用户名: 密码: 验证码:
闭合式上颌窦底提升术上颌窦黏膜力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景
     1.1上颌后牙区种植骨量不足原因
     上颌窦位于上颌体内,底壁由前向后盖过上颌第二前磨牙到上颌第三磨牙根尖,与上述牙根之间以较薄的骨板相隔,甚至无骨板而仅覆以黏膜。因此上颌后牙缺失后,牙槽嵴吸收,上颌窦气化,后牙区骨量严重不足,导致此区域的种植修复难以进行,上颌后牙区种植体的长期存活率也低于其它区域。
     1.2上颔窦底提升手术(internal bone augmentation of the maxillary sinus floor)
     上颌窦底提升术是解决上颌后牙区骨量不足的主要方法,它是提升上颌窦黏膜,通过在上颌窦底骨壁和窦黏膜之间植入或不植入自体骨或骨替代品,有效增加上颌后牙区牙槽嵴顶和窦底的骨高度,为种植体植入提供足够骨量的过程。1977年Tatum首次报道此技术,采用上颌窦根治术手术入路(Caldwell-Luc),即侧壁开窗术(lateral window technique)进行上颌窦底提升,1994年Summers首次提出采用经牙槽突微创技术,冲顶上颌窦底壁提升上颌窦黏膜,它与水囊法提升上颌窦技术、经牙槽嵴顶开窗提升术、改良冲压提升技术等统称为经牙槽上颌窦底提升术(transalveolar osteotome technique)或者闭合式上颌窦底提升术(Closed maxillary sinus floor elevation)。
     1.3上颌窦黏膜穿孔(Perforation of Sinus Membrane)
     由于上颌窦的解剖形态存在差异,上颌窦黏膜较薄,因此上颌窦底提升术中上颌窦黏膜撕裂穿孔是临床最常见的并发症,尤其在上颌窦底分隔和骨嵴区更容易造成上颌窦黏膜的撕裂,其发生率为2.2%-21%。上颌窦黏膜由假复层纤毛柱状上皮构成,在维持和保护上颌窦正常结构中起到关键的作用,穿孔使得种植体与骨移植材料和上颌窦腔直接接触,容易发生感染和慢性上颌窦炎症,引起植骨材料的吸收;上颌窦黏膜细胞可被诱导表达碱性磷酸酶、骨钙蛋白、骨桥蛋白、黏骨素、骨形成蛋白等细胞因子,具有成骨的能力,穿孔使得提升后种植体周围骨质形成减少,降低了种植体的初期稳定性,导致种植体的早期脱落。因此,完整的上颌窦黏膜对新骨形成及种植手术的成功具有重要的作用。临床研究表明,上颌窦黏膜穿孔后,即使用纤维蛋白粘结剂等材料积极修复,也有较多的种植体脱落,导致了上颌窦底提升手术的失败。
     2.研究目的和意义
     为降低上颌窦黏膜撕裂穿孔的发生,学者们做了许多研究,包括手术时上颌窦黏膜的保护,不同穿孔尺寸的修补方法等。但是这些方法在开窗式上颌窦底提升手术中比较适用,对于非直视下进行的闭合式上颌窦底提升手术作用甚微。闭合式上颌窦底提升手术在手术中和手术后对上颌窦黏膜的完整状态不能直接判断,在临床上只能采用让患者捏鼻鼓气,检查有无气泡从牙槽突中冒出这种间接方法,失误率较高,许多穿孔不能及时被发现,导致种植体早期脱落,降低了种植手术的成功率。因此,预防上颌窦黏膜穿孔具有重要意义。
     由于人体的特殊性,要研究口腔生物组织的移动机理,对其受力变化进行分析,不可能进行大规模的试验研究,无侵入的生物力学方法成为当前最普遍的研究手段。在闭合式上颌窦底提升手术生物力学研究中,Koca,Fanuscu等学者对手术后骨组织与种植体应力分布进行了有限元分析,并得出许多对临床工作具有指导意义的结果,但是对上颌窦黏膜进行建模及应力分析研究至今未见报道,这主要受限于上颌窦黏膜的弹性模量和泊松比等力学相关参数的缺乏。2009年Bernhard Pommer等学者对20例新鲜尸体上获取的上颌窦黏膜样本进行测试,获取了上颌窦黏膜的的弹性参数,得出黏膜的厚度由24微米变化到350微米的范围时,穿孔强度值的变化具有统计学意义的结论。本研究拟在Bernhard Pommer等学者研究基础上,应用有限元分析基本理论与方法模拟与分析闭合式上颌窦底提升手术上颌窦黏膜抬高形变的过程。从而为预防上颌窦黏膜穿孔,提高闭合式上颌窦底提升手术成功率提供理论依据。
     3.研究方法
     口腔生物力学是用生物力学的概念、方法和手段研究口腔医学中的有关基础性科学问题、解决口腔医学中的临床实际问题、发展口腔临床技术手段,已经广泛应用于口腔正畸、修复、种植、颌面外科等领域,研究方法包括全息照相应力测试,光弹应力测试及有限元分析等。有限元分析法(finite-element analysis)是将连续的弹性体分割成有限个力学单元,通过逐一研究每个单元的性质,从而获得整个弹性体的性质,通过对结构、形状、载荷和材料力学性能等进行应力分析,获得模型任何部位的应力值和位移值,并借助计算机快速精确地求解,能客观、准确地反映应力分布状况。由于有限元模型的计算精度高,有限元分析也逐步从小应变,小位移,弹性材料和静力学分析,发展到大变形,热分析,材料非线形问题及动力学问题的研究,已广泛用于软组织模拟中并取得了明显的效果。本研究拟利用有限元分析法对闭合式上颌窦底提升手术上颌窦黏膜抬高形变的过程进行模拟,即首先利用ANSYS有限元分析软件创建上颌窦黏膜的软组织几何模型及有限元分析模型;然后,将种植体与上颌窦黏膜的接触关系定义为面一面接触,种植体模型拟向前移动接触圆形上颌窦黏膜模型产生几何形变,模拟闭合式上颌窦底提升手术种植体提升上颌窦黏膜的过程;最后,通过对比分析上颌窦黏膜厚度变化、提升高度变化、种植体直径的变化及提升材料的变化等不同工况对黏膜应变与应力的影响,为临床手术提供理论依据。
     4.研究内容和过程
     4.1闭合式上颌窦提升术模型构建
     我们利用ANSYS有限元分析软件自有的可以创建薄膜壳体模型的Preprocessor模块生成上颌窦黏膜壳体模型,完成其几何建模。然后,将上颌窦黏膜壳体模型赋予其相应的力学参数,并在SHELL63壳单元中进行网格划分,生成有限元分析模型。为模拟种植体提升上颌窦黏膜的过程,我们设定种植体与上颌窦黏膜的非线性接触,种植体模型拟向上移动圆形上颌窦黏膜模型产生形变,在特定功能区域里进行上颌窦黏膜的大变形非线性迭代求解,以获取黏膜表面的等效应力值。
     4.2局部解剖因素对闭合式上颌窦提升术黏膜力学影响研究
     4.2.1上颌窦黏膜厚度对黏膜形变的应力影响的研究
     由于正常上颌窦壁黏膜极薄又紧贴窦壁,因此CT图像的上颌窦腔内不能见到完整的上颌窦黏膜影像。在临床工作中,我们所见到的黏膜厚度多在0.3-0.8mm,这种厚度范围的上颌窦黏膜在面对提升手术时,黏膜形变及应力分布是否有差异的研究至今未见报道。因此,本实验通过建立0.3、0.5、0.8mm三种厚度上颌窦黏膜三维有限元模型,计算三种厚度上颌窦黏膜提升后形变与应力分布情况,通过协方差分析来研究上颌窦黏膜表面最大Von mise应力值的差别,分析上颌窦黏膜厚度对闭合式上颌窦提升手术的影响。
     4.2.2剩余牙槽骨高度及上颌窦黏膜提升高度不同对黏膜形变的应力影响
     牙槽突与牙的发育、萌出及恒牙的脱落等因素密切相关,当牙齿缺失后,残存的牙槽骨不断萎缩吸收,高度逐渐降低,最终失去其原有的大小和形状。上颌后牙缺牙区剩余牙槽骨高度常指上颌窦底到牙槽嵴顶的距离,又称为窦嵴距。剩余牙槽骨高度越小,上颌窦黏膜需提升高度越大,两者之和在一定程度上决定了上颌窦底提升手术术式及种植体的长度选择。本研究选取直径4.2mm种植体与0.3mmm厚度上颌窦黏膜模型,通过随机区组设计的方差分析研究种植体提升上颌窦黏膜1-5mm后黏膜表面等效应力值的差别,分析上颌窦黏膜提升高度不同对黏膜穿孔的影响。
     4.3种植体因素对闭合式上颌窦提升术黏膜力学影响研究
     种植体的直径一直被认为是影响种植体初期稳定性及周围骨组织应力分布的相关因素,在本研究中,我们应用ANSYS有限元分析软件另外创建2.8mm、3.5mm、5.5mm三种直径种植体与0.3mm厚度对应直径的上颌窦黏膜薄膜壳体模型,计算2.8mm,3.5mm,4.2mm,5.5mm四种直径钛种植体提升上颌窦黏膜1-5mm后的黏膜表面等效应力值,通过协方差分析来研究四种模型上颌窦黏膜表面最大Von mise应力值的差别,分析种植体直径不同对闭合式上颌窦提升手术黏膜力学的影响。
     4.4提升手术术式的不同对黏膜形变的影响
     闭合式上颌窦提升手术根据是否植骨,植自体骨或异体骨而具有不同的操作方法。本实验通过另外创建自体松质骨、人工羟基磷灰石骨粉两种材料与0.3mm厚度上颌窦黏膜薄膜壳体模型,对纯钛种植体、自体松质骨、人工羟基磷灰石骨粉提升上颌窦黏膜1-5mm高度时上颌窦黏膜应变与应力进行研究,并对比不同材料提升上颌窦黏膜1-5mm时黏膜表面应力分布的情况,分析植骨型闭合式上颌窦提升术即以自体松质骨或人工羟基磷灰石骨粉提升上颌窦黏膜、不植骨型闭合式上颌窦提升术即以种植体提升上颌窦黏膜等术式对黏膜形变的影响。
     5.主要结果
     5.1我们获取了上颌窦黏膜软组织壳体模型,完成其几何建模。然后,将上颌窦黏膜壳体模型赋予其相应的力学参数,并在SHELL63壳单元中进行网格划分,生成上颌窦黏膜有限元分析模型共有930个节点,1758个单元;种植体共有1113个节点,2172个单元,种植体模型拟向上移动接触圆形上颌窦黏膜模型产生形变,达到了与临床闭合式上颌窦提升手术上颌窦黏膜抬高相似的效果。
     5.2通过对0.3mm,0.5mm,0.8mm三种厚度上颌窦黏膜提升1-5mm的应变与应力分析,本研究发现随着提升高度的增加,黏膜拉伸从顶端逐渐过渡到边缘,上颌窦黏膜高变形区发生在顶端中心,同等高度下,黏膜越厚,高变形区域越小,但是,在上颌窦黏膜提升5mm之内,0.3、0.5、0.8mm三种厚度黏膜中心最大Von Mises应力值尚没有显著性差异(P>0.05)。5.3通过对0.3mm厚度上颌窦黏膜提升1-5mmm的黏膜表面Von Mises应力分析,本研究发现上颌窦黏膜提升1-3mm时,黏膜应力变化温和,应力值无显著性差异(P>0.05);上颌窦黏膜提升4mm时,黏膜应力增加,应力值较1mm、2mm与3mm均具有统计学差异(P<0.001);上颌窦黏膜提升5mm时,黏膜的应力值亦与提升1-4mmm时均具有显著性差异(P<0.001)。
     5.4随着种植体直径的增大,上颌窦黏膜中心区最大应力值范围增大,最大应力值减小,黏膜受力更加均匀温和,经统计分析,每种直径种植体应力分布值与其它种植体相比均具有显著性差异(P<0.001)。
     5.5本实验结果显示钛种植体、自体松质骨与人工羟基磷灰石骨替代材料提升上颌窦黏膜,黏膜表面的应变相似,应力值曲线高度重叠,随着高度增加,应力增加的趋势亦基本一致,三种材料对上颌窦黏膜表面应变与应力的影响几乎没有差别。
     6主要结论
     通过本课题的研究,我们得出如下结论:
     6.1对于上颌窦黏膜厚度为0.3-0.8mm范围需要进行闭合式上颌窦提升手术的病人,其所面对的黏膜穿孔风险是无差别的。
     6.2上颌窦黏膜提升高度达到4mm时,黏膜Von mises应力值大幅增加,增大了穿孔的机率,因此,建议闭合式上颌窦提升手术的病人黏膜的提升幅度控制在3mm之内。
     6.3随着直径的增大,黏膜中心区最大应力值范围增大,最大应力值减小,黏膜受力更加均匀温和,在牙槽骨宽度允许的情况下,尽量选择粗直径的种植体,以减少上颌窦黏膜穿孔的机会。
     6.4使用松质骨、人工羟基磷灰石骨粉、纯钛种植体抬高上颌窦黏膜对黏膜穿孔是没有影响的,行闭合式上颌窦底提升手术应用种植体直接提升上颌窦黏膜是最简易及微创的手术方式,在临床工作中更推荐使用。
     但是,我们对闭合式上颌窦提升术上颌窦黏膜的力学分析研究,受上颌窦解剖结构的复杂性,上颌窦黏膜个体的差异,建模精度,大变形计算的误差等因素的影响,只能为闭合式上颌窦提升手术提供相对的参考,这也是本研究的不足之处。相信随着技术的成熟,上颌窦区种植的生物力学研究会涉及到越来越多的方面,为临床应用提供更多的理论依据。
Background
     1, The reason for bone absence of maxillary teeth implantation
     Maxillary sinus cover from the maxillary second premolar to third molar, whose bottom wall is apart from the teeth roots only by a thinner bone plate or membrane. Once maxillary posterior tooth missing, the alveolar ridge was absorpted and the residual bone was shortage to make implant operation. The implant survival rate of this area is also lower than the other areas.
     2, Maxillary sinus surgery
     Maxillary sinus floor elevating operation is the main method to solve the bone deficiency in the posterior maxilla area. Through lifting the maxillary sinus membrane, the maxillary sinus floor implant bone wall can be effectively increased with or without autogenous bone and bone substitute. Tatum first reported this technology in1977. He used the maxillary sinus radical operation approach (Caldwell-Luc), namely the side wall fenestration of maxillary sinus floor elevation. In1994, Summers reported the minimally invasive technology about the maxillary sinus floor lifting from alveolar ridge to maxillary sinus membrane (transalveolar osteotome technique). Because it is not necessary to open the lateral wall of the maxillary sinus, they are also called Closed maxillary sinus floor elevation operation.
     3, Complications of Closed maxillary sinus membrane operation
     Perforation of maxillary sinus membrane is the most common clinical complications for anatomical structure complexity of the maxillary sinus, especially in the region of bone crest. The incidence of membrane perforation was2.2%-21%. Maxillary sinus membrane is consist of pseudostratified ciliated columnar epithelium, which plays a key role in protecting the normal structure of the maxillary sinus. Perforation of the maxillary sinus membrane make the implants and bone grafting materials direct contact with maxillary sinus cavity, which can lead to chronic sinus inflammation and bone absorption. On the other hand, maxillary sinus membrane cells induced expression of cell factor such as alkaline phosphatase, osteocalcin, osteopontin, bone morphogenetic protein adhesion and so on for osteogenesis. Therefore, the integrity of the maxillary sinus membrane plays an important role in implant operation. Clinical studies showed that more than half of the maxillary sinus lifting operation failed when the maxillary sinus membrane perforation had happened.
     Purpose of the experiment
     In order to reduce the occurrence of maxillary sinus membrane perforation, scholars have done a lot of research, including how to protect the maxillary sinus membrane during operation and how to mend the perforation of maxillary sinus membrane. But these methods aren't suitable for Closed maxillary sinus lifting operation. It is not easy to judge maxillary sinus membrane intergrity during Closed maxillary sinus lifting operation. Therefore, the prevention the perforation of maxillary sinus membrane has important significance.
     Biomechanical method becomes the most popular way to research the mechanism features of human tissue. For example, Koca, Fanuscu and other scholars studied biomechanical of the bone tissue and the implant in the Closed maxillary sinus floor lifting operation. But it has not been reported biomechanical study about modeling and stress analysis in maxillary sinus membrane. Bernhard Pommer obtained Maxillary sinus membrane samples from the20cases of fresh cadavers in2009and tested the mechanical parameters of the maxillary sinus membrane. Based on Bernhard Pommers' result, In ours experiment, we applied finite element analysis method to simulate Closed maxillary sinus lifting operation to prevent the perforation of maxillary sinus membrane.
     Research Methods
     Biomechanics research methods include holographic photomechanical stress testing and stress testing and finite element analysis and so on. Finite element analysis(FEA) method originated in Aeronautical Engineering in twentieth Century. It divided object into limited mechanical unit to obtain the properties of the elastomer. Due to the high precision of the computational finite element model, it has been widely used for soft tissue simulation. In our experiment, we built the three-dimensional geometric model and finite element model of maxillary sinus membrane with implant and simulated Closed maxillary sinus floor lifting operation by setting the implant and maxillary sinus membrane contacted.
     Research content
     1Generation of Closed maxillary sinus floor lifting model
     Preprocessor module in ANSYS finite element analysis software was used to generate the shell model of the maxillary sinus membrane and implant model to complete their geometric modeling. Then, the maxillary sinus membrane shell model was given corresponding mechanical parameters and meshed in SHELL63shell element to generate the finite element analysis model. In order to achieve a similar effect with clinical operation, implant and maxillary sinus membrane were definited to surface contact relationship and the implant model was moved to contact circle of maxillary sinus membrane.
     2Influence on operation of Closed maxillary sinus membrane elevating by local anatomical factors.
     2.1Influence of maxillary sinus membrane thickness in Closed maxillary sinus membrane elevating operation.
     The membrane thickness is seen from0.3mm to0.8mm at clinical work. Therefore, we set the three-dimensional finite element models of three thickness maxillary sinus membrane with0.3,0.5and0.8mm. The surface stress distribution of maxillary sinus membrane was calculated and statistical analyzed.
     2.2Influence of membrane lifting height in Closed maxillary sinus membrane elevating operation.
     Maxillary posterior alveolar bone height often refers to the distance from alveolar bone crest to maxillary sinus floor. The residual bone height of alveolar bone and membrane lifting height have the relevant with the selection of implant. Therefore, the three-dimensional finite element model of maxillary sinus membrane and implant were generated. The equivalent stress values of the membrane surface were calculated and statistical analyzed when it was lift from1mm to5mm.
     3Influence on the operation of Closed maxillary sinus membrane lifting by implant factors
     Implant diameter has been considered to be the related factor about implant primary stability and the stress distribution surrounding bone tissue in Closed maxillary sinus membrane elevating operation. In this experiment, four diameters implants with four maxillary sinus membranes were generated to study membrane tensile deformation when they were lift from lmm to5mm. Then the stress distribution of maxillary sinus membrane surface was calculated and statistical analyzed.
     4Influence on membrane deformation by different operation mode.
     According to whether the autogenous bone and allogenic bone were used, Closed maxillary sinus lifting operation have different operation mode. Through this experiment, the models of maxillary sinus membrane contacting by pure titanium implant, autogenous cancellous bone and hydroxyapatite bone were made and the stress distribution of maxillary sinus membrane surfaces from lmm to5mm were calculated separately and compared.
     Main results
     1The thin shell model of maxillary sinus membrane and Cylinder model of implant were generated by Preprocessor module in ANSYS finite element analysis software. Then, they were given corresponding mechanical parameters and meshed in SHELL63shell element. So we got the finite element analysis model of maxillary sinus membrane which has930nodes,1758units and implant model which has1113nodes,2172units. Cylinder implant model was set to contact and move the circle maxillary sinus membrane model to simulate Closed maxillary sinus lifting operation.
     2Through the stress analysis of three thickness of maxillary sinus membrane when they were lift from lmm to5mm, we found the tensile gradually transition from the top to the edge of maxillary sinus membrane accompanying with the lift height increasing. High deformation zone occurs at the top center of maxillary sinus membrane. At the same height, the thicker of maxillary sinus membrane, the smaller of the high deformation area. When the maxillary sinus membrane was lift to5mm, the maximum Von Mises stress value at the top center of maxillary sinus membrane is not significant difference compared0.3mm,0.5mm and0.8mm three thickness membrane (P>0.05).
     3Through analysis equivalent stress values of0.3mm thickness of maxillary sinus membrane surface when it was lift from lmm to5mm, we found mild membrane stress changes when the membrane was lift1-3mm and the average stress values showed no significant difference (P>0.05). When maxillary sinus membrane was lift4mm, membrane stress increases and the average stress has a statistically significant difference compared with lmm,2mm,3mm (P<0.05). When maxillary sinus membrane was lift5mm, membrane stress values were significant difference compared with lmm,2mm,3mm and4mm (P<0.05).
     4With the increasing of implant diameter, the district range of maxillary sinus membrane maximum stress value enlarges moderately. According to the result of statistical analysis, the equivalent stress values of four diameter implants show significant difference with others when they were elevated from1mm to5mm (P<0.05).
     5This experimental results show that almost no difference on the effect of the maxillary sinus membrane deformation comparing with elevating by implant, grafting autogenous cancellous bone and hydroxyapatite bone substitute materials.
     Main conclusions
     1The membrane perforation risk is no different when maxillary sinus membrane thickness range from0.3mm to0.8mm in Closed maxillary sinus lifting operation.
     2When maxillary sinus membrane is lift to4mm, the Von Mises stress values of membrane surface increases substantially and faces more probability to perforate. Therefore, the lift height of maxillary sinus membrane should be controlled within3mm in Closed maxillary sinus lifting operation.
     3With the diameter growing, the maximum stress value range in the center area of maxillary sinus membrane was abroad moderately.The wider diameter implants can reduce the chance of maxillary sinus membrane perforation and are more suitable to be used in Closed maxillary sinus lifting operation.
     4The effect on membrane deformation by implant, grafting autogenous cancellous bone and hydroxyapatite bone substitute materials has no difference within5mm height. Closed maxillary sinus floor lifting operation with implant elevating the maxillary sinus membrane directly is the most simple and minimally invasive way in clinical work.
     However, our research has limitation for anatomical structure complexity of the maxillary sinus and the error of FEM model. We believe that biomechanical study of maxillary sinus area implant will provide more theoretical basis for clinical application in the future.
引文
[1]Tatum OH.Maxillary sinus elevation and subantral augmentation, Lecture, Alabama Implant Study Group, Birmingham, Ala,May 1977.
    [2]Tatum OH.Maxillary sinus implant reconstruction.Dent Clin North Am.1986, 30:207-229
    [3]张运听,赖红昌,张志勇.上颌窦挤压提升术的临床应用及研究进展.口腔材料器械.2009,18(1):43-45
    [4]Summers RB. A new concept in maxillary implant surgery:the osteotome technique.Compendium,1994,15(2):152-162.
    [5]Summers RB. The osteotome technique. Part 3. Less invasive methods in elevation of the sinus floor. Compendium of Continuous Education in Dentistry.1994, 15(6):698-708.
    [6]Summers RB. The osteotome technique:Part4--Future site development.Com pend Con tin Educ Dent.1995,16(11):1080,1092-1099.
    [7]Summers RB. Sinus floor elevation with osteotomes.J Esthet Dent.1998, 10(3):164-171.
    [8]Chen L,ChaJ.An 8-years retrospective study:1100 Patients receiving 1557 imPlants using the minimally invasive hydraulic sinus condensing technique.J periodontal,2005,76(3):482-491.
    [9]Pommer B, Watzek G. Gel-Pressure technique for flapless transcrestal maxillary sinus floor elevation:a Preliminary cadaveric study of a new surgical technique. Int J Oral Maxillofac ImPlants,2009,24(5):817-822.
    [10]范震,王方,王佐林.超声骨刀在上颌窦内提升术中的应用.口腔领面外科杂志.2010,20(1):24-27.
    [11]赵保东,肖菲,徐昊,辛策,张永喆,张伟伟,上颌后牙区骨量不足的种植对策.中 国口腔种植学杂志.2013,18(2):86.
    [12]黄文秀,简小冲,郭建斌,陈江.闭合式上颌窦提升术在口腔种植的应用.福建医科大学学报.2006,40(6):632-634.
    [13]Strietzel FP, Nowak M, KTM hler I, et al. Peri-implant alveolar bone loss with respect to bone quality after use of the osteotome technique:results of a retrospective study. Clin Oral Implants Res.2002,13(5):508-513.
    [14]Leblebicioglu B, Ersanli S, Karabuda C, et al. Radiographic evaluation of dental implants placed using an osteotome technique. J Periodontol.2005,76(3):385-390.
    [15]Noumbissi S,Lozada J, Bovne P, et al. Clinical, histologic, and histomorphometric evaluation of mineralized solvent dehydrated bone allograf(Puros) in human maxillary sinus graft s.J Oral Implantol.2005,31(4):171-179.
    [16]Ardekian L, Oved-Peleg E, Mactei EE, et al. The Clinical Significant of Membrane Perforation During Augmentation of the Maxillary Sinus.Maxillofac Surg,2006,64(2):277-282.
    [17]Nkenke E,Schlegel A,Schultze mosgau S, et al. The endoscopically controlled osteotome sinus floor elevation:a preliminary prospective study.Int J Oral Maxillofac Implants.2002,17(4):557-566.
    [18]Bragger U, Gerber C, Joss A, et al. Patterns of tissue remodeling after placement of ITI dental implants using an osteotome technique:a longitudinal radiographic case cohort study. Clin oral Implants Res,2004,15(2):158-166.
    [19]付升旗.口腔解剖生理学[M].西安:世界图书出版公司,2008:81-83.
    [20]陈玲珑,孙丽清,兰宝金等.改良式上颌窦手术的临床应用解剖.中国临床解剖学杂志.2008,26(2):151-153.
    [21]Yoshiko A, Naofami O, Masakazu G, etal.Root of the maxillary first and second molars in horizontal relation to alveolar cortical plates and maxillary sinus:computer tomography assessment for infection spread. Clinical Oral Investigations, 2006,10(1):35-41.
    [22]马宏涛,孙坚,李军等.上颌骨三维重建术后患者咀嚼功能的评价.华西口腔医学杂志,2005,23(1):29-31.
    [23]田涌泉.耳鼻咽喉-头颈外科学[M].第六版.北京:人民卫生出版社,2004:34
    [24]Morgensen,C.Tos,M. Quantitative Histology Of the maxillary sinus.Rhinology. 1977,15(3):129-40
    [25]曾卫东,骆文龙.鼻腔鼻窦黏膜黏液纤毛系统研究进展.重庆医学.2004,33(12):1886-1888
    [26]董震,王荣光.鼻科学基础与临床[M].北京:人民军医出版社,2006:132-133
    [27]Kalcioglu MT,Durmaz B,Aktas E, etal. Bacteriology of chronic maxillary sinusitis and normal maxillary sinuses:using culture and multiplex polymerase chain reaction.Am J Rhinol,2003,17(3):143-147
    [28]赵阳,徐欣.上颌窦底提升术与上颌窦基本生理的相互作用.中国口腔种植学杂志.2013,18(1):48-50.
    [29]Timmenga NM, Raghoebar GM, Liem RSB, et al. Effects of maxillary sinus floor elevation surgery on maxillary sinus physiology. Eur J Oral Sci,2003,111: 189-197.
    [30]FL.ONISOR-GLIGOR,ONDINE LUCACIU, R.CAMPIAN. Experimental study on histological changes in the sinus membrane following sinus lift Rom J Morphol Embryol.2011,52(4):1293-1297.
    [31]NICOLAAS M, TIMMENGA, GERRY M.RAGHOEBAR, GEERT BOERING. Maxillary Sinus Function After Sinus Lifts for the Insertion of Dental Implants. J Oral Maxillofacial Surg.1997,55:936-939.
    [32]Carmeli G, Artzi Z, Kozlovsky A, Segev Y, Landsberg R.Antral computerized tomography pre-operative evaluation:relationship between membranel thickening and maxillary sinus function.Clin Oral Impl.2011,22:78-82.
    [33]Nedir R, Bischof M, Vazquez L, et al. Osteotome sinus floor elevation without grafting material:a 12 year prospective pilot study with ITI implants.Clin Oral Implants Res,2006,17(6):679-686.
    [34]Maiorana C, Sigurt,,D, Mirandola A, et al. Sinus elevation with alloplasts orxenogenic materials and implants:an up to 4 year clinical and radiologic follow-up. Int J Oral Maxillofac Implants.2006,21(3):426-432.
    [35]Rahmani M, Shimada E, Rokni S, et al. Osteotome sinus elevation and simultaneous placement of porous2 surfaced dental implants:a morphometric study in rabbits. Clin Oral Implants Res.2005,16(6):692-699.
    [36]Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, Belser UC, Lang NP.Long-term evaluation of non-submerged ITI implants. Part 1:8-year life table analysis of a prospective multi-center study with 2359 implants.Clin Oral Implants Res.1997,8(3):161-172
    [37]Cochran DL, Buser D, ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, Peters F, Simpson JP.The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface:early results from clinical trials on ITI SLA implants.Clin Oral Implants Res.2002,13(2):144-153
    [38]Fugazzot to PA. Immediate implant placement following a modified trephine/osteotome approach:success rates of 116 implants to 4 years in function.Int J Oral Maxillofac Implants.2002,17(1):113-120.
    [39]Toffler M. Osteotome mediated sinus floor elevation:a clinical report. Int J Oral Maxillofac Implants.2004,19(2):266-273.
    [40]Shalabi MM, Manders P, Mu lder J, et al. A meta analysis of clinical studies to estimate the 4.5 year survival rate of implants placed with the osteotome technique.Int J Oral Maxillofac Implants.2007,22(1):110-116.
    [41]Ferrigno N, Laureti M, Fanali S. Dental implants placement in conjunction with osteotome sinus floor elevation:a 12 year life table analys is from a prospective study on 588 ITI implants.Clin Oral Implants Res,2006,17(2):194-205.
    [42]Krennmair G, Krainhfner M,SchmidSchwap M, et al. Maxillary sinus lift for single implant supported restorations:a clinical study. Int J Oral Maxillofac Implants.2007,22(3):351-358.
    [43]Winter AA, Pollack AS, Odrich RB. Sinus/alveolar crest tenting (SACT):a new technique for implant placement in atrophy maxillary ridges without bone grafts or membranes. Int J Periodontics Restorative Dent.2003,23(6):557-565.
    [44]Vlassis JM, Fugazzotto PA. A classification system for sinus membrane perforations during augmentation procedures with options for repair. J Periodontol.1999,70(6):692-699.
    [45]Cho-Lee GY,Naval-Gias L.Castrejon-Castrejon S, et al. A 12-year retrospective analytic study of the implant survival rate in 177 consecutive maxillary sinus augmentation procedures.Int J Oral Maxillofac Implants.2010,25(5):1019-1027.
    [46]Vifia-Almunia J, Penarrocha-Diago M, Penarrocha-Diago M. Influence of perforation of the sinus membrane on the survival rate of implants placed after direct sinus lift. Literature update. Med Oral Patol Oral Cir Bucal.2009,14(3):E133-136.
    [47]Promsaefs P,Lozada J,Kim J, Rohrer MD.Repair of the perforated sinus membrane with a resorbable collagen membrane:a human study. Int J Oral Maxillofac Implants.2004,19(3):413-420.
    [48]Oh E, Kraut RA. Effect of Sinus Membrane Perforation on Dental Implant Integration:A Retrospective Study on 128 Patients.Implant Dentistry. 2011,20(1):13-19.
    [49]Herna'ndez-Alfaro F, Torradeflot MM, Marti C. Prevalence and management of Schneiderian membrane perforations during sinus-lift procedures.Clin. Oral Impl Res.2008,19(1):91-98.
    [50]Khoury F.Augmentation of the sinus floor with mandibular bone block and simultaneous implantation:a 6-year clinical investigation. The International journal of oral maxillofacial implants.1999,14(4):557-564.
    [51]S.Srouji, T.Kizhner, D.BenDavid, M.Riminucci. The Schneiderian Membrane Contains Osteoprogenitor Cells:In Vivo and In Vitro Study. Calcif Tissue Int.2009,84:138-145.
    [52]Gruber R, Kandler B, Furst G, Fischer MB, Watzek G. Porcine sinus membrane holds cells that respond to bone morphogenetic protein BMP-6 and BMP-7 with increased osteogenic differentiation in vitro. Clin Oral Implants.2004,15:575-580.
    [53]Steafan Lundgren,Glovanni Cricchio,Vinicius C.Palma,et al. Sinus membrane elevation and simultaneous insertion of dental implants:a new surgical technique in maxillary sinus floor augmentation.Periodontology.2000,47:193-205.
    [54]Troedhan A, Kurrek A, Wainwright M. Biological Principles and Physiology of Bone Re generation under the Schneiderian Membrane after Sinus Lift Surgery:A Radiological Study in 14 Patients Treated with the Transcrestal Hydrodynamic Ultrasonic Cavitational Sinus Lift (Intralift). International Journal of Dentistry. 2012:576238.
    [55]Berengo M, Sivol ell a S, Majzoub Z, et al. Endoscopic evaluation of the bone added osteotome sinus floor elevation procedure. Int J Oral Maxillofac Surg.2004, 33:189-194.
    [56]樊瑜波.口腔生物力学.医用生物力学.2007,22(2):119-120.
    [57]Nagasao T, Nakajima T, Kimura A, et al. The dynamic role of buttress reconstruction after maxillectomy. Plast Reconstr Surg.2005,115(5):1328-1340.
    [58]孙坚,沈毅,李军,王冬梅,王成焘,吴轶群.上颌骨功能性修复中骨性支柱重建的生物力学分析.中国口腔颌面外科杂志.2010,8(1):34-39
    [59]孙坚,李军,张志愿,邱蔚六.上颌骨大型缺损的个体化三维闭合式功能性重建. 中国口腔颌面外科杂志.2003,(1):3-7
    [60]Koca OL, Eskitascioglu G, Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent.2005,93(1):38-44.
    [61]Fanuscu MI,Vu HV,Poncelet B.Implant biomechanics in grafted sinus:a finite element analysis. J Oral Implantol.2004,30(2):59-68.
    [62]袁晓哗,张富强,陆尔奕.上颌窦区牙种植的生物力学研究进展.中国口腔种植学杂志.2009,14(3):94-97
    [63]刘大军,王燕一.有限元法在口腔固定修复研究中的应用.中华老年口腔医学杂志.2011,9(2):122-128
    [64]黄宇文.有限元分析在口腔生物力学中的应用.中国组织工程研究.2012,16(13):2423-2426
    [65]周吕玉.有限元分析的基本方法及工程应用[M].北京:化学工业出版社,2006
    [66]郑诚功.骨科生物力学研究的发展与现状.医用生物力学.2007,22(4):326-327.
    [67]Cotin S, Delingette H,Ayache N.A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. Visual Computer.2000,16(88):437-452.
    [68]许琪华,韩栋伟,陈晔.不同基牙数目的天然牙-种植体联合支持固定桥种植体侧的应力分析.中国美容医学.2008,17(9):1345-1347
    [69]胡建军,周延民,王志彪等.不同载荷下天然牙-种植牙联合桥基牙应力分布.中国口腔种植学杂志.2001,6(1):17-19.
    [70]Ona M, Wakabayash iN. Influence of alveolar support on stress in periodontal structures J Dent Res,2006,85 (12):1087-1091
    [71]Geramy,A.& Faghihi,S. Secondary trauma from occlusion:three dimensional analysis using the finite element method. Quintessence Int.2004,35(10):835-843
    [72]姜茂庆,李德华,孔亮,邱志惠.带凹槽螺纹种植体三维有限元模型的建立.口腔 医学研究.2007,23(2):159-161
    [73]孙艳霞,鲍旭东,蒋春涛.软组织建模中的有限元模型.生物医学工程研究.2004,23(3):137-140.
    [74]殷有泉.固体力学非线性有限元引论[M].北京:.北京大学出版社,清华大学出版社,1987.
    [75]蒋友琼.非线性有限元法[M].北京:.北京北京工业学院出版社.1988.
    [76]冯伟,周新聪,严新平等.接触问题实体建模及有限元法仿真实现.武汉理工大学学报.2004,26(6):52-55.
    [77]H.Delingette,S.Cotin,and N.Ayache.A hybrid elastic model allowing real-time cutting,deformations and force-feedback for surgery training and simulation,Computer Animation 1999,May 26-28,1999, Geneva, Switzerland.
    [78]袁泉,王晓伟,张承瑞.生物瓣膜几何设计理论及其有限元分析.中国组织工程研究与临床康复.2007,11(18):3480-3483
    [79]Hadi Mohammadi, Fereshteh Bahramian, Wankeiwan. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method. Medical Engineering &Physics.2009,31:1110-1117.
    [80]Poppe M, Bourauel C, Jager A.Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop.2002,63(5):358-370.
    [81]Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofacial Orthop. 2003,123(6):657-665.
    [82]Cattaneo PM, Bloch CB, Calmar D, Hjortsh(?)j M, Melsen B. Comparison between conventional and cone-beam computed tomography-generated cephalograms. Am J Orthod Dentofacial Orthop.2008,134(6):798-802.
    [83]魏志刚,汤文成,严斌等.基于有限元法的牙周膜本构模型研究.工程力学.2009,26(10):211-216.
    [84]Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2008,106(1):106-114.
    [85]Suomalainen A, Kiljunen T, Kaser Y, et al. Dosimetryand image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol,2009,38(6):367-378.
    [86]汪文涛,汪永跃.上颌窦底提升术中有关上颌窦黏膜的研究进展.国际口腔医学杂志.2013,40(3):391-394
    [87]沈毅,孙坚,李军,王冬梅,王成焘.正常人上颌骨的生物力学分析.组织工程与重建外科杂志.2009,5(1):25-28
    [88]Pommer B,Unger E,Siito D, et al.Mechanical properties of the Schneiderian membrane in vitro.Clin Oral Implants Res.2009,20(6):633-637.
    [89]简波,宋应亮,李德华,等.含多个种植体的无牙下颌骨三维有限元模型的建立.牙体牙髓牙周病学杂志.2008,18(10):552-555.
    [90]王虎,李娜.锥形束CT在上颌窦底提升术中的应用.中国实用口腔科杂志.2011,4(10):581-585.
    [91]Gross MD, Nissan J, Samuel R. Stress distribution around maxillary implants in anatomic photo elastic models of varying geometry. Part Ⅰ. J Prosthet Dent.2001, 85(5):442-449.
    [92]Peleg M, Garg AK, Mazor Z. Predictability of simultaneous implant placement in the severely atrophic posterior maxilla:A 9-year longitudinal experience study of 2132 implants placed into 731 human sinus grafts.Int J Oral Maxillofac Implants.2006,21(1):94-102.
    [93]Del Fabbro M, Corbella S, Weinstein T, et al. Implant survival rates after osteotome-mediated maxillary sinus augmentation:a systematic review.Clin Implant Dent Relat Res,2011,14.doi:10.1111/j.1708-8208.
    [94]Boyne PJ. Augmentation of the posterior maxilla by way of sinus grafting procedures:recent research and clinical observations. Oral Maxillofac Surg Clin North Am.2004,16(1):19-31.
    [95]解永富,邹长萍.闭合式上颌窦底提升术同期种植体植入临床应用分析.口腔医学.2009,29(12):646-648.
    [96]刘存津.上颌窦底提升种植体同期植入的体会.中国医药指南.2012,10(21):572-573
    [97]仲维剑,陈斌科,马国武.种植体穿通上颌窦的实验研究.中国口腔种植学杂志.2009,14(2):20.
    [98]Degidi M,Daprile G,Piattelli A, et al. Evaluation of factors influencing resonance frequency analysis values,at insertion surgery,of implants placed in sinus-augmented and nongrafted sites.Clin Implant Dent Relat Res.2007,9(3):144-149.
    [99]Lucie, H., Tat'jana, D. & Alois, K. Influence of implant length and diameter on stress distribution:A finite element analysis. J Prosthet Dent.2004,92:139-144.
    [100]Tepper G, Haas R, Zechner W,etc. Three-dimensional finite element analysis of implant stability in the atrophic posterior maxilla:a mathematical study of the sinus floor augmentation. Clin Oral Implants Res.2002,13(6):657-665
    [101]Huang HL, Hsu JT, Fuh LJ, etc. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant:A non-linear finite element study. J Dent.2008,36(6):409-417.
    [102]储顺礼,周延民,孟维艳,岳贵平.种植体直径对颧骨种植义齿骨界面应力分布的影响.吉林大学学报(医学版).2009,35(4):718-722
    [103]Tuncelli B, Poyrazoglu E, Koyluoglu AM, et al.Comparison of load t ran sfer b y implant abutm ent s of various diameters. Eur J Prosthodont Rest or Dent,1997,5 (2):79-83.
    [104]苏爱军,邹敬才,姚小娣,肖杰.种植体直径和长度在Ⅳ类骨质中的优化选择.临床口腔医学杂志.2007,23(10):592-594
    [105]赖红昌,张志勇,张运听.单纯上颌窦内提升术同期牙种植的临床应用.上海口腔医学.2008,17(6):578-581.
    [106]Kolerman R1, Barnea E. Crestal core elevation technique--case series and literature review. Refuat Hapeh Vehashinayim.2008,25(2):27-35,74.
    [107]王俭,顾晓明.不植骨上颌窦内提升术三维有限元模型建立及功能载荷下的应力分布.武警后勤学院学报(医学版).2013,22(9):799-804
    [108]孙小娟,蒋欣泉,张志愿.上颌窦底提升的研究进展.国际口腔医学杂志.35(1):65-67.
    [109]卢红飞,麦志辉,陈奇,陈越,艾虹.不同加载方式压低上前牙时初始应力在牙体、牙周膜及牙槽骨分布的三维有限元分析.中国组织工程研究与临床康复.2011,15(48):8964-8967.
    [110]赵巍,侯振德,任朝峰,毕平.骨细胞培养过程对羟基磷灰石力学性质影响的研究.实验力学.2009,24(1):1-7.
    [111]Draenert GF, Eisenmenger W. A new technique for the transcrestal sinus floor elevation and alveolar ridge augmentation with press-fit bone cylinders:a technical note. J Craniomaxillofac Surg.2007,35(4-5):201-206.
    [112]Browaeys H, Bouvry P, De Bruyn H. A literature review on biomaterials in sinus augmentation procedures. Clin Implant Dent Relat Res.2007,9(3):166-177.
    [113]Garofalo GS. Autogenous, allogenetic and xenogenetic grafts for maxillary sinus elevation:literature review, current status and prospects. Minerva Stomatol. 2007,56(7-8):373-392.
    [114]王奕,马国武.骨移植材料在种植中的实验与应用研究.口腔医学研究.2005,21(2):215-216.
    [115]Block M.S.,Kent J.N. sinus augmentations for dental implants, the use of autogenous bone. Int J Oral Maxillofac Surg.1997,55:1281-1286.
    [116]Chanavaz M. Sinus grafting related to implantology. Statistical analysis of 15 years of surgical experience (1979-1994). J Oral Implantol.1996,22(2):119-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700