用户名: 密码: 验证码:
竹纤维细胞力学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为材料的组成物质或增强相,天然竹纤维本身的力学特性和变异程度却很少为人所知。作者以毛竹(Phyllostachys edulis)纤维细胞为主要研究对象,使用纳米压痕技术、单纤维拉伸技术、纤维束拉伸技术和传统的力学测试,首次从亚细胞水平、细胞水平、组织水平到宏观各个尺度,系统研究了毛竹纤维细胞的纵向力学性质,分析了影响力学性质的各种因素,重点考虑竹龄对毛竹纤维细胞力学性能的影响,并首次将毛竹纤维和马尾松(Pinus massoniana)木材纤维的细胞及细胞壁力学特性进行对比,以便揭示竹材结构设计和优良力学性能的本质,从而更加科学、合理的选择竹纤维原料,设计开发出高性能、高附加值的产品,促进生产工艺的不断更新,同时,也为竹材品质的基因改良和定向培育提供量化的目标和指标,丰富和推动我国木材科学理论体系的发展,具有非常重要的理论和实际意义。
     论文的主要研究结果如下:
     1.亚细胞水平上毛竹纤维的纵向力学性质
     (1)应用纳米压痕技术的研究结果表明,微管束不同位置处,毛竹纤维细胞壁的纵向弹性模量变化不大,以21或22 GPa为中线上下波动,但是,微管束的边缘,细胞壁的纵向弹性模量相对较小,为15.61 GPa,且变化不稳定;毛竹纤维细胞壁硬度的变化范围为0.4665-0.5603 GPa,从微管束中心向外呈逐渐减小趋势。
     (2)1月、2月、6月(0.5年)、18月(1.5年)竹龄的毛竹纤维细胞壁的纵向弹性模量相差不大。1月龄的弹性模量平均值与18月龄的相当,达到21.51 GPa。毛竹纤维细胞壁的硬度随竹龄呈增加趋势,变化范围为0.4673-0.6022 GPa,且在0.01水平上差异显著。
     2.细胞水平上毛竹纤维的纵向力学性质
     (3)应用单纤维拉伸技术的测定结果表明,室温下气干毛竹单纤维的荷载位移曲线为近乎完美的直线,无明显的塑性屈服,呈现典型的脆性断裂,断口形貌分为多级脱层断裂和近齐口断裂,两种模式在不同竹龄中均有分布,以多级脱层断裂为主。
     (4)对于0.5、1.5、2.5、4.5、6.5、8.5年竹龄的毛竹纤维,纵向抗拉强度和弹性模量在竹龄间变化不大,总体平均值分别为1543.77 MPa和33.86 GPa,平均破坏应变在竹龄间的变化相对集中,在3.63%到5.74%之间,平均值为4.85%。
     (5)毛竹纤维细胞壁的纵向力学特性在0.5年时已经达到力学上的成熟。
     3.毛竹与马尾松纤维细胞及细胞壁力学性质对比
     (6)毛竹单纤维平均抗拉强度和弹性模量均高出马尾松单纤维一半以上,展现出良好的高强、高弹、高变形性能。毛竹单纤维的断裂应变比马尾松高,拉断后的断口形貌以多级脱层为主,而马尾松幼龄材以不规则的撕裂型断口为主,成熟材多展现平整的横向断口。毛竹纤维次生壁的弹模和硬度优于马尾松,两者的差距达到10%左右。两者力学性质的差异与微纤丝角和细胞壁结构高度相关。
     4.毛竹纤维束的纵向力学性质
     (7)毛竹纤维束的荷载位移曲线与单纤维的相似,为直线性脆性断裂。毛竹纤维束的平均抗拉强度为461.03 MPa,平均弹性模量为37.74 GPa,两者的变异系数约25%;断裂时的平均应变为1.27%。
     5.毛竹纤维与宏观力学性质的关系
     (8)毛竹宏观薄片的应力应变曲线分布较为分散,为脆性断裂。竹壁径向不同位置的力学性质差异很大,近竹青处的力学性质远远高于近竹黄处,这与毛竹纤维含量的梯度分布高度相关。近竹青处薄片的断口为沿顺纹理的纵向劈裂,竹中处的断口呈现参差不齐的劈裂特征,近竹黄处的断口为相对整齐的横向断裂。
     (9)宏观薄片的平均抗拉强度和弹性模量数值占纤维束数值的三分之一左右。纤维束的平均抗拉强度和破坏应变分别占纤维细胞的29.83%和26.19%,平均弹性模量基本相当。根据毛竹宏观薄片的试验数据和细观力学混合定律推算出的纤维束的抗拉强度和弹性模量分别为651.506 MPa和52.0185 GPa,其数值高于纤维束力学性质实测值,薄壁细胞基本组织的抗拉强度和弹模分别为16.956 MPa和0.8685 GPa。
     (10)高强的纤维或纤维束是毛竹材优良的增强相,薄壁细胞组成的基本组织能够很好的吸收、传递、均布荷载,两者共同作用使毛竹力学特性优良,为设计绝妙的天然纤维基复合材料。
As the constitute substance or reinforcement of materials, the mechanical properties and variation of natural bamboo fibers are known little. In this study, the nanoindentation technique, the single fiber tension technique , the fiber bundle tension technique and conventional mechanical test were used to study systemly the mechanical properties of fibers of Moso bamboo (Phyllostachys edulis) at the subcellular, cell, tissue and macroscopic scale for the first time. The various factors affecting the mechanical properties were analysed. The influence of age factor on the mechanical properties of bamboo fiber was emphatically considered. The mechanical properties of fiber cell wall and single fiber of Moso bamboo and Masson pine (Pinus massoniana) were compared firstly. In order to reveal the structure design and excellent mechanical properties of bamboo, so as to choose bamboo fibers more scientifically and rationally, to design and develop the products with high properties and high value-added, to promote the continuous update of production process. Meanwhile, that would provide quantifiable objective and indexes for the gene modified and oriented cultivation of bamboo, enriching and improving the development of wood science of China, and would be very important for the theoretics and practice.
     The main research results were as follows:
     1. The longitudinal mechanical properties of fibers of Moso bamboo on the cell wall level
     (1)The study results of using nanoindentation showed that, in different positions of the vascular bundle, the longitudinal modulus of elasticity of cell wall of bamboo fiber were similar, the value were fluctuated at the middle line of 21 or 22 GPa. However, near the edge of the vascular bundle, the longitudinal modulus of elasticity of cell wall were relative small, which was about 15.61 GPa, and the values were very instable. The range of hardness of cell wall of bamboo fiber was from 0.4665 to 0.5603 GPa, and the measurement results showed a decreasing tendency from the center to edge of the vascular bundle.
     (2) The longitudinal modulus of elasticity of cell wall were comparable in value for the bamboo fibers with the age of 1, 2, 6 and 8 months. For the 1 month cell wall, the average value of modulus of elasticity reached to 21.51 GPa, which corresponded to those of 18 months. An increasing trend of cell wall hardness were found with different age, and the value ranged from 0.4673 to 0.6022 GPa, and the difference was significant at 0.01 level.
     2. The longitudinal mechanical properties of fibers of Moso bamboo on the cell level
     (3)Single fiber tension test proved that the load-displacement curves of air dried bamboo single fiber were nearly perfect line at room temperature, which had no significant yield and slippage, presenting a typical brittle fracture. The fracture surfaces of single fibers were divided into multilevel off-layer fracture and transverse break. The two kinds of fracture were all be found among different age, but the former were more ordinary.
     (4)For the bamboo fibers of 0.5, 1.5, 2.5, 4.5, 6.5, 8.5 years old, the tensile strength and modulus of elasticity of longitudinal changed little, the average values of which were 1543.77 MPa and 33.86 GPa, respectively, and the average break strain changed very small, between 3.63% and 5.74%, with an average value of 4.85%.
     (5)The longitudinal mechanical properties of cell wall of bamboo fibers achieved to optimization in the years old of 6 months.
     3. Comparetion of mechanical properties of fiber cell and cell wall of Moso bamboo and Masson pine
     (6)The average tensile strength and modulus of elasticity of bamboo single fibers were one and a half bigger than that of Masson pine single fibers. The bamboo fibers showed better strength, higher elasticity and bigger deformation performance. The break strain of bamboo fibers were bigger than those of pine, and the multilevel off-layer fracture were conmmon in bamboo fibers, however, for pine, irregular brush fracture was usually found in the juvenile wood, and transverse fracture was usually found in the mature wood. The modulus of elasticity and hardness of secondary cell wall of bamboo fibers were superior to those of pine fibers, the difference between them reached to 10%. The differences of mechanical properties between them were correlated highly to the microfibril angle and cell wall structure.
     4. The longitudinal mechanical properties of fiber bundles of Moso bamboo
     (7)The load-displacement curves of fiber bundles were similar to those of single fibers, all of them were linear brittle fracture. For bamboo fiber bundles, the average tensile strength was 461.03 MPa, the average modulus of elasticity was 37.74 GPa, both coefficient variation of them were all about 25%, the the average break strain was 1.27%.
     5. Correlation of bamboo fibers and the macroscopic mechanical properties
     (8)The distribution of stress-strain curves of thin slices were very scattered, and the fracture was brittle. On radial direction of bamboo, the mechanical properties was different, which was biggest in the outer part of bamboo, this difference were highly correlated with the gradient distribution of bamboo fibers content. In the outer part of bamboo, the fracture of thin slices was longitudinal splittary, in the middle part, the fracture showed uneven splitting feature, in the inner part, the fracture presented relative smooth, transverse feature.
     (9)The average tensile strength and modulus of elasticity of thin slices accounted for about one third of fiber bundles. The average tensile strength and break strain of fiber bundles were about 26.19% and 29.83% of fibers, respectively, while the average modulus of elasticity were roughly equal. According to the tested data of thin slices and the mixed law, the calculated tensile strength and modulus of elasticity of fiber bundles were 651.506 MPa and 52.0185 GPa, respectively, both of them were higher than the tested value, and 16.956 MPa and 0.8685 GPa for parenchyma.
     (10)The fibers or fiber bundles with high strength are the better reinforcement substance for bamboo, and the ground tissue constituted by parenchyma can absorb, transmit, uniform load, both of them make the mechanical properties of bamboo excellent. Bamboo is natural fiber composites of excellent designed.
引文
鲍甫成,江泽慧,费本华,等. 1998.中国主要人工林树种木材性质.北京:中国林业出版社.
    曹双平,王戈,余雁,等,2009.微拉伸技术测试植物单根短纤维力学性能对水分依赖特性.第二届中国林业学术大会.广西南宁. 544-547
    程庆正,王思群. 2007.天然木质微/纳纤丝增强纳米复合材料的研究现状.林产工业,34(3): 3-7
    费本华,张波,余雁,等. 2006.马尾松纤维的力学性能研究.中国造纸学报,21(4):1-4.
    甘小洪. 2005.毛竹茎杆纤维细胞的发育生物学研究.南京林业大学博士论文.
    侯丽薇,谢赤. 2008.我国成为全球家具制造中心的动力因素研究.工业技术经济,27(10):40-42
    黄盛霞,马丽娜,邵卓平,等. 2005.毛竹微观构造特征与力学性质关系的研究.安徽农业大学学报,32 (2):203~20
    黄振英. 2004.马尾松正常木与应压木生长应力及材性的比较研究.安徽农业大学硕士论文.
    黄艳辉,费本华,王戈,等. 2009.单纤维拉伸技术研究毛竹纤维细胞壁力学性质.第八届中国国际纳米科技研讨会,湘潭.
    黄艳辉,费本华,余雁,等.毛竹单根纤维力学性质.中国造纸,2009, 28 (8): 10-12
    黄艳辉,赵荣军,费本华,等. 2007.杉木木材微纤丝角变异规律的研究.西北林学院学报,24(1): 119-122
    嵇伟兵,姚文斌,马灵飞. 2007.龙竹和绿竹竹材壁厚方向的梯度力学性能.浙江林学院学报,24(2):125-129
    江泽慧,萧江华,许煌灿. 2002.世界竹藤.辽宁科学技术出版社
    江泽慧,余雁,费本华,等. 2004.纳米压痕技术测量管胞次生壁S2层的纵向弹性模量和硬度.林业科学,40(2):113-118.
    李霞镇. 2009.毛竹材力学及破坏特性研究.中国林业科学研究院硕士论文.
    李正理,靳紫宸,腰希申. 1962.国产竹材的比较解剖观察续报.植物学报,10 (l): 15-27
    李正理,靳紫宸. 1960.几种国产竹材的比较解剖观察.植物学报, 9 (l): 76-95
    林金星,李正理. 1993.马尾松正常木与应压木的比较解剖.植物学报,35(3):201-205
    刘波. 2008.毛竹发育过程中细胞壁的生物形成.中国林业科学研究院,博士论文.
    邵卓平,张红为. 2009.毛竹的纤维和基本组织的力学性质.第三届全国生物质材料科学与技术学术研讨会.中国黄山. 52-55
    申宗圻. 1993.木材学.中国林业出版社.北京
    田根林,王汉坤,余雁,等. 2009.微纤丝取向对木材细胞壁力学性能的影响研究.第八届中国国际纳米科技研讨会,湘潭.
    田根林,江泽慧,余雁,等. 2009.竹材韧性之源:两相复合材料结构及多级弱界面机制.第三届全
    国生物质材料科学与技术学术研讨会.中国黄山. 81-84
    王朝晖. 2001.竹材材性变异规律与加工利用研究.中国林业科学研究院博士论文
    温太辉,周文伟. 1984.中国竹类维管束解剖研究初报(之一).竹子研究汇刊,3(1):1-21
    温太辉,周文伟. 1985.中国竹类维管束解剖研究初报(之二).竹子研究汇刊,4(1):28-41
    吴燕,周定国,王思群,等. 2007.纳米压痕技术在木材科学中的应用[J].世界林业研究,20(3):51-55
    冼杏娟,冼定国. 1990.竹材的微观结构及其力学性质的关系.竹子研究汇刊,9(3):10-23
    谢存毅.2000.纳米压痕技术在材料科学中的应用.实验技术,30 (7):432~435.
    许斌,蒋身学,张齐生. 2003.毛竹生长过程中纤维壁厚的变化.南京林业大学学报,27(4):75-77
    杨云芳,刘志坤.1996.毛竹材顺纹抗拉弹性横量及顺纹抗拉强度.浙江林学院学报,13 (1):2l-27
    叶民权.1995.竹维管束抗张强度之评估.中华林业季刊,9 (1):129-137
    于伟东. 2006.纺织材料学.北京:中国纺织出版社.
    余雁,王戈,费本华,等. 2008.植物短纤维专用力学性能测试仪的研制和开发.第二届全国生物质材
    料科学与技术学术研讨会.内蒙古呼和浩特. 559-563
    余雁,王戈,费本华,等.植物短纤维专用力学性能测试仪的开发和应用.北京林业大学学报.收录.
    余雁,费本华,张波,等. 2006.零距拉伸技术评价木材管胞纵向抗拉强度.林业科学,42(7):83-86.
    余雁,江泽慧,费本华,等. 2003.管胞细胞壁力学研究进展评述.林业科学,39(5):133-139.
    余雁,江泽慧,任海青,等. 2007.针叶材管胞纵向零距抗张强度的影响因子研究.中国造纸学报, 22(3):72-76.
    余雁. 2003.人工林杉木管胞的纵向力学性质及其主要影响因子研究.中国林业科学研究院博士学位论文.
    余雁.2003.人工林杉木管胞的纵向力学性质及其主要影响因子研究.中国林业科学研究院博士论文.
    虞华强费本华任海青,等. 2006.毛竹顺纹抗拉性质的变异及与气干密度的关系.林业科学,42(3):72-76
    张齐生,关明杰,纪文兰. 2002.毛竹材质生成过程中化学成分的变化.南京林业大学学报,26(2):7-10
    张晓东,程秀才,朱一辛. 2006.毛竹不同高度径向弯曲性能的变化.南京林业大学学报,30(6):44-46
    周芳纯. 1998.竹林培育学.北京:中国林业出版社
    Armstrong J P, Kyanka G H, Thorpe J L. 1977. S2 fibril angle and elastic modulus relationship of TMP Scotch Pine fibers. Wood Science, 10(2): 72–80.
    Bergander A, Salmen L. 2000a. The transverse elastic modulus of the native wood fibre wall. Journal of Pulp and Paper Science, 26(6): 234-238.
    Bergander A, Salmen L. 2000b. Variation in transverse fiber wall properties: relation between elastic properties and structure. Holzforschung , 54(6): 654-660.
    Bieke L,Joris V,Paul G. 2006. Variability in fibre and parenchyma cell walls of temperate and tropical bamboo culms of different ages. Wood Sci Technol. 40: 477–492
    Burgert I, Eder M, Fruhmann K, et al. 2005. Properties of chemically and mechanically isolated fibers of Spruce Part3: Mechanical characterisation. Holzforschung, 59: 354-357.
    Burgert I, Fruhmann K, Keckes J, et al. 2005. Properties of chemically and mechanically isolated fibers of Spruce Part 2: Twisting phenomena. Holzforschung, 59: 247-251.
    Burgert I, Fruhmann K, Keckes J, et al.2004. Structure-function relationships of four compression wood types: micromechanical properties at the tissue and fibre level. Trees, 18(4): 480-485
    Burgert I, Gierlinger N, Zimmermann T. 2005. Properties of chemically and mechanically isolated fibers of Spruce Part1: Structural and chemicalcharacterisation. Holzforschung, 59: 240-246.
    Burgert I, Keckes J, Fruhmann K, et al. 2002. A comparison of two techniques for wood fiber isolation- evaluation by tensile tests on single fibers with different microfibril angle. Plant Biol, 4: 9-12.
    Cave I D, Walker J C F. 1994. Stiffness of wood in fast-grown plantation softwoods : the influence of microfibril angle. Forest Prod J, 44(5):43-48
    Cave I D. 1968. The anisotropic elasticity of the plant cell wall. Wood Sci. Technol. 2 (4): 268–278.
    Cave I D. 1969. The longitudinal Young’s modulus of Pinus radiata. Wood Sci. Technol. 3 (1): 40–48.
    Donaldson L A, Singh A P, Yoshinaga A, et al.1999. Lignin distribution in mild compression wood of Pinus radiate. Can. J. Bot. 77: 41–50
    Eder M, Burgert I, Tschegg S. 2006. Relaxation experiments on wood fibres and tissues. In: Proceedings of the Third International Conference of the European Society for Wood Mechanics, FCT, Vila Real, Portugal. 141–147.
    Eder M, Jungnikl K, Burgert I. 2009. A close-up view of wood structure and properties across a growth ring of Norway spruce ( Picea abies [L] Karst.). Trees. 23: 79-84
    Eichhorn S J, Baillie C A . 2001. Review: Current international research into cellulosic fibers and composites. Journal of Materials Science, 36: 2107–2131.
    Elsa L, Ehrnrooth, Petter K. 1984. The tensile testing of single wood pulp fibers in air and in water. Wood and Fiber Science, 16(4): 549-566.
    Evans R, Ilic J. 2001. Rapid prediction of wood stiffness from microfibril angle and density.For Prod J, 51(3):53-57
    Fan Z, Swadener J G, Rho J Y, et al. 2002. Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Orthop. Res. 20:806– 810
    Gibson L J, Ashby M F. 1988. Cellular solids,structure and properties.Pergamon Press.
    Gindl W, Schoberl W T. 2004. The significance of the elasticity modulus of wood cell walls obtained from nanoindentation measurements. Composites Part A, 35: 1345-1349
    Gindl W,Gupta H S, Grunwald G. 2002. Lignification of spruce tracheids secondary cell wall related to longitudinal hardness and modulus of elasticity using nano- indentation. Can J Bot, 80: 1029-1033
    Groom L H, Shaler S M, Mott L. 2002b. Mechanical properties of individual Southern Pine fibers. Part III : Global relationships between fiber properties and fiber location within an individual tree. Wood and Fiber Science, 34(2): 238-250.
    Groom L H, Mott L, Shaler S M. 2002a. Mechanical properties of individual southern pine fibers. Part I: Determination and variability of stress-strain curves with respect to tree height and juvenility. Wood and Fiber Science, 34(1): 14-27.
    Grosser D, Liese W. 1979. On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood science and Teehnology, 5 : 290-312
    Hardacker K W. 1970. Effect of loading rate, span and beating on individual wood fiber tensile properties. Tappi Spec. Tech, 8: 201-211.
    Hardacker KW. 1963. The automatic recording of the load2elongation characteristics of single papermaking fibers. Tappi, 45 (3) : 237-246.
    Harrington JJ, Booker R, Astley RJ. 1998. Modelling the elastic properties of softwood. Part I: The cell-wall lamellae. Holz Roh Werkst 56:37– 41
    Irving B S. 1986. Microscopic observation during longitudinal compression loading of single pulp fibers. Tappi , 69: 98-102.
    Itoh T. 1990. Lignification of bamboo (Phyllostachys heterocycla Mitf.) during its growth. Holzforschung 44: 191–200.
    Jayne B A. 1959. Mechanical properties of wood fiber. Tappi, 42(6): 461- 467.
    Jentzen C A. 1964. The effect of stress applied during drying on some of the properties of individual pulp fibers. Tappi, 47(7): 412-418.
    Kallmes O J . 1960. Distribution of the constiuents across the wall of unbleached Spruce sulfite fibers. Tappi, 43(2): 143-145
    Kallmes O J, Perez M. 1966. Proceedings of the technical section. British Paper Poard Makers’Association. London, 1: 507
    Kellogg R M, Wangaard F F. 1964. Influence of fiber strength on sheet properties of hardwood pulps. Tappi, 47(6): 361-367.
    Kersavage P C. 1973. A systemfor automatically recording the load2elongation characteristics of single wood fibers under controlled relative humidity conditions. USDA. U. S. Government Printing Office. Kim C Y, Page D H. EI-Hosseiny F, et al. 1975. Appl Poly Sci, 19: 1549.
    Klauditz W, Marschall A , Ginzel W. 1947. Zur Technology verholzter pflanzlicher Zellwande. Holzfor -schung, 1(4): 98-103
    Kompella M K, Lambros J. 2002. Micromechanical characterization of cellulose fibers. Polymer Testing, 21: 523-530.
    Lee S H, Teramoto Y, Wang S Q, et al.2007. Nanoindentation of biodegradable cellulose diacetate -grafted-poly (L-lactide)s copolymers - Effect of molecular composition and thermal ageing on mechanical property. Journal of Polymer Science B, 45: 1114-1121
    Lee S H, Wang S Q,Pharr G. 2007. Nano-mechanical properties of the interphase in a cellulose fiber -reinforced polypropylene composite by continuous nanoindentation.Composites:Part A, 61(3):254-260
    Leopold B, McIntosh D C. 1961. Tensile strength of individual fibers from alkali extracted Loblolly Pine holocellulose. Tappi, 44(3): 235-240.
    Leopold B, Thorpe J L. 1968. Effect of pulping on strength properties of dry and wet pulp fibers from Norway Spruce.Tappi, 51(7): 304-308.
    Leopold B. 1966. Effect of pulp processing on individual fiber strength.Tappi, 49(7): 315-318.
    Liese W. 1989. Progress in bamboo research. Jounal of Bamboo Research, 8 (2): 1-16
    Liese W. 1998. The anatomy of bamboo culms. International network for bamboo and rattan (Technical report), 18: 7-99
    Mark R E , Gills P P. 1970. New models in cell wall mechanics. Wood and Fiber, 2(2): 79-95.
    Mark R E. 1967. Cell wall mechanics of trachieds. Yale Univ. Press.
    Mclntosh D C , Unrig L O. 1968. Effect of refining on load2elongation characteristics of Loblolly Pine holocellulose and unbleached kraft fifers. Tappi, 51(6): 265-273.
    Meylan B. 2006. Characterization and modelling of the thermohydro- mechanical behaviour of isolated wood fibres. Master thesis in Material and Science and Engineering, Ecole Polytechnique
    Mott L , GroomL H, Shaler S M. 2002. Mechanical properties of individual Southern Pine fibers. Part II : Comparison of earlywood and latewood fibers with respect to tree height and juvenility. Wood Fiber and Science, 34 (2) : 221-237.
    Mott L , Shaler S M, GroomL H. 1996. A technique to measure strain distribution in single wood pulp fibers. Wood and Fiber Science, 28(4): 429-437.
    Mott L , Shaler S M, GroomL H. 1996. A technique to measure strain distribution in single wood pulp fibers. Wood and Fiber Science, 28 (4): 429-437.
    Mott L. 1995. Micromechanical properties and fracture mechanism of single wood pulp fibers. Doctoral dissertation from Maine University, USA.
    Navi P, Meylan B, Plummer C J G. 2006. Role of hydrogen bonding in wood stress relaxation under humidity variation. In: Proceedings of the International Conference on Integrated Approach to Wood Structure, Behaviour and Application: Joint Meeting of ESWM and COST Action E35, Florence, Italy.92–97.
    Navi P, Rastogi P, Gresse V, Tolou A. 1995. Micromechanics of wood subjected to axial tension. Wood Sci. Technol, 29: 411-429.
    Navi P, Stanzl-Tschegg S. 2009. Micromechanics of creep and relaxation of wood. A review. Holzforschung, 63: 186–195
    Okubo K, Fujii T, Yamamoto Y. 2004. Development of bamboo-based polymer composites and their mechanical properties.Composites Part A: Applied Science and Manufacturing, 35(3):377-383
    Oliver W C,Pharr G M.Animproved technique for deterimining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Mater Res,1992,7(6):1564 - 1583.
    Page D H , EI-Hosseiny F , Winkler K,et al . 1977. Elastic modulus of single wood pulp fibers. Tappi, 60(4): 114-117.
    Page D H, El-Hosseiny F, Winkler K,et al. 1972. The mechanical properties of single wood pulp. Part I : A new approach. Pulp and Paper Magazine of Canada, 73(8): 72-77.
    Page D H, El-Hosseiny F,Winkler K. 1971. Behaviour of single wood fibres under axial tensile strain. Nature, 229(5282): 252–253.
    Page, D.H., El-Hosseiny, F. 1983. The mechanical properties of single wood pulp fibres. Part VI. Fibril angle and the shape of the stress-strain curve. J. Pulp Pap. Sci. 9, 1–2.
    Parham R A, C?téW A.1971. Distribution of lignin in normal and compression wood of Pinus taeda L.. Wood Science and Technology, 5 (1): 49-62
    Richard L H. 1967. The creep behavior of individual pulp fibers under tensile stress. Tappi, 50(8): 432-440. Salmen N L, Olsson A M, Eder M, et al. 2006. Role of hydrogen bonding in wood stress relaxation under humidity variation. In: Proceedings of International Conference on Integrated Approach to Wood Structure, Behaviour and Application. Joint Meeting of ESWM and COST Action E35, Macchioni, Italy. 87–91.
    Sedighi-Gilani M, Navi P.2007. Experimental observations and micromechanical modeling of successive-damaging phenomenon in wood cells’tensile behavior. Wood Sci. Technol,41: 69-85
    Shaler S M, Egan A, Mott L, et al. 1997. Fracture and Micromachanics of resinated fibers. The fourth international conference on woodfiber-plastic composites, 32-39.
    Shaler S M, Mott L. 1996. Microscopic analysis of wood fibers using ESEMand confocal microscopy. Proceeding of the Woodfiber2Plastic Composites , 25– 32.
    Shao Z P, Fang C H,Huang S X, et al. 2010. Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure. Wood Sci Technol. 44 (on line).
    Spurr A R.1969. A low viscosity epoxy resin embedding medium for electron microsoope.Journal of ultrastructure research,26: 31-43
    Swadener J G, Rho J Y, Pharr G M. 2001. Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J Biomed. Mater. Res A. 57:108 - 112
    Takagi H, Takura R, Ichihara Y, et al. 2003. The mechanical properties of bamboo fibers prepared by steam-explosion method. J. Soc. Mater. Sci., Japan. 52(4): 353–356.
    Tamolang F N , Wangaard F F. 1967. Strength and stiffness of hardwood fibers. Tappi, 50(2): 68-72. Tentzen C A. 1964. Tappi, 47(7):412
    Timell T E. 1987. Compression Wood in Gymnosperms. Volume 1-3.
    Tze W T Y, Wang S Q, Rials T G, et al. 2007. Nanoindentation of wood cell walls: Continuous stiffness and hardness measurements. Composites: Part A, 38 : 945-953
    Wang S Q,Lee S H,Tze W T Y,et al.2006. Nanoindentation as a tool for understanding nano-mechanical properties of cell wall and biecompesites. International Conference on Nanotechnology,Marriott Marquis,Atlanta,GA,April 26-28.
    Wild T M, Provan J W, Guin R, et al. 1999. The Effect of Cyclic Axial Axial Loading of Single Wood Pulp Fibers at Elevated Temperature and Humidity. Peer Reviewed, 82(4): 209-215.
    Wimmer R , Lucas B N , Tsui T Y,et al. 1997. Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique. Wood. Science and Technology , 31(2): 131 -141
    Wu Y, Wang S Q,Zhou D G, et al. 2009. Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species.Wood and Fiber Science, 41 (1): 64–73
    Wu Y, Wang S Q,Zhou D G, et al. 2010. Evaluation of nanomechanical properties of agricultural crops by nanoindentation. Bioresource Technology, 101 (8): 2867-2871
    Xing C, Wang S Q, George M P , et al.2008. Effect of thermo-mechanical refining pressure on the properties of wood fibers. Holzforschung, 62: 230-236.
    Yu Y, Fei B H, Zhang B, et al. 2007. Cell wall mechanical properties of Bamboo investagated by in-situ imaging nanoindentation. Wood and Fiber Science, 39 (4): 527– 535
    Zhang Q S, Guan M J, Ji W L. 2002. Variation of Moso bamboo chemical compositions during mature growing period. Journal of Nanjing Forestry University (Natural Sciences Edition), 26(2): 7-10.
    Zou L H, Jin H, Lu W Y, et al. 2009. Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Materials Science and Engineering C, 29: 1375–1379

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700