproperties of fish meat such as gel-forming ability, emulsifying property, and water-holdingability. Conformational changes of myofibrillar proteins have an enormous potential tomanufacture desirably processed fish meats with lower cost and more desirable nutritionalproperties. Modification of myofibrillar proteins induced by high pressure processing (HPP)has been investigated at pressures ranging from200to500MPa for10min at20°C. Influenceof high pressure on conformational changes of myofibrils was studied by means of differentialscanning calorimetry (DSC), surface hydrophobicity measurement, ultraviolet absorptionspectra and second-derivative spectroscopy, intrinsic spectrofluorimetry, Raman spectroscopicanalysis and circular dichroism (CD). DSC analyses revealed that the conformational stabilityof myofibrils is reduced to different extents when they are exposed to a pressure over200MPa. More sulfydryl groups as well as hydrophobic regions and amino acid residues whichhad ultraviolet absorbance had been found significantly after HPP (≥300MPa). Changes inthe Raman spectra were interpreted as the occurrence of secondary structural changes inpressure-induced myofibrillar proteins. CD analysis results demonstrated that α-helix wasdestroyed after processed at400MPa for10min. The results implicated that HPP can be usedas a possible means of improving the functional properties for growing demand for healthierfish products.
     The comparative study between HHP and thermal treatment on silver carp surimi gelproperties of silver carp surimi confirmed that pressured surimi products with smallerunpleasant fishy taste are better in gel strength, elasticity and so on than the traditionalthermal processed, and SEM showed that surimi pressured at300MPa for20min is morecompacted in reticular structure and refined in gel, which are consistent with theoreticalresearch. But in terms of hardness the pressured surimi gel is the hardness smaller than theheat treated, which is contradictory to our study.
引文
[1] Anonymous. Fisheries Economic Statistics. In China Fishery Statistical Yearbook[J].Beijing, China: Chinese Agricultural Press,2013
    [2] J.A. Torres, G. Velazquez. Commercial Opportunities and Research Challenges in the HighPressure Processing of Foods[J]. Journal of Food Engineering,2005,67(1):95-112
    [3] V.V. Mozhaev, K. Heremans, J. Frank, P. Masson, C. Balny. Exploiting the Effects of HighHydrostatic Pressure in Biotechnological Applications[J]. Trends in Biotechnology,1994,12(12):493-501
    [4] N. Rastogi, K. Raghavarao, V. Balasubramaniam, K. Niranjan, D. Knorr. Opportunitiesand Challenges in High Pressure Processing of Foods[J]. Critical reviews in food science andnutrition,2007,47(1):69-112
    [5] D. Knorr. Advantages, Opportunities and Challenges of High Hydrostatic PressureApplication to Food Systems[J]. Progress in Biotechnology,1996,13:279-287
    [6] T. Norton, D.-W. Sun. Recent Advances in the Use of High Pressure as an EffectiveProcessing Technique in the Food Industry[J]. Food and Bioprocess Technology,2008,1(1):2-34
    [7] B. Krebbers, A. Matser, M. Koets, R. Van den Berg. Quality and Storage-Stability of High-PressurePreserved Green Beans[J]. Journal of Food Engineering,2002,54(1):27-33
    [8] K. Heremans. High Pressure Effects on Proteins and Other Biomolecules[J]. Annual review ofbiophysics and bioengineering,1982,11(1):1-21
    [9] G. Hui Bon Hoa, M.A. McLean, S.G. Sligar. High Pressure, a Tool for Exploring Heme Protein ActiveSites[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2002,1595(1):297-308
    [10] B.H. Hite. The Effect of Pressure in the Preservation of Milk[J]. Bull. West Virginia Univ. Agric.Exper. Stn.,1899,58:15-35
    [11] B.H. Hite, N.J. Giddings, C.E. Weakley. Effect of Pressure on Certain Micro-Organisms Encounteredin the Preservation of Fruits and Vegetables[J].1914,146:1-67
    [12] C. Rauh, A. Baars, A. Delgado. Uniformity of Enzyme Inactivation in a Short-Time High-PressureProcess[J]. Journal of food engineering,2009,91(1):154-163
    [13] H. Ogawa, K. FUKUHISA, Y. Kubo, H. FUKUMOTO. Pressure Inactivation of Yeasts, Molds, andPectinesterase in Satsuma Mandarin Juice: Effects of Juice Concentration, Ph, and Organic Acids, andComparison with Heat Sanitation[J]. Agricultural and Biological Chemistry,1990,54(5):1219-1225
    [14] M.F. San Martín, G.V. Barbosa-Cánovas, B.G. Swanson. Food Processing by High HydrostaticPressure[J]. Critical Reviews in Food Science and Nutrition,2002,42(6):627-645
    [15] G. Chen, O.H. Campanella, G.V. Barbosa-Canovas. Estimating Microbial Survival Parameters underHigh Hydrostatic Pressure[J]. Food Research International,2012,46(1):314-320
    [16] E. Rendueles, M. Omer, O. Alvseike, C. Alonso-Calleja, R. Capita, M. Prieto. Microbiological FoodSafety Assessment of High Hydrostatic Pressure Processing: A Review[J]. LWT-Food Science andTechnology,2011,44(5):1251-1260
    [17] K.M. Considine, A.L. Kelly, G.F. Fitzgerald, C. Hill, R.D. Sleator. High-Pressure Processing–Effectson Microbial Food Safety and Food Quality[J]. FEMS Microbiology Letters,2008,281(1):1-9
    [18] M. Kato, R. Hayashi, T. Tsuda, K. Taniguchi. High Pressure‐Induced Changes of BiologicalMembrane[J]. European Journal of Biochemistry,2002,269(1):110-118
    [19] P. Ma as, B.M. Mackey. Morphological and Physiological Changes Induced by High HydrostaticPressure in Exponential-and Stationary-Phase Cells of Escherichia Coli: Relationship with Cell Death[J].Applied and environmental microbiology,2004,70(3):1545-1554
    [20] P. Butz, B. Tauscher. Recent Studies on Pressure-Induced Chemical Changes in Food Constituents[J].International Journal of High Pressure Research,2000,19(1-6):11-18
    [21] M. Hendrickx, L. Ludikhuyze, I. Van den Broeck, C. Weemaes. Effects of High Pressure on EnzymesRelated to Food Quality[J]. Trends in Food Science&Technology,1998,9(5):197-203
    [22] E. Morild. The Theory of Pressure Effects on Enzymes[J]. Advances in Protein Chemistry,1981,34:93
    [23] V. Lullien-Pellerin, C. Balny. High-Pressure as a Tool to Study Some Proteins’ Properties:Conformational Modification, Activity and Oligomeric Dissociation[J]. Innovative Food Science&Emerging Technologies,2002,3(3):209-221
    [24] J.C. Cheftel, J. Culioli. Effects of High Pressure on Meat: A Review[J]. Meat science,1997,46(3):211-236
    [25] W.-C. Ko, C.-L. Jao, J.-S. Hwang, K.-C. Hsu. Effect of High-Pressure Treatment on ProcessingQuality of Tilapia Meat Fillets[J]. Journal of Food Engineering,2006,77(4):1007-1011
    [26] N. Homma, Y. Ikeuchi, A. Suzuki. Effect of High Pressure Treatment on Proteolytic System in Meat.In: Progress in Biotechnology--R. Hayashi, C. Balny, eds.: Elsevier,1996:327-330
    [27] J. Zhang, R. Duan, Y. Tian, K. Konno. Characterisation of Acid-Soluble Collagen from Skin of SilverCarp (Hypophthalmichthys Molitrix)[J]. Food Chemistry,2009,116(1):318-322
    [28] G.V. Santos, M.C. da Cunha Veloso, P.A. de Paula Pereira, J.B. De Andrade. Fish Off-FlavorAnalysis by Headspace and Off-Line Purge-and-Trap Followed by Hrgc-Ms[J]. American Laboratory,2001,33(24):28-30
    [29] S. KONOSU. The Flavor Components in Fish and Shellfish[J]. Chemistry and biochemistry of marinefood products,1982:367-404
    [30] Z. Yiqi, W. Zijian. Extraction and Analysis on Fishy Odor-Causing Compounds in the Different Partof Carp[J]. Chinese Journal of Analytical Chemistry,2006,34: S165-S167
    [31] J.B. German, K.C. Richard. Identification and Characterization of a15-Lipoxygenase from FishGills[J]. Journal of Agriculatural and Food Chemistry,1990,38:2144-2147
    [32] X. Fu, S. Xu, Z. Wang. Kinetics of Lipid Oxidation and Off-Odor Formation in Silver Carp Mince:The Effect of Lipoxygenase and Hemoglobin[J]. Food Research International,2009,42(1):85-90
    [33]袁春红,陈舜胜,程裕东.鱼糜加工技术及其研究进展[J].渔业现代化,2001,5:35-39
    [34] E. Foegeding, C. Allen, W. Dayton. Effect of Heating Rate on Thermally Formed Myosin, Fibrinogenand Albumin Gels[J]. Journal of Food Science,1986,51(1):104-108
    [35] K. Konno, C. YOUNG‐JE, T. Yoshioka, P. Shinho, N. Seki. Thermal Denaturation and AutolysisProfiles of Myofibrillar Proteins of Mantle Muscle of Jumbo Squid Docidicus Gigas[J]. Fisheries Science,2003,69(1):204-209
    [36] H. Toyohara, Y. Shimizu. Relation between the Modori Phenomenon [Heat Induced Gel Degradation]and Myosin Heavy Chain Breakdown in Threadfin-Bream Gel[J]. Agricultural and Biological Chemistry,1988,52:255-257
    [37] D.H. Wasson. Fish Muscle Proteases and Heat-Induced Myofibrillar Degradation: A Review[J].Journal of Aquatic Food Product Technology,1993,1(2):23-41
    [38] M. Kinoshita, H. Toyohara, Y. Shimizu. Diverse Distribution of Four Distinct Types of Modori (GelDegradation)-Inducing Preoteinases among Fish Species[J]. Nippon Suisan Gakkaishi,1990,56(9):1485-1492
    [39] K. Osatomi, H. Sasai, M. Cao, K. Hara, T. Ishihara. Purification and Characterization ofMyofibril-Bound Serine Proteinase from Carp Cyprinus Carpio Ordinary Muscle[J]. ComparativeBiochemistry and Physiology Part B: Biochemistry and Molecular Biology,1997,116(2):183-190
    [40] M.-J. Cao, X.-J. Jiang, H.-C. Zhong, Z.-J. Zhang, W.-J. Su. Degradation of Myofibrillar Proteins by aMyofibril-Bound Serine Proteinase in the Skeletal Muscle of Crucian Carp (Carasius Auratus)[J]. FoodChemistry,2006,94(1):7-13
    [41] J. McClements, M. Patterson, M. Linton. The Effect of Growth Stage and Growth Temperature onHigh Hydrostatic Pressure Inactivation of Some Psychrotrophic Bacteria in Milk[J]. Journal of FoodProtection,2001,64(4):514-522
    [42] I.N.A. Ashie, B.K. Simpson. Application of High Hydrostatic Pressure to Control Enzyme RelatedFresh Seafood Texture Deterioration[J]. Food Research International,1996,29(5–6):569-575
    [43] W.C. Ko, C.L. Jao, K.C. Hsu. Effect of Hydrostatic Pressure on Molecular Conformation of Tilapia(Orechromis Niloticus) Myosin[J]. Journal of Food Science,2003,68(4):1192-1195
    [44] R. Lakshmanan, M.F. Patterson, J.R. Piggott. Effects of High-Pressure Processing on ProteolyticEnzymes and Proteins in Cold-Smoked Salmon During Refrigerated Storage[J]. Food Chemistry,2005,90(4):541-548
    [45] V.V. Mozhaev, K. Heremans, J. Frank, P. Masson, C. Balny. High Pressure Effects on ProteinStructure and Function[J]. Proteins: Structure, Function, and Bioinformatics,1996,24(1):81-91
    [46] L. Ludikhuyze, Indrawati, I. Van den Broeck, C. Weemaes, M. Hendrickx. Effect of CombinedPressure and Temperature on Soybean Lipoxygenase.2. Modeling Inactivation Kinetics under Static andDynamic Conditions[J]. Journal of Agricultural and Food Chemistry,1998,46(10):4081-4086
    [47] Q.H. Jin, G.L. Li. Research on Nutrition of Chinese Silver Carp[J]. Food Sci.,1998,19(8):41-43
    [48] R.J. Hsieh, J.E. Kinsella. Lipoxygenase Generation of Specific Volatile Flavor Carbonyl Compoundsin Fish Tissues[J]. Journal of Agricultural and Food Chemistry,1989,37(2):279-286
    [49] R. Wang, X. Zhou, Z. Chen. High Pressure Inactivation of Lipoxygenase in Soy Milk and CrudeSoybean Extract[J]. Food Chemistry,2008,106(2):603-611
    [50] L. Ludikhuyze, Indrawati, I. Van den Broeck, C. Weemaes, M. Hendrickx. Effect of CombinedPressure and Temperature on Soybean Lipoxygenase.1. Influence of Extrinsic and Intrinsic Factors onIsobaric Isothermal Inactivation Kinetics[J]. JOURNAL OF AGRICULTURAL AND FOODCHEMISTRY,1998,46(10):4074-4080
    [51] Indrawati, A.M. Van Loey, L.R. Ludikhuyze, M.E. Hendrickx. Soybean Lipoxygenase Inactivation byPressure at Subzero and Elevated Temperatures[J]. Journal of agricultural and food chemistry,1999,47(6):2468-2474
    [52] I. Indrawati, L.R. Ludikhuyze, A.M. Van Loey, M.E. Hendrickx. Lipoxygenase Inactivation in GreenBeans (Phaseolus V Ulgaris L.) Due to High Pressure Treatment at Subzero and Elevated Temperatures[J].Journal of agricultural and food chemistry,2000,48(5):1850-1859
    [53] A.M. Van Loey, L.R. Ludikhuyze, M.E. Hendrickx. Kinetics of Pressure Inactivation at Subzero andElevated Temperature of Lipoxygenase in Crude Green Bean (Phaseolus Vulgaris L.) Extract[J].Biotechnology progress,2000,16(1):109-115
    [54] I. Indrawati, A. Van Loey, L. Ludikhuyze, M. Hendrickx. Pressure–Temperature Inactivation ofLipoxygenase in Green Peas (Pisum Sativum): A Kinetic Study[J]. J Food Sci,2001,66(5):686-693
    [55] D. Rodrigo, R. Jolie, A.V. Loey, M. Hendrickx. Thermal and High Pressure Stability of TomatoLipoxygenase and Hydroperoxide Lyase[J]. Journal of Food Engineering,2007,79(2):423-429
    [56] I. Van den Broeck, L.R. Ludikhuyze, A.M. Van Loey, M.E. Hendrickx. Inactivation of OrangePectinesterase by Combined High-Pressure and-Temperature Treatments: A Kinetic Study[J]. Journal ofAgricultural and Food Chemistry,2000,48(5):1960-1970
    [57] B. Ly‐N guyen, et al. Mild‐Heat and High‐Pressure Inactivation of Carrot Pectin Methylesterase:A Kinetic Study[J]. Journal of Food Science,2003,68(4):1377-1383
    [58] S.K. Ghawi, L. Methven, R.A. Rastall, K. Niranjan. Thermal and High Hydrostatic PressureInactivation of Myrosinase from Green Cabbage: A Kinetic Study[J]. Food Chemistry,2012,131(4):1240-1247
    [59] L. Fang, B. Jiang, T. Zhang. Effect of Combined High Pressure and Thermal Treatment on KiwifruitPeroxidase[J]. Food Chemistry,2008,109(4):802-807
    [60] C.A. Weemaes, L.R. Ludikhuyze, I. Van den Broeck, M.E. Hendrickx. Kinetics of CombinedPressure‐Temperature Inactivation of Avocado Polyphenoloxidase[J]. Biotechnology and bioengineering,1998,60(3):292-300
    [61] S. Basak, H. Ramaswamy. Ultra High Pressure Treatment of Orange Juice: A Kinetic Study onInactivation of Pectin Methyl Esterase[J]. Food Research International,1996,29(7):601-607
    [62] N. Rastogi, M. Eshtiaghi, D. Knorr. Effects of Combined High Pressure and Heat Treatment on theReduction of Peroxidase and Polyphenoloxidase Activity in Red Grapes[J]. Food biotechnology,1999,13(2):195-208
    [63] J.L. Gata, M.C. Pinto, P. Macías. Lipoxygenase Activity in Pig Muscle:Purification and PartialCharacterization[J]. Journal of Agricultural and Food Chemistry,1996,44(9):2573-2577
    [64] J.R. Whitaker. Principles of Enzymology for the Food Sciences[M]. Marcel Dekker, New York,1972.159-163
    [65] D. Rodrigo, R. Jolie, A. Van Loey, M. Hendrickx. Combined Thermal and High Pressure InactivationKinetics of Tomato Lipoxygenase[J]. European Food Research and Technology,2006,222(5):636-642
    [66] M. Campo, G. Nute, J. Wood, S. Elmore, D. Mottram, M. Enser. Modelling the Effect of Fatty Acidsin Odour Development of Cooked Meat in Vitro: Part I—Sensory Perception[J]. Meat science,2003,63(3):367-375
    [67] G.I. Katsaros, P. Katapodis, P.S. Taoukis. Modeling the Effect of Temperature and High HydrostaticPressure on the Proteolytic Activity of Kiwi Fruit Juice[J]. Journal of Food Engineering,2009,94(1):40-45
    [68] V.V. Mozhaev, R. Lange, E.V. Kudryashova, C. Balny. Application of High Hydrostatic Pressure forIncreasing Activity and Stability of Enzymes[J]. Biotechnology and Bioengineering,1996,52(2):320-331
    [69] A.M. Van Loey, L.R. Ludikhuyze, M.E. Hendrickx. Single, Combined, or Sequential Action ofPressure and Temperature on Lipoxygenase in Green Beans (Phaseolus Vulgaris L.): A Kinetic InactivationStudy[J]. Biotechnology progress,1999,15(2):273-277
    [70]江健,王锡昌,陈西瑶.顶空固相微萃取与Gc-Ms联用法分析淡水鱼肉气味成分[J].现代食品科技,2006,22(2):219-222
    [71]张青,王锡昌,刘源.顶空固相微萃取一气相色谱一质谱一嗅觉测呈联用初探鲢肉的挥发性风味物质[J].水产学报,2009,33(4)
    [72] Y. Zhou, Z. WANG. Extraction and Analysis on Fishy Odor-Causing Compounds in the Different Partof Carp[J]. Chinese Journal of Analytical chemistry,2006,34:165-167
    [73] Y. Xu, W. Xia, F. Yang, J.M. Kim, X. Nie. Effect of Fermentation Temperature on the Microbial andPhysicochemical Properties of Silver Carp Sausages Inoculated with Pediococcus Pentosaceus[J]. FoodChemistry,2010,118(3):512-518
    [74] H. AN, V. WEERASINGHE, T.A. SEYMOUR, M.T. MORRISSEY. Cathepsin Degradation ofPacific Whiting Surimi Proteins[J]. Journal of Food Science,1994,59(5):1013-1017
    [75] H. An, M.Y. Peters, T.A. Seymour. Roles of Endogenous Enzymes in Surimi Gelation[J]. Trends infood science&Technology,1996,7(10):321-327
    [76] T.A. Seymour, M.T. Morrissey, M.Y. Peters, H. An. Purification and Characterization of PacificWhiting Proteases[J]. Journal of agricultural and food chemistry,1994,42(11):2421-2427
    [77] S.T. JIANG, B.L. LEE, C.Y. TSAO, J.J. LEE. Mackerel Cathepsins B and L Effects on ThermalDegradation of Surimi[J]. Journal of Food Science,1997,62(2):310-315
    [78]曹敏杰,李燕,翁凌,王锡昌.鲢鱼肌原纤维结合型丝氨酸蛋白酶的研究[J].食品科学,2005,26(1):91-94
    [79] M.J. Cao, K. Hara, K. Osatomi, K. Tachibana, T. Izumi, T. Ishihara. Myofibril-Bound SerineProteinase (Mbp) and Its Degradation of Myofibrillar Proteins[J]. Journal of Food Science,1999,64(4):644-647
    [80] G. Xiong, et al. Effects of Konjac Glucomannan on Physicochemical Properties of MyofibrillarProtein and Surimi Gels from Grass Carp (Ctenopharyngodon Idella)[J]. Food Chemistry,2009,116(2):413-418
    [81] A.G. Gornall, C.J. Bardawill, M.M. David. Determination of Serum Proteins by Means of the BiuretReaction [J]. The Journal of Biological Chemistry,1949,177(2):751-766
    [82] H.-H. Chen, S.-Y. Xu, Z. Wang. Interaction between Flaxseed Gum and Meat Protein[J]. Journal ofFood Engineering,2007,80(4):1051-1059
    [83] U.K. LaemmLi. Cleavage of Structural Proteins During the Assembly of the Head of BacteriophageT4[J]. Nature,1970,227:680-685
    [84] Q.H. Lowry, N.J. Rosebrough, L.A. Farr, R.J. Randall. Protein Measurement with the Folin PhenolReagent [J]. Journal of Biological Chemistry,1951,193:256-275
    [85]曾庆梅,潘见,谢慧明,杨毅,黄训端.超高压处理对多酚氧化酶活性的影响[J].高压物理学报,2004,18(2):144-148
    [86] G.I. Katsaros, P. Katapodis, P.S. Taoukis. High Hydrostatic Pressure Inactivation Kinetics of the PlantProteases Ficin and Papain[J]. Journal of Food Engineering,2009,91(1):42-48
    [87] C.-L. Jao, J.-S. Hwang, W.-C. Ko, K.-C. Hsu. A Kinetic Study on Inactivation of Tilapia MyosinCa-Atpase Induced by High Hydrostatic Pressure[J]. Food Chemistry,2007,101(1):65-69
    [88] E. Riahi, H.S. Ramaswamy. High Pressure Inactivation Kinetics of Amylase in Apple Juice[J]. Journalof Food Engineering,2004,64(2):151-160
    [89] M.-J. Cao, K. Osatomi, K. Hara, T. Ishihara. Identification of a Myofibril-Bound Serine Proteinase(Mbsp) in the Skeletal Muscle of Lizard Fish Saurida Wanieso Which Specifically Cleaves the ArginineSite[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,2000,125(2):255-264
    [90] B. Wang, Y.L. Xiong. Evidence of Proteolytic Activity and Its Effect on Gelation of MyofibrillarProtein Concentrate from Bovine Cardiac Muscle[J]. Journal of Agricultural and Food Chemistry,1998,46(8):3054-3059
    [91] A.O. Dileep, B.A. Shamasundar, P.K. Binsi, F. Badii, N.K. Howell. Effect of Ice Storage on thePhysicochemical and Dynamic Viscoelastic Properties of Ribbonfish (Trichiurus Spp) Meat[J]. Journal ofFood Science,2005,70(9): E537-E545
    [92] M.J. CAO, W. Shao, Y. Li, K. Hara, X.C. WANG, W.J. SU. Identification of a Myofibril‐BoundSerine Proteinase in the Skeletal Muscle of Silver Carp[J]. Journal of food biochemistry,2004,28(5):373-386
    [93] F. Zhang, et al. Effects of Starches on the Textural, Rheological, and Color Properties of Surimi–BeefGels with Microbial Tranglutaminase[J]. Meat Science,2013,93(3):533-537
    [94] B. Egelandsdal, K. Fretheim, K. Samejima. Dynamic Rheological Measurements on Heat-InducedMyosin Gels: Effect of Ionic Strength, Protein Concentration and Addition of Adenosine Triphosphate orPyrophosphate[J]. Journal of the Science of Food and Agriculture,1986,37(9):915-926
    [95] J.D. Ferry. Protein Gels[J]. Advances in protein chemistry,1948,4:1-78
    [96] M. Cardamone, N. Puri. Spectrofluorimetric Assessment of the Surface Hydrophobicity of Proteins[J].Biochem. J,1992,282:589-593
    [97] E. Li-Chan, S. Nakai, D.F. Wood. Relationship between Functional (Fat Binding, Emulsifying) andPhysicochemical Properties of Muscle Proteins. Effects of Heating, Freezing, Ph and Species[J]. Journal ofFood Science,1985,50(4):1034-1040
    [98] A. Kato, S. Nakai. Hydrophobicity Determined by a Fluorescence Probe Method and Its Correlationwith Surface Properties of Proteins[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure,1980,624(1):13-20
    [99] Y. Xu, W. Xia, Q. Jiang. Aggregation and Structural Changes of Silver Carp Actomyosin as Affectedby Mild Acidification with D-Gluconic Acid Δ-Lactone[J]. Food Chemistry,2012,134(2):1005-1010
    [100] M. Ogawa, S. Nakamura, Y. Horimoto, H. An, T. Tsuchiya, S. Nakai. Raman Spectroscopic Study ofChanges in Fish Actomyosin During Setting[J]. Journal of Agricultural and Food Chemistry,1999,47(8):3309-3318
    [101] V.V. Mozhaev, K. Heremans, J. Frank, P. Masson, C. Balny. High Pressure Effects on ProteinStructure and Function[J]. Proteins-structure function and genetics,1996,24(1):81-91
    [102] N. Chapleau, C. Mangavel, J.-P. Compoint, M. de Lamballerie-Anton. Effect of High-PressureProcessing on Myofibrillar Protein Structure[J]. Journal of the Science of Food and Agriculture,2004,84(1):66-74
    [103] N.J. Chapleau, M.I. de Lamballerie-Anton. Changes in Myofibrillar Proteins Interactions andRheological Properties Induced by High-Pressure Processing[J]. European Food Research and Technology,2003,216(6):470-476
    [104] M. Korzeniowska, I.W. Cheung, E.C. Li-Chan. Effects of Fish Protein Hydrolysate and Freeze-ThawTreatment on Physicochemical and Gel Properties of Natural Actomyosin from Pacific Cod[J]. FoodChemistry,2012
    [105] D.J. Wright, P. Wilding. Differential Scanning Calorimetric Study of Muscle and Its Proteins:Myosin and Its Subfragments[J]. Journal of the Science of Food and Agriculture,1984,35(3):357-372
    [106] J.W. Park, T.C. Lanier. Scanning Calorimetric Behavior of Tilapia Myosin and Actin Due toProcessing of Muscle and Protein Purification[J]. Journal of Food Science,1989,54(1):49-51
    [107] S. Petruccelli, M. Anon. Relationship between the Method of Obtention and the Structural andFunctional Properties of Soy Protein Isolates.2. Surface Properties[J]. Journal of agricultural and foodchemistry,1994,42(10):2170-2176
    [108] S. Riebroy, S. Benjakul, W. Visessanguan, U. Erikson, T. Rustad. Acid-Induced Gelation of NaturalActomyosin from Atlantic Cod (Gadus Morhua) and Burbot (Lota Lota)[J]. Food Hydrocolloids,2009,23(1):26-39
    [109] S. Riebroy, S. Benjakul, W. Visessanguan, U. Erikson, T. Rustad. Comparative Study onAcid-Induced Gelation of Myosin from Atlantic Cod (Gardus Morhua) and Burbot (Lota Lota)[J]. FoodChemistry,2008,109(1):42-53
    [110] P. Sheard, A. Fellows, D. Ledward, J. Mitchell. Macromolecular Changes Associated with the HeatTreatment of Soya Isolate[J]. International Journal of Food Science&Technology,1986,21(1):55-60
    [111] S. Nakai. Structure-Function Relationships of Food Proteins: With an Emphasis on the Importance ofProtein Hydrophobicity[J]. Journal of Agricultural and Food Chemistry,1983,31(4):676-683
    [112] R. Lange, C. Balny. Uv-Visible Derivative Spectroscopy under High Pressure[J]. Biochimica etBiophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2002,1595(1–2):80-93
    [113] R. Liu, S.-m. Zhao, H. Yang, D.-d. Li, S.-b. Xiong, B.-j. Xie. Comparative Study on the Stability ofFish Actomyosin and Pork Actomyosin[J]. Meat Science,2011,88(2):234-240
    [114] R. Ragone, G. Colonna, C. Balestrieri, L. Servillo, G. Irace. Determination of Tyrosine Exposure inProteins by Second-Derivative Spectroscopy[J]. Biochemistry,1984,23(8):1871-1875
    [115] J.A. Kornblatt, M.J. Kornblatt, G.H.B. Hoa. Second Derivative Spectroscopy of Enolase at HighHydrostatic Pressure: An Approach to the Study of Macromolecular Interactions[J]. Biochemistry,1995,34(4):1218-1223
    [116] F. Lefevre, B. Fauconneau, J.W. Thompson, T.A. Gill. Thermal Denaturation and AggregationProperties of Atlantic Salmon Myofibrils and Myosin from White and Red Muscles[J]. Journal ofagricultural and food chemistry,2007,55(12):4761-4770
    [117] W. Zhao, R. Yang. The Effect of Pulsed Electric Fields on the Inactivation and Structure ofLysozyme[J]. Food Chemistry,2008,110(2):334-343
    [118]黄汉昌,姜招峰,朱宏吉.紫外圆二色光谱预测蛋白质结构的研究方法[J].化学通报,2007,7:501-506
    [119] S.M. Kelly, T.J. Jess, N.C. Price. How to Study Proteins by Circular Dichroism[J]. Biochimica etBiophysica Acta (BBA)-Proteins and Proteomics,2005,1751(2):119-139
    [120] S.M. Kelly, N.C. Price. The Application of Circular Dichroism to Studies of Protein Folding andUnfolding[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1997,1338(2):161-185
    [121] N.J. Greenfield. Methods to Estimate the Conformation of Proteins and Polypeptides from CircularDichroism Data[J]. Analytical biochemistry,1996,235(1):1-10
    [122] S.M. Kelly, N.C. Price. The Use of Circular Dichroism in the Investigation of Protein Structure andFunction[J]. Current protein and peptide science,2000,1(4):349-384
    [123] N.J. Greenfield. Applications of Circular Dichroism in Protein and Peptide Analysis[J]. TrAC Trendsin Analytical Chemistry,1999,18(4):236-244
    [124] N. Sreerama, S.Y. Venyaminov, R.W. Woody. Estimation of the Number of Α‐Helical andΒ‐Strand Segments in Proteins Using Circular Dichroism Spectroscopy[J]. Protein Science,1999,8(2):370-380
    [125] N.J. Greenfield. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure[J].Nature protocols,2007,1(6):2876-2890
    [126] Y.-H. Chen, J.T. Yang, K.H. Chau. Determination of the Helix and Β Form of Proteins in AqueousSolution by Circular Dichroism[J]. Biochemistry,1974,13(16):3350-3359
    [127] R. Townend, T. Kumosinski, S.N. Timasheff, G.D. Fasman, B. Davidson. The Circular Dichroism ofthe Β Structure of Poly-L-Lysine[J]. Biochemical and biophysical research communications,1966,23(2):163-169
    [128] L.-K. Li, A. Spector. Circular Dichroism Of. Beta.-Poly-L-Lysine[J]. Journal of the AmericanChemical Society,1969,91(1):220-222
    [129] T. SANO, T. OHNO, H. OTSUKA‐FUCHINO, J.J. MATSUMOTO, T. TSUCHIYA. Carp NaturalActomyosin: Thermal Denaturation Mechanism[J]. Journal of Food Science,1994,59(5):1002-1008
    [130] A. Kato, N. Tsutsui, N. Matsudomi, K. Kobayashi, S. Nakai. Effects of Partial Denaturation onSurface Properties of Ovalbumin and Lysozyme[J]. Agricultural and Biological Chemistry,1981,45(12):2755-2760
    [131] R. Kizil, J. Irudayaraj. Applications of Raman Spectroscopy for Food Quality Measurement[J].Nondestructive testing of food quality,2008:143-163
    [132]张延会,吴良平,孙真荣.拉曼光谱技术应用进展[J].化学教学,2006,4:32-35
    [133]伍林, et al.拉曼光谱技术的应用及研究进展[J].光散射学报,2006,17(2):180-186
    [134] A.M. Herrero. Raman Spectroscopy a Promising Technique for Quality Assessment of Meat and Fish:A Review[J]. Food Chemistry,2008,107(4):1642-1651
    [135] M. Careche, M. Garcia, A. Herrero, M.T. Solas, P. Carmona. Structural Properties of Aggregatesfrom Frozen Stored Hake Muscle Proteins[J]. Journal of food science,2002,67(8):2827-2832
    [136] A.M. Herrero. Raman Spectroscopy for Monitoring Protein Structure in Muscle Food Systems[J].Critical reviews in food science and nutrition,2008,48(6):512-523
    [137] I. Sánchez-González, et al. Protein and Water Structural Changes in Fish Surimi During Gelation asRevealed by Isotopic H/D Exchange and Raman Spectroscopy[J]. Food Chemistry,2008,106(1):56-64
    [138] S.-M. Choi, C.-Y. Ma. Structural Characterization of Globulin from Common Buckwheat (Fagopyrum Esculentum Moench) Using Circular Dichroism and Raman Spectroscopy[J]. Foodchemistry,2007,102(1):150-160
    [139] E. Li-Chan, S. Nakai, M. Hirotsuka. Raman Spectroscopy as a Probe of Protein Structure in FoodSystems. In: Protein Structure-Function Relationships in Foods--R.Y. Yada, R.L. Jackman, J.L. Smith, eds.:Springer US,1994:163-197
    [140] E. Carew, P. Leavis, H. Stanley, J. Gergely. A Laser Raman Spectroscopic Study of Ca2+Binding toTroponin C[J]. Biophysical journal,1980,30(2):351-358
    [141] E. Dàvila, D. Parés, N.K. Howell. Studies on Plasma Protein Interactions in Heat-Induced Gels byDifferential Scanning Calorimetry and Ft-Raman Spectroscopy[J]. Food hydrocolloids,2007,21(7):1144-1152
    [142] M. Bouraoui, S. Nakai, E. Li-Chan. in Situ Investigation of Protein Structure in PacificWhiting Surimi and Gels Using Raman Spectroscopy[J]. Food research international,1997,30(1):65-72
    [143] A.M. Herrero, M.I. Cambero, J.A. Ordó ez, L. de la Hoz, P. Carmona. Raman Spectroscopy Study ofthe Structural Effect of Microbial Transglutaminase on Meat Systems and Its Relationship with TexturalCharacteristics[J]. Food Chemistry,2008,109(1):25-32
    [144]孙保华,耿欣.不同漂洗方法对鲢鱼糜凝胶特性的影响[J].食品工业,2000(1):42-43
    [145]陈海华,薛长湖.淀粉对竹荚鱼鱼糜流变性质和凝胶特性的影响[J].农业工程学报,2009(5):293-298
    [146] G.-P. Hong, S.-H. Ko, M.-J. Choi, S.-G. Min. Effect of Glucono-Δ-Lactone and Κ-CarrageenanCombined with High Pressure Treatment on the Physico-Chemical Properties of Restructured Pork[J].Meat science,2008,79(2):236-243
    [147] Y. Xu, W. Xia, F. Yang, X. Nie. Protein Molecular Interactions Involved in the Gel NetworkFormation of Fermented Silver Carp Mince Inoculated with Pediococcus Pentosaceus[J]. Foodchemistry,2010,120(3):717-723
    [148] S. Benjakul, W. Visessanguan, C. Chantarasuwan. Effect of Porcine Plasma Protein and Setting onGel Properties of Surimi Produced from Fish Caught in Thailand[J]. LWT-Food Science and Technology,2004,37(2):177-185
    [149] R. Cheret, C. Delbarre-Ladrat, M. de Lamballerie-Anton, V. Verrez-Bagnis. High-Pressure Effectson the Proteolytic Enzymes of Sea Bass (Dicentrarchus Labrax L.) Fillets[J]. Journal of Agricultural andFood Chemistry,2005,53(10):3969-3973
    [150] M. Ahmad, Y. Tashiro, S. Matsukawa, H. Ogawa. Comparison of Gelation Mechanism of Surimibetween Heat and Pressure Treatment by Using Rheological and Nmr Relaxation Measurements[J]. Journalof food science,2004,69(9): E497-E501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700