用户名: 密码: 验证码:
毛竹发育过程中细胞壁形成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与木材相比,竹材细胞壁的研究工作仍处于起步阶段,对竹茎杆细胞的发育过程,尤其是细胞壁形成和分化过程的研究远远不够。细胞壁是构成竹材细胞的实体物质,是竹类植物遗传改良和定向培育的重要目标,是竹材各种性质的成因,也是竹材加工和利用的主要部分。因此,针对竹类植物开展细胞壁的生物形成过程的研究,具有非常重要的理论和现实意义。
     本研究是以我国种植面积最广、利用价值最大的毛竹(Phyllostachys pubescens MaxelExh.De Lehaie)为研究对象,紧紧围绕竹材生物形成机理与加工利用相互关系这一主题,利用多学科的技术手段和方法以及先进的实验仪器,从竹材发育过程中的显微结构变化、细胞壁超微结构变化和细胞壁力学性能及其与细胞壁显微和超微结构关系三个方面,系统研究了各类细胞的分化和细胞壁的形成过程。
     在竹材发育过程中显微结构变化的研究中,采用定量解剖学和显微图像分析技术,得到了毛竹各类组织和细胞的解剖形态在发育过程中的变化;并采用X-射线衍射仪获得了毛竹在发育过程中微纤丝角(MFA)和结晶度(CrI)的变化。
     在竹材发育过程中细胞壁超微结构变化的研究中,通过透射电子显微镜(TEM)观察了毛竹各类细胞在发育各阶段细胞壁和原生质体的变化特征,确定了细胞的分化方式,讨论了细胞程序化死亡(PCD)过程中细胞壁形成与原生质体之间的相互关系。采用场发射扫描电子显微镜(FE-SEM)、TEM结合直接碳复型(DCR)技术,首次系统地观察到了毛竹细胞壁纤维素微纤丝(CMfs)从初生壁到次生壁多层上的排列和沉积过程,提出了毛竹纤维细胞壁的构成模型。在国内首次将免疫细胞化学技术结合激光共聚焦显微镜(CLSM)的方法,运用到竹材骨架物质微管的研究中,得到了各类型细胞分化过程中周质微管(CMTs)的排列方式,并讨论了CMTs的排列与细胞壁上CMfs沉积方式的相互关系,研究结果为竹类植物细胞分化过程中CMTs排列方式控制细胞壁上CMfs的沉积提供了新的证据。通过可见光显微分光光度计结合组织化学染色方法,首次系统地观察到了毛竹各类细胞分化过程中细胞壁上木质素的沉积过程和微区分布特点,半定量分析了木质素组成单元的分布和含量变化。
     在竹材发育过程中细胞壁力学性能及其与结构相互关系的研究中,通过纳米压痕技术获得了毛竹纤维细胞的纵向弹性模量和硬度性能指标,并分析了MFA、CrI、细胞壁木质素含量和分布以及细胞壁超微结构对细胞壁力学性能的影响。
     本文旨在通过以上所涉及的三个方面的研究内容和结果为纽带,针对细胞壁研究比较薄弱的竹类植物,揭示细胞壁发育的生物形成过程,建立竹材解剖学研究与现代生物技术改良研究和竹材加工利用研究之间的紧密联系,为揭示竹子生长发育规律、结构与功能的关系以及合理利用提供科学的基础数据,为竹材分子生物学研究提供有价值的细胞学依据。
     以上研究内容的主要结果如下:
     1.定量解剖学研究结果表明,随着细胞分化和发育的进行,维管束分布密度、维管束径向长度和弦向长度、纤维长度和宽度、导管分子长度、微纤丝角、结晶度随竹龄、径向位置和纵向高度变化趋势各不相同。其中,维管束分布密度在7天~1年内不断减小;在1~8年内保持稳定,一般为11~18个/5mm~2;在8~9年内逐渐增大。纤维长度在7~17天内纤维长度迅速增大;17天~8年内基本保持稳定,竹青位置平均2295μm,竹黄位置平均2205μm;8~9年内纤维长度略有下降。X-射线衍射研究结果显示,MFA随竹龄的变化趋势为:竹青位置在1~2年内小幅上升;2~8年内小幅回落后稳定在平均值9.98°左右;8~9年内大幅增加至平均值11.41°。竹黄位置各节间在1~8年内保持稳定在平均值9.16°左右;8~9年内大幅增加至平均11.35°,与竹青处相差不多。结晶度随竹龄的变化趋势为,竹青位置在1~2年内逐渐减小;随后2~8年内迅速回升,然后稳定平均值46.78%左右;8~9年间又有所减小。竹黄位置处结晶度在1~9年内基本围绕在平均40.79%值左右波动变化。
     2.TEM观察结果表明纤维、基本薄壁组织细胞、导管分子的分化过程均是典型的衰退过程,它是由次生壁的沉积和原生质体的衰退这两个密切相关的过程组成。纤维、基本薄壁组织细胞、导管分子的终端分化就是PCD;并且PCD过程是一个具有较长周期的过程,周期长短比较为基本薄壁组织细胞>纤维>导管分子;三类细胞最后的凋亡决定于细胞内原生质体完全降解的时刻。在细胞PCD过程中,原生质体内的各种细胞器对次生壁形成起到了不同的推进作用,并且实现了各类型细胞向功能定位的转变——纤维细胞组织起机械支持作用,基本薄壁组织细胞起贮藏作用,导管起输导作用。
     3.场发射和复型技术揭示纤维、基本薄壁组织细胞和导管的细胞壁上CMfs的沉积方式。纤维的细胞壁为典型的薄厚层相间的同心圆多层结构,初生壁CMfs排列方向与细胞轴向垂直(90°);次生壁中厚层的CMfs均以接近平行的小角度(0~5°)沉积;薄层一般以大角度沉积,且薄层的CMfs角度由壁外侧向细胞腔里逐渐增加,直到完全垂直。纤维单纹孔由初生壁CMfs在初生纹孔场区域凹陷形成,各层次生壁CMfs围绕纹孔排列形成椭圆形,纹孔长轴随着次生壁每层CMfs排列的主方向变化。将纤维素微纤丝排列变化与细胞壁各层厚度的研究结果相结合,本文提出了毛竹纤维细胞壁的构成模型。基本薄壁组织细胞的细胞壁为多层结构,无明显的薄厚层变化规律。初生壁CMfs排列方向与细胞轴向垂直;次生壁奇数层CMfs排列与细胞轴向近平行或呈小角度,偶数层CMfs排列与细胞轴向接近垂直或呈大角度。其单纹孔由初生壁CMfs在初生纹孔场周围盘绕而成,次生壁各层的CMfs均绕开纹孔膜排列,椭圆形纹孔的长轴总与各壁层CMfs排列方向相同。导管的细胞壁为多层结构,每层次生壁的CMfs排列均与细胞轴向垂直。其具缘纹孔由初生壁CMfs在初生纹孔场区域网状交织、在初生纹孔场周围加高隆起而形成。多层次生壁在纹孔周围不断沉积,使具缘纹孔形成了长型椭圆形,其长轴方向始终与细胞轴向垂直。
     4.免疫细胞化学研究分别得到了纤维、基本薄壁组织细胞和导管的CMTs在分化中的动态变化。在各类细胞发育之初,纤维细胞中最早形成CMTs;在细胞发育间期,纤维和导管中只存在CMTs,而基本薄壁组织细胞中还存在胞质微管(CYMTs),随着基本薄壁组织细胞伸长期的结束或CMTs的大量增加,CYMTs逐渐消失。纤维和基本薄壁组织细胞中的CMTs束经历由细变粗,数量由少到多,排列由随机到定向,分布由稀疏到密集的变化过程。在基本薄壁组织细胞中还观察到CMTs的微管组织中心(MTOC)的存在,它是由微管、不规则的小泡和浓密基质构成的复合物。在纤维和基本薄壁组织细胞增厚中期,CMTs均存在解聚现象,但其特征有所不同。结合场发射和透射电镜的研究结果表明,无论初生壁还是次生壁发育阶段,CMTs排列方式的变化与CMfs沉积方向的变化具有明显的一致性。
     5.木质素在纤维、基本薄壁组织细胞、导管分子和石细胞的细胞壁上均有沉积,但沉积先后和周期不同。沉积先后顺序为:原生木质部导管>纤维>后生木质部导管=石细胞>基本薄壁组织细胞;沉积周期长短顺序为:基本薄壁组织细胞>后生木质部导管>石细胞>纤维。各类型细胞的木质素总含量随细胞壁的增厚而不断增加。可见光吸收光谱表明,纤维、基本薄壁组织细胞、后生木质部导管的木质素中具有愈创木基单元(G)和紫丁香单元(S)。三类细胞胞壁各微区的木质素总含量和木质素组成单元含量随竹龄、径向位置的变化规律各不相同,纤维的木质素含量随纤维在维管束纤维帽中位置的变化而不同。木质素的沉积和细胞次生壁的发育过程紧密相关。
     6.纤维、基本薄壁组织细胞和导管细胞壁层数在发育过程中不断增加,发育快慢程度为:基本薄壁组织细胞>纤维>导管。三类细胞壁层发育程度在径向上的比较为:竹青位置的细胞始终快于同时期同类型竹黄位置的细胞。纤维和基本薄壁组织细胞的壁层数在6年时达到最大值,分别形成了6~11层和7~13层次生壁;导管的壁层始终处于不断增加的状态,在9年时达到5~6层。三类细胞各壁层厚度变化为:纤维在发育的各个时期,细胞壁的最厚层均为次生壁S_2层;基本薄壁组织细胞和导管分子各壁层的厚度变化规律不一致,最厚壁层在发育的不同时期出现于不同的次生壁层。维管束内纤维壁层和壁厚,是近维管束中心的先发育、程度高,远维管束中心的后发育、程度低,发育程度是以维管束中心为原点,呈辐射状向四个纤维帽外侧过渡。
     7.纳米压痕技术原位测定结果显示,随着竹龄的增加,纤维细胞壁的纵向弹性模量和硬度的变化不同。次生壁(SW)S_2层的纵向弹性模量和硬度范围分别在13.2~24.7GPa和0.46~0.71GPa;细胞角隅(CC)处分别为9.0~16.6GPa和0.38~0.66GPa;细胞胞间层(ML)分别为8.9~13.6GPa和0.27~0.66GPa。细胞壁三个不同微区的纵向弹性模量和硬度在径向上的变化趋势也不同。同竹龄同径向位置的细胞壁三个不同微区上纵向弹性模量大小为SW>ML>CC,硬度大小为ML>CC>SW。在纤维细胞的发育过程中,细胞壁力学性能与细胞壁木质素含量和分布呈正相关,尤其是硬度性能与木质素含量密切相关。同时,细胞壁力学性能与细胞壁纤维素结晶度呈正相关,与纤维素微纤丝角度关系密切,呈负相关。竹材的高强度、高硬度等力学性能,主要由竹材细胞的细胞壁结构特性决定。
In comparison with wood,Research of bamboo cell wall is still at the early stage.The study on development and differentiation of cells in bamboo culm is very limited,especially on formation and development of cell wall.Cell wall is the main substance of bamboo cell structure.Basically,the bamboo properties is determinated by the cell wall of bamboo,which is the main part for bamboo processing and utilization,and the key aim of genetic modifications and tree treeding of bamboo plant as well.So it is very important and essential to conduct the study on the developmental formation of cell wall in bamboo.
     The objective of this paper is to obtain more details of the cell wall formation during developmental process of bamboo.The bamboo species Phyllostachys pubescens Maxel Exh. De Lehaie at different ages were selected for the wide planting area and great potential use in China.Histological and cytological studies were implemented respectively on microstructural features,ultrastructural features,and mechanical properties of cell wall,as well as the relationship between the structural features with the mechanical properties of cell wall.A series of testing techniques and methods and advanced instruments from different research fields were adopted in this study.
     In the study on developmental changes of microstructural features,quantitative anatomy and image analyzing methods were used to get anatomic properties of main kinds of tissues and cells in bamboo.X-ray diffracometer was applied to obtain the microfibril angle(MFA) and crystallinity index(CrI) of cell wall of bamboo at different ages.
     In the research of cell wall ultrastructural features,the changes of cell wall and protoplast of different kinds of cells at different developmental phases were observed by transmission Electron Microscope(TEM).The general type of cell differentiation was determined,and the relationship of cell wall formation and protoplast changes in programmed cell death(PCD) process was discussed.Meanwhile,Field Emission Scanning Electron Microscope(FE-SEM), TEM and direct carbon replica technique(DCR) were used in the systemic observations of cellulose microfibrils(CMfs) deposition process and arrangement from primary wall to each secondary wall.The new evidence of the relationship between cellulose-synthesizing complexes and CMfs deposition was obtained.A model of fiber wall structure of bamboo Phyllostachys pubescens was proposed on the basis of observation.Consequently,the method of indirect immunofluorescence staining ofα-tubulin combined with confocal laser scanning microscope(CLSM) was adopted at the first time to investigate cortical microtubules(CMTs) array during cell differentiating process of fiber,parenchyma cell and vessel element of bamboo in China.The relationship between CMfs deposition and CMTs arrangement was then discussed to provided a new evidence for CMfs deposition controlled by CMTs arrangement. Furthermore,by means of visible-light microspectrophotometry(VLMS) accompanying with histochemistry staining technique,the lignification progress and distribution characteristics in micro-morphological regions were systemically observed during bamboo cells differentiation process.The distribution of lignin components and variety of lignin content were also measured in semi-quantitative level.
     In the investigation of relationship between structural features with mechanical properties of cell wall,longitudinal elasticity modulus and hardness of fiber were determinated by means of nanoindentation technique.Meanwhile,the effects of MFA,CrI,lignin content and distribution in cell wall and ultrastructural features of cell wall on mechenical of cell wall were also analyzed.
     The results from above studies were summarized as follows:
     1.The data of quantitative anatomy indicated that the variety trends of vascular bundle distributing density,length and width of vascular bundle,fiber length and width,vessel element length,MFA and CrI were different with bamboo age,radial location or longitudinal location. Distributing density of vascular bundles decreased in 7~17 days,then preserved at 11~18/5mm~2 in 1~8 years,and gradually increased in 8~9 years.Fiber length rapidly increased in 7~17 days,then preserved at 2295μm on outer part of bamboo and 2205μm on inner part of bamboo,but slightly decreased in 8~9 years.X-ray diffracometer results suggested that MFA increased slightly in 1~2 years and then kept 9.98°in 2~8 years on outer part of bamboo, however it increased greatly to 11.41°in 8~9 years.On inner part of bamboo,MFA kept stable at 9.16°in 1~8 years and increased greatly to 11.35°in 8~9 years.On outer part of bamboo, CrI decreased gradually in 1-2years and returned rapidly and kept at 46.78%in 2~8 years, however it decreased slightly in 8~9 years.
     2.TEM observation suggested that the differentiation of fiber,parenchyma cell and vessel was a typical deterioration process.It consists of two tight corresponding parts,the secondary wall deposition and the protoplast deterioration.The terminal differentiation of fiber, parenchyma cell and vessel was PCD,which was a long periodic process.The comparison in the period length of three types of cells was parenchyma cell>fiber>vessel.The terminal cell apoptosis depended on the time of complete degradation of protoplast in cell.During PCD process,all kinds of cell organelles in protoplast promoted secondary wall deposition at different degree.Furthermore,the changes of cell organelles realized different cell functions, which fiber for mechanical support,parenchyma cell for preservation and vessel for transportation.
     3.FE-SEM and DCR technique revealed the arrangements of CMfs on cell wall of fiber, parenchyma cell and vessel.Firstly,fiber cell formed multilamellate concentric structure with thin and thick lamellae alternate.CMfs orientation on fiber primary wall was perpendicular to cell axis(90°).CMfs orientation on thick fiber secondary wall was parallel to cell axis or presented small angle to cell axis(0~5°).However,CMfs orientation on thin fiber secondary wall usually presented large angle to cell axis,and the angle increased from outside to inside of secondary wall,until perpendicular to cell axis.Simple pit on fiber cell wall formed by CMfs of primary wall sunk on the area of primary pits field.CMfs of each secondary wall surrounded Simple pit to an oval.And the long axis of simple pit Varied along with CMfs orientation of each secondary wall.This paper proposed a structure model of Phyllostachys pubescens cell wall,based on the results of CMfs deposition and thickness of each secondary wall.Secondly, it was a multilamellate structure of parenchyma cell wall,but its thin and thick lamellate was not evident.CMfs orientation on primary wall of parenchyma cell was perpendicular to cell axis.CMfs orientation on odd secondary wall was nearly parallel to cell axis or presented small angle to cell axis.CMfs orientation on even secondary wall was nearly perpendicular to cell axis or presented large angle to cell axis.The simple pit of parenchyma cell formed by CMfs of primary wall circled primary pits field and the long axis of pit were always same to the CMfs arrangement of each secondary wall.Thirdly,vessel cell wall was a multilamellate structure, which CMfs orientation of each wall lamellate was perpendicular to cell axis.Bordered pit of vessel formed by CMfs of primary wall intercrossed on primary pits field and protruded around primary pits field.Bordered pits became long ellipse because of the sustaining deposition of secondary wall CMfs around the pits,moreover,the long axis of bordered pit was always perpendicular to cell axis.
     4.Indirect immunofluorescence staining ofα-tubulin showed clearly the dynamic changes in the array of CMTs in dfferentiating fiber,parenchyma cell and vessel.At early stages of cells differentiation,the CMTs array was present firstly in fiber.During cell interphase,there was only CMTs in fiber and vessel,but there was another microtubule called cytoplasmic microtubules(CYMTs) in parenchyma cell.The number of CYMTs greatly increased accompanying with the end of elongation stage of parenchyma cell,but would be disappeared gradually.CMTs bundles in fiber and parenchyma cells experienced the changes from slender to thick,from scarce to abundant,from random arrangement to oriented arrangement,and from sparse to dense.A kind of microtubule organizing center(MTOC) was also observed in parenchyma cells,which was a complex composed of microtubule,vesicles and dense cytoplasm.In the middle stage of wall increasing of fiber and parenchyma cell, CMTs showed disassembly phenomenon,and the characteristics of them were different.The present results from the observations by FE-SEM and TEM have provided evident consistency between CMTs and CMfs arrangement during the development of primary wall or secondary wall.
     5.Lignin deposited were occurred in cell walls of fiber,parenchyma cell,vessel and stone cell,However,the deposition time and period were different.The time order of lignin deposition was:protoxylem vessel>fiber>metaxylem vessel=stone cell>ground tissue parenchyma cell.The period length of lignin deposition was:fiber<stone cell<metaxylem vessel<ground tissue parenchyma cell.The iignin content of each kind of cell wall increased constantly accompanying with the thickness increasing of cell wall.Visible-light absorbance spectrum showed,there were Guaiacyl lignin and Syringyl lignin in cell wall of fiber,ground tissue parenchyma cell and vessel.However,the total lignin content and content of each lignin component varied respectively by bamboo age,radial location and longitudinal location.In the meantime,the lignin content of fiber varied with fiber location in vascular bundle.There was a close relationship between lignin deposition and development of secondary wall.
     6.The layer number of cell wall of fiber,parenchyma cell and vessel increased continuously during bamboo developmental process.The developmental order of three cells was:parenchyma cell>fiber>vessel.The radial variety of wall layers of three cells was that the development of cell on outer part of bamboo was always earlier than the cell on inner part of bamboo.The maximum number of cell wall layers appeared at the 6~(th) year in fiber and parenchyma cell.There were 6~11 layers and 7~13 layers respectively in fiber and parenchyma cell.In addition,the layer number of vessel wall gradually increased from shoot to the 9th year, and reached 5~6 layers.The thickness variety of three cells was as following.The thickest layer was the 2~(nd) layer of secondary wall(S_2) during the whole developmental stages in fiber. The changes of wall thickness of parenchyma cell and vessel were disorder,and the thickest layer of secondary wall was different during different developmental stages.The developmental variety of thickness and layer number of fiber cell wall was that,the fiber near the center of vascular bundle was earlier than the fiber far from the center of vascular bundle in developmental speed,as well as the developmental degree.So the developmental degree presented radiate from the center of vascular bundle to outside of four fiber caps,as the center of vascular bundle for the origin.
     7.Nanoindentation technique results showed that the varieties of longitudinal elasticity modulus and hardness of cell wall was different with bamboo age.The change ranges of them on S_2 was 13.2~24.7GPa and 0.46~0.71GPa respectively.The change ranges of them on cell comer(CC) was 9.0~16.6GPa and 0.38~0.66GPa respectively.The change ranges of them on middle lamella(ML) was 8.9~13.6GPa and 0.27~0.66GPa respectively.The radial varieties of them on three micro-morphological regions of cell wall were different too.About the longitudinal elasticity modulus and hardness on three micro-morphological regions-regions of the same bamboo age and radial location,the compare results were SW>ML>CC,and ML>CC>SW respectively.In fiber developmental progress,it was positive correlation between lignin content and distribution of cell wall and mechanical strength of cell wall,especially lignin content had a close relationship with hardness.Furthermore,it was the positive correlation between cell wall mechanics and CrI,and negative correlation between mechanical strength of cell wall and MFA.The high strength and hardness of bamboo were mainy determined by the structural characteristics of cell wall.
引文
[1]魏学智.竹材的结构和开发利用.陕西师大学报,1998,12(3):56-60
    [2]世界竹类资源概况.www.icbr.ac.cn,2005
    [3]陈嵘遗.竹的种类及栽培利用.北京:中国林业出版社,1984,7:26-28
    [4]胡超宗.竹笋栽培及加工利用.北京:中国林业出版社,1986,6:30-40
    [5]周芳纯.竹林培育学.北京:中国林业出版社,1998,363-379
    [6]叶诚业,王幸祥,俞视慧等.竹类资源的综合利用.上海:上海科学技术文献出版社,1989,13-18
    [7]中国林学会.北京:中国林业出版社,1989,7:1-4
    [8]张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化.南京林业大学学报,2002,26(2):7-10
    [9]马乃训.我国的竹类科学研究.竹子研究汇刊,1989,8(1):76-83
    [10]Liese W.Advances in Bamboo research.Journal of Nanjing Forestry University,2001,25(4):2-6
    [11]Liese W.The anatomy of bamboo culms.International Network for Bamboo and Rattan(Technical Report),1998,18:7-99
    [12]Grosser D,Liese W.On the anatomy of Asian bamboos,with special reference to their vascular bundles.Wood science and Technology,1979,5:290-312
    [13]Liese W.1989.Progress in bamboo research.Journal of Bamboo Research,8(2):1-16
    [14]腰希申,梁景森,马乃训等.中国主要竹材微观构造.大连:大连出版社,1993
    [15]甘小洪,丁雨龙.竹类结构植物学研究进展.竹子研究汇刊,2002,21(1):11-17
    [16]罗玉英,胡适宜.玉竹生殖细胞壁在发育中的变化.植物学报,1995,37(1):7-13
    [17]贺新强,崔克明.植物细胞次生壁形成的研究进展.植物学通报,2002,19(5):513-522
    [18]许斌,蒋身学,张齐生.毛竹生长过程中纤维壁厚的变化.南京林业大学学报(自然科学版),2003,27(4):75-77
    [19]Gritsch C.S.,Kleist G,Murphy R J.Developmental Changes in Cell Wall Structure of Phloem Fibres of the Bamboo Dendrocalamus asper.Annals of Botany,2004,94:497-505
    [20]Gritsch C.S.,Murphy R J.Ultrastructure of Fibre and Parenchyma Cell Walls During Early Stages of Culm Development in Dendrocalamus asper.Annals of Botany,2005,95:619-629
    [21]甘小洪,丁雨龙.毛竹茎秆纤维发育过程中细胞壁的变化规律研究.林业科学研究,2006,19(4):457-462
    [22]薛联凤.竹材细胞壁构造的形态学分析,南京林业大学博士学位论文,2005
    [23]贺新强.毛竹茎木质化过程的组织细胞学研究,中科院博士学位论文,1999
    [24]甘小洪,丁雨龙,尹增芳.毛竹茎秆纤维细胞发育过程中ATP酶的超微细胞化学定位研究.植物学研究,2004,24(3):357-362
    [25]Gan Xiao-hong,Ding Yu-long.The Dynamic Changes of Acid Phosphatase during the Fiber Development in Phyllostachys pubescens Culm.Journal of Nanjing Forestry University(Sciences Edition),2006,30(3):13-18
    [26]甘小洪,丁雨龙.毛竹茎秆纤维发育过程中Ca~(2+)分布的时空变化.电子显微学报,2006,25(5):420-425
    [27]崔克明.植物发育生物学.北京:北京大学出版社,2007
    [28]张齐生.中国竹材工业化利用.北京:中国林业出版社,1995
    [29]周芳纯.竹林培育和利用.竹类研究,1998:58-59
    [30]关明杰,张齐生.竹林学专题文献分析.竹子研究汇刊,2001,20(3):69-72
    [31]熊文愈,乔士义,李又芬.毛竹(Phyllostachys pubescens Mazel eX H.de Lehaie)杆茎的解剖构造.植物学报,1980,22(4):343-348
    [32]熊文愈,丁祖福,李又芬.竹类植物的居间生长与节间生长.林业科学,1980,16(2):81-89
    [33]熊文愈,丁祖福,李又芬.竹类植物地下茎稍部居间分生组织和节间生长.竹类研究,1982,1(1):22-32
    [34]王永安,王以戟,赵成山.武陵毛竹竹株生长规律分析及经济利用研究.竹子研究汇刊,1999,18(3):9-14
    [35]曾林,任凭.白夹竹的生物学特性观察.经济林研究,1998,16(4):9-11
    [36]周本智.麻竹出笋和高生长规律的研究.林业科学研究,1999,12(5):461-466
    [37]连华萍,林庆富,马华明.方竹的生物学特性研究.经济林研究,2000,18(4):34-35
    [38]彭华正.竹子分生组织发育特点以及相关基因的克隆和功能研究,浙江大学博士论文,2005
    [39]李正理,靳紫宸.几种国产竹材的比较解剖观察.植物学报,1960,9(1):76-95
    [40]李正理,靳紫宸,腰希申.国产竹材的比较解剖观察续报.植物学报,1962,10(1):15-27
    [41]丁雨龙,Liese W.竹节解剖构造的研究.竹子研究汇刊,1995,14(1):24-32
    [42]丁雨龙,樊汝汶,黄金生.竹子节部韧皮部结的发育与超微结构.植物学报,2000,42(10):1009-1013
    [43]普晓兰.巨龙竹生物学特性的研究,南京林业大学博士论文,2003
    [44]于芬.毛竹“韧皮部结”的发育生物学研究.南京林业大学硕士论文,2005
    [45]Crow E.,Murphy R.J.,Cutler DF.Development of fibre and parenchyma cells in the bamboo (phyllostachys viridi-glaucescens(Carr.) Rivet Riv.) with emphasis on the cytoskeleton during cell wall deposition.Cell and Molecular Biology of wood formation,2000,265-276
    [46]Crow E.Development of fibre and parenchyma cells in the bamboo phyllostachys viridi-glaucescens (Carr.) Riv & Riv(PhD Thesis).London:Imperial College,University of London,UK,2000
    [47]Gan Xiao-hong,Ding Yu-long.Developmental anatomy of the fiber in Phyllostachys edulis culm.Bamboo Science and Culture,2005,19(1):16-22
    [48]He Xin-Qiang,Wang You-Qun,Hu Yu-Xi,et al.Ultrastructural study of secondary Wall formation in the stem fiber ofPhyllostachyspubescens.Acta Botanica Sinica,2000,42(10):1003-1008
    [49]Taiz L,Zeigor E.Plant phyaiology,Redwood city.The Benjamin/Curnnings Publishing Company Inc.,1991,386-387
    [50]Greenberg JT,Guo A,Klessing DF,et al.Programmed cell death in plants:a pathogen-triggered response activated coordinately with multiple defense functions.Cell,1994,77:511-563
    [51]曾耀英.细胞凋亡分子机制的研究进展.中国科学基金,1999,13:137-144
    [52]Green GR,Reed JC.Mitochondria and apoptosis.Science,1998,281:1309-1312
    [53]方敏,薛绍白.程序性细胞死亡.生物学通报,1996,31(1):7-8
    [54]崔克明.植物细胞程序死亡的机理及其与发育的关系.植物学通报2000,17(2):97-107
    [55]甘小洪.毛竹茎杆纤维细胞的发育生物学研究,南京林业大学博士学位论文,2005
    [56]Ledbetter MC,Porter KR.A microtubule in plant cell fine structure.J Cell Boi.,1963,19:239-250
    [57]于荣,王学臣.微管骨架的动态特性及其调控.植物学通报,1998,15(6):19-29
    [58]衣艳君.植物体细胞周期中的微管周期.生物学通报,2001,36(11):22-23
    [59]Lamport DTA,Epstein L.A new model for the primary cell wall:A concatenated extension cellulose network.In Randall DD(ed).Current Topics in plant Biochemistry and Physiology,1983,73(2):73-83
    [60]Funada R,Abe H,Furusawa O,et al.The orientation and localization of cortical microtubules in diferentiating conifer tracheids during cell expansion.Plant cell Physiol,1997,38:210-212
    [61]Chafey NJ,Barlow P,Barnett J.A cytoskeletal basis for wood formation in angiosperm trees:the involvement of microtubules.Planta,1999,208:19-30
    [62]Nick P,Heuing A,Ehmann B.Plant chaperonins:a role in microtubule-dependent wall formation?Protoplasma,2000,211:234-244
    [63]Pisher DD,Cyr RJ.Extending the microtubule/microfibril paradigm.Cellulose synthesis is required for normal cortical microtubule alignment in elongating cells.Plant Physiol.,1998,116:1043-1051
    [64]殷亚方.毛白杨的形成层活动及其木材形成的组织和细胞生物学研究,中国林科院博士学位论文,2002
    [65]Emons AMC,Derksen J,Sassen MMA.Do microtubules orient plant cell wall microfibrils? Physiol Plant,1992,84:486-493
    [66]Falconer MM,Seagull RW.Xylogenesis in tissue culture II:microtubules,cell shape and secondary wall patterns.Protoplasma,1986,133:140-148
    [67]张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化.南京林业大学学报,2002,26(2):7-10
    [68]Wardrop A B.Formation of wood in forest trees.Academic Press,1964,87-134
    [69]Chafe SC,Chauret G.Cell wall structure in the xylem parenchyma of trembling aspen.Protoplasma,1974,80:129-147
    [70]Arioli T,Peng L,Betzner AS,et al.Molecular analysis of cellulose biosynthesis in Arabidopsis.J.Biol.Chem,1928,279(30):717-720
    [71]Roelofsen PA,Houwink AL.Cell wall structure of staminal hairs of tradescantia virginica and its relation with growth.Protoplasma,1950,40(1):1-22
    [72]Houwink AL,Roelofsen PA.Composition and structure of yeast cell walls.Nature,1951,168:693-694
    [73]Green PB,Chapman GB.On the development and structure of the cell wall in Nitella.American Journal of Botany,1955,42(8):685-693
    [74]Sterling C,Spit BJ.Microfibrillar Arrangement in Developing Fibers of Asparagus.American Journal of Botany,1957,44(10):851-859
    [75]Beer M,Setterfield G.Fine Structure in Thickened Primary Walls of Collenchyma Cells of Celery Petioles.American Journal of Botany,1958,45(7):571-580
    [76]Wardrop AB.The Organization of the primary wall in differentiating conifer tracherds.Australian Journal of Botany.1958,6(4):299-305
    [77]Wardrop AB.The nature of surface growth in plant cells.Australian Journal of Botany,1956,4(3):193-199
    [78]Roelofsen PA,Houwink AL.Architecture and growth of the primary cell wall in some plant hairs and in the Phycomyces.Acta Bot.Need,1953
    [79]Chafe S.C.On the Mechanisms of Cell Wail Microfibrillar Orientation.Wood Science and Technology,1978,12:203-217
    [80]Roland J C,Vain B,Reis D.Observations With Cytochemistry and Ultracryotomy On the Fine Structure of the Expanding Walls in Actively Elongating Plant Celts.J Gell Sci.,1975,19:239-259
    [81]Coto T,Harada H,Saiki S.Cross-sectional view of microfibrils in Valonia.Mokuzai Gakkaishi,1973,19:463-468
    [82]岸恭二,原田浩,佐伯浩.広葉树材の道管一次壁の耩造.材料,1981,30:673-678
    [83]#12
    [84]藤井智之.広葉樹の木部柔细胞壁の耩造,京都大学学位论文,1981,12-13
    [85]李坚.木材科学(第二版).北京:高等教育出版社,2002
    [86]Parameswaran N,Liese W.On the polylamellate structure of parenchyma wall in Phyllostachys edulis Riv.IAWA Buletinl,1975,4:57-58
    [87]Parameswaran N,Liese W.On the Fine Structure of Bamboo Fibers.Wood Science and Technology,1976,10:231-246
    [88]Parameswaran N,Liese W.Occurrence of warts in bamboo species.Wood Science and Technology,1977,11:313-318
    [89]Parameswaran N,Liese W.Structure of septate fibers in bamboo.Holzforschung,1977,31:55-57
    [90]Fengel D,Shao X,M(u|¨)nchen.A chemical and ultrastructural study of the Bamboo species Phyllostachys makinoi Hay.Wood Science and Technology,1984,18:103-112
    [91]Fujii.T.Cell-wall structure of the culm of Azumanezasa(Pleioblastus chino Max.).Mokuzai Gakkaishi,1985,31:865-872
    [92]Liese W.Research on Bamboo.Wood Science and Technology,1987,21:189-209
    [93]Itoh T.Lignification of bamboo(phyllostachys heterocycla Mitf.) during its growth.Holzforschung,1990,44:191-200
    [94]Murphy R J,Alvin K L.Varation in fiber wall structure in bamboo.IAWA Bulletin,1992,13(4):403-410
    [95]Murphy R J,Alvin K L.Fiber maturation in the bamboo Gigantochloa scortechinii.IAWA Journal,1997,18(2):147-156
    [96]Koch G,Kleist G.Application of scanning UV microspectrophotometry to localize lignins and phenolic extractives in plant cell walls.Holzforschung,2001,55(6):563-567
    [97]Hirakawa Y,Ishida S.A SEM study on the layer structure of secondary wall of differentiating tracheids in conifer.Res.Bull.Coll.Exp.For.Hokkaido.Univ,1981,37:55-72
    [98]Imamura Y,Harada H,Saiki H.Electron microscopic study on the formation and organization of the cell wall in the secondary wall.Bull.Kyoto Univ.For,1972,44:183-193
    [99]Abe H,Ohtani J,Fukazawa K.FE-SEM observation on the microfibrillar orientation in the secondary wall of tracheids.Int Assoc Wood Anat Bull ns,1991,12(4):431-438
    [100]Abe H,Ohtani J,Fukazawa K.Microfibrillar orientation of the innermost surface of conifer tracheid walls.Int Assoc Wood Anat Bull ns,1992,13:411-417
    [101]Abe H,Funada R,Ohtani J,et al.Changes in the arrangement of microtubules and microfibrils in differentiating conifer tracheids during the expansion of cells.Ann Bot,1995,75:305-310
    [102]Abe H,Funada R,Imaizumi H,et al.Dynamic chages in the arrangement of cortical microtubules in conifer tracheids during drfferentiation.Planta,1995,197:418-421
    [103]Prodhan AKMA,Funada R,Ohtani J,et al.Orientation of microtubules and microfibrils in developing tensionwood fibres of Japanese ash(Fraxinus mandshurica var.Japonica).Planta,1995,196:577-585
    [104]Prodhan AKMA,Ohtani J,Funada R,et al.Ultrastructural investingation of tension wood fibre in Fraxinus mandshurica Rupr.var.japonica Maxim.Ann Bot,1995,75:311-317
    [105]Suzuki K,Itoh T,Sasamoto H.Cell wall architecture prerequisite for the cell division in the protoplasts of white poplar,Populus alba L.Plant Cell Physiol,1998,39(6):632-638
    [106]Suzuki K,Baba K,Itoh T,et al.Localization of the xyloglucan in cell walls in a suspension culture of tobacco by rapid-freezing and deep-etching techniques coupled with immunogold labeling.Plant Cell Physiol,1998,39(10):1003-1009
    [107]殷亚方,姜笑梅.木纤维细胞分化中微纤丝沉积和周质微管排列的动态变化.中国林学会木材科学分会第九次学术研讨会论文集,2004
    [108]尹增芳,樊汝汉.植物细胞壁的研究进展.植物研究,1999,19(4):407-414
    [109]Shimiaji K,Ioth T.Comprehensive survey of unearthed wooden remains in Japanese island.Nishigahara press,1988,1-296
    [110]Uno S.Theofbamboo and its utilization.Nishigahara press,1940,1-31
    [111]Suzuki K,Itoh T.The changes in cell wall architecture during lignification of bamboo,Phyllostachys aurea Carr.Trees,2001,15:137-147
    [112]Lin J X,He X Q,Hu Y X,et al.Lignification and lignin heterogeneity for various age classes of bamboo(Phyllostachys pubescens) stems.Physiologia Plantarum,2002,144:296-302
    [113]Lybeer B,Koch G.Lignin distribution in the tropical bamboo species Gigantochloa levis.IAWA.Journal,2005,26(4):443-456
    [114]Lybeer B,Koch G.A top chemical and semi quantitative study of the signification during ageing of bamboo culms(phyllostachys viridiglaucescens).IAWA.Journal,2005,26(1):99-109
    [115]Fengel D,Shao X,M(u|¨)nchen.Studies on the lignin of the bamboo species phyllostachys makinoi Hay.Wood Science and Technology,1985,19:131-137
    [116]Higuchi T.Biochemistry and molecular biology of wood.Berlin:Springer Verlag,1997
    [117]Lu F,Ralph J,Agric J.The DFRC method for lignin analysis.2.Monomers from isolated lignins. Food Chem,1998,46:547-552
    [118]Yoshizawa N,Satoh I,Yokota S,et al.Lignification and peroxidase activity in bamboo shoots (Phyllostachys eduli A,et C.Riv.).Holzforschung,1991,45(3):169-174
    [119]Cave ID.Theory of X-ray measurement of microfibril angle in wood.Wood Sci and Technol,1997,31(4):225-234.
    [120]Isogai A,Usuda M.Crystallinity index of cellulosic material.Sen I Gakkaishi,1990,46:324-329
    [121]Segal L,Creely J J,Martin Jr,et al.An empirical methos for estimationg the degree of crystallinity of mative cellulose using the X-ray diffractometer.Textile Research Journal,1959,29:786-794
    [122]江泽慧主编.世界竹藤.济南:辽宁科学技术出版社,2002
    [123]温太辉,周文伟.中国竹类维管束解剖形态的研究初报(一).竹子研究汇刊,1984,3(1):1-21
    [124]周芳纯.竹类植物的形态特征.竹林培育和利用,1998:21-27
    [125]Grosser D,Liese,W.On the anatomy of Asian bamboos,with special reference totheir vascular bundles.Wood Sci.Technol,1971,5:290-312
    [126]Liese,W.Bamboos-Biology,silvics,properties,utilization.TZ Verlagsgesellschaft:Rossdorf (Germany,F.R.),1985,180:127-132
    [127]闫红芹.竹纤维强伸度的研究.四川纺织科技,2004,3:5-6
    [128]王朝晖.竹材材性变异规律与加工利用研究,中国林科院博士学位论文,2001,1-182
    [129]Hanley SJ,Gray DG.Atomic force microscope images of cellulose microfibrils:comparison with transmission electron microscopy.Polymer,1991,33(21):4639-4642
    [130]Jang HF.Measurement of fibril angle in wood fibers with polarization confocal microscopy.J Pulp Pap Sci,1998,24(7):224-230
    [131]Lichtenegger H,Reiterer A,Tschegg S,et al.Determination of spiral angles of elementary fibrils in wood cell wall:comparison of small angle X-ray scattering and wide angle X-ray diffraction.Butterfield B G.Microfibril angle in wood:proceedings of the IAWA/IUFRO International Workshop on the Significance of Microfibril Angle to Wood Quality.Canterbury N Z:University of Canterbury Press,1998,140-156
    [132]Cave ID,Robinson W.Measuring microfibril angle distribution in the cell wall by means of x-ray difraction.Butterfield B G.Microfibril angle in wood:p roceedings of the IAWA/IUFRO International Workshop on the Significance of Microfibril Angle to Wood Quality.Canterbury N Z:University of Canterbury Press,1998,94-107
    [133]Megraw RA.Wood quality factors in loblolly pine.Atlanta:Georgia:TAPP I Press,1985
    [134]Donaldson LA.Variation in microfibril angle among three genetic groups of Pinus radiata trees.New Zealand Journal of Forest Science,1993,23(1):90-100
    [135]余雁,王戈,覃道春等.X射线衍射法研究毛竹微纤丝角的变异规律.东北林业大学学报,2007,35(8):28-29,51
    [136]阮锡根,江泽慧,陶灵虎.用结晶学的观点研究纤维植物细胞壁的结构及形成机理.东北林业大学学报,2001,20(2):1-3
    [137]Gritsch C.S.,Gunnar K,Murphy R.J.Developmental changes in cell wall structure of phloem fibres of the bamboo Dendrocalamus asper.Annals of Botany,2004,94:497-505
    [138]Gritsch C.S.,Murphy R.J.Ultrastructure of fibre and parenchyma cell walls during early stages of culm development in Dendrocalamus asper.Annals of Botany,2005,95:619-629
    [139]Kerr J,Wyllie A,Cuymie A.Apoptosis:a basic biological phenolmenon with wide-ranging implication in tissue kinetics.Br J Comer,1972,26:239-257
    [140]Thompson C B.Apoptosis in the pathogenesis and treatment of disease.Science,1995,267:1456-1462
    [141]尤瑞麟.小麦珠心细胞衰退过程的超微结构研究.植物学报,1985,27(4):345-353
    [142]胡适宜.被子植物胚胎学.北京:高等教育出版社,1982
    [143]汪茂,崔跃华,孙克莲.杜仲胚乳衰退过程中程序性细胞死亡的研究.植物研究,1999,19(4):401-406
    [144]胡适宜,王模善,徐丽云.小麦雄性不育系和保持系的小孢子发育的电子显微镜研究.植物学报,1977,19(3):167-171
    [145]吴晓东,向过盛,杨世杰.被指植物胚性细胞及嫁接愈伤组织中的环状片层.电子显微学报,1998,17(2):119-124
    [146]汪堃仁,薛绍白,柳惠图.细胞生物学.北京:北京师范大学出版社,1990
    [147]郑湘如,王希善编译.植物解剖结构纤维图谱.北京:农业出版社,1983
    [148]Schulz P,Jensen W A.Pre-fertilization ovule development in Capsella:Ultrastructure and ultracytochemical localization of acid phosphatase in the meiocyte.Protoplasma,1981,107:27-45
    [149]王雅清.杜仲次生木质部细胞分化和脱分化超微结构和生物化学研究,北京大学博士学位论文.2000
    [150]崔克明.植物细胞程序死亡的机理及其与植物发育的关系.植物学通报,2000,17(2):97-107
    [151]李玲,邓江明,郭丽荣.扶桑插条愈伤组织质膜内陷的超微结构研究.云南植物研究,1998,20(3):312-314
    [152]Low PS,Chandra S.Endocytosis in plants.Ann Rev Plant Physiol Plant Mol Biol,1994,45:609-631
    [153]张伟成.植物细胞间的物质运输.余叔文,汤章城主编.植物生理与分子生物学.北京:科学出版社,1998:135-154
    [154]王雅清,曹静,崔克明.木质部细胞分化的研究进展.植物学通报,2001,18(4):402-410
    [155]欧阳五庆主编.细胞生物学.北京:高等教育出版社,2006
    [156]郑国锠著.细胞生物学.北京:高等教育出版社,1998
    [157]James A,Keeble A,Gilmore P.Apoptosis commitment-translating survival signals into decisions on mitochondria.Cell Research.2007,17(12):976-984
    [158]陈默,潘敏慧,周恩昆等.凋亡诱导因子的研究进展.细胞生物学杂志,29(6):791-794
    [159]彭冶,樊汝汶.植物细胞高尔基体的研究进展.山西大学学报,1999,22(2):184-189
    [160]Carol F.著,李大卫,何方淑编译.高尔基器的百年展望.世界科学,2000,2:17-19
    [161]曹静,贺新强,王雅清等.杜仲次生木质部分化过程中的细胞编程死亡.植物学报,2003,45(12):1465-1474
    [162]王雅清,崔克明.杜仲次生木质部导管分子分化中的程序化死亡.植物学报,1998,40:1102-1107
    [163]Catesson A M,Funada R,Robert-Baby,et al.Biochemical and cytochemical cell wail changes across the cambial zone.IAWA Journal,1994,15(1):91-101
    [164]简令成,王红,邓江明等.小麦幼叶组织中胞间连丝的多样性.电子显微学报,2005,24(2):151-156
    [165]Brown R M Jr.The biosynthesis of cellulose J.Macromol.Sci,1996,10:1345-1373
    [166]Franz G,Blaschek W.Cellulose in methods in plant biochemistry.In:Dey P M,Harbome,J B,(eds).Vol 2,Carbohydrates,New York:Academic Press,1990,291-322
    [167]Meylan B A,Butterfield B G.Helicai orientation of the microfibrils in tracheids,fibers and vessels.Wood Sci Technol,1978,12:219-222
    [168]Kataoka Y,Saiki H,Fujita M.Arrangement and superimposetion of cellulose microfibrils in the secondary walls of coniferous tracheids.Mokuzai Gakkaishi,1992,38:327-335
    [169]周崟,姜笑梅.中国裸子植物材的木材解剖学及超微构造.北京:中国林业出版社,1994,77-151.
    [170]David N S H,Shiraishi N.Wood and cellulosic chemistry.Second edition.New York:Marcel Dekker Inc.,2000:1-81
    [171]Wal N N,Nanko H,Murakami K.Morphologicai study on the behavior of bamboo pulp fibers in the beating process.Wood Science and Technology,1985,19:211-222
    [172]Cote Jr.WA,Day AC,Timell TE.Studies on compression wood—part Ⅶ:Distribution of lignin in normai and compression wood of tamarack[Larix laricina(Du Roi) K.Koch].1968,2(1):13-37
    [173]Thomas RJ,Nicholas DD.The ultrastructure of the bordered pit membrane in the southern yellow pine.Tappi,1968,51:2
    [174]Harada H,Cote W A.Cell wall organization in the pit border region of softwood tracheids.Holzforschung,1967,21(3):81-85
    [175]Parameswaran N,Liese W.Ultrastructural aspects of bamboo cells.Cellulose Chemistry and Technology,1980,14:587-609
    [176]Kishi K,Harada H,Saiki H.An electron microscopic study of the layered structure of the secondary wall in vessels.Mokuzai Gakkaishi,1979,25:521-527
    [177]申宗圻.木材学.北京:中国林业出版社,1993
    [178]姜笑梅,张立非,周盎.国产重要阔叶树纹孔的超微构造研究.林业科学,1996,32(1):62-68
    [179]Harada H,Miyazaki Y,Wakashima T.Electron-microscopic investigation on the cell wail structure of wood cell.Bull Govt.Forestry Expt.Sta,1958,104-115
    [180]Baskin T I.On the alignment of cellulose microfibrils by corticai microtubules:a review and a model.Protoplasma,2001,215:150-171
    [181]Mueller SC,Brown RM,Scott TK.Cellulosic Microfibrils:Nascent Stages of Synthesis in a Higher Plant Cell.Science,1976,194:949-951
    [182]Kimura S,Laosinchai W,Itoh T,et al.Immunogold Labeling of Rosette Terminal Cellulose -Synthesizing Complexes in theVascular Plant Vigna angularis.Plant Cell,1999,11:2075-2085
    [183]Arioli T,Peng L,Betzner AS,et al.Molecular Analysis of Cellulose Biosynthesis in Arabidopsis.Science,1998,279:717-720
    [184] Tuner S, Gallois P, Brown D. Tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol, 2007,46: 224-232
    [185] Vadim VS, Mark JG, Deborah PD, Candace HH. Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochemistry, 2001, 57(6): 823-833
    [186] Saxena IM, Brown RM. Cellulose synthases and related enzymes. Current Opinion in Plant Biology, 2000, 3(6): 523-531
    [187] Holland N, Holland D, Helentjaris T, et al. A Comparative Analysis of the Plant Cellulose Synthase (CesA) Gene Family. Plant Physiology, 2000, 123:1313-1323
    [188] Delmer DP. Cellulose Biosynthesis in Developing Cotton Fibers. Cotton Fibers: Developmental Biology, Quality Improvement and Textile Processing, 1999
    [189] Hogetsu T. Mechanism for formation of the secondary wall thickening in tracheary elements-microtubules and microfibrils of tracheary elements of Pisum-Sativum L and Commelina-Communis L and the effects of Amiprophosmethyl. Planta, 1991,185:190-200
    [190] Goddard RH, Wick SM, Silflow CD, et al. Microtubule components of the plant cell cytoskeleton. Plant Physiol, 1994,104:1-6
    
    [191] Mathur J. Plant cytoskeleton: reinforcing lines of division in plant cells. Curr. Biol, 2004,14: 287-289
    [192] Traas J, Bellini C, Nacry P, et al. Normal differentiation patterns in plants lacking microtubule preprophase bands. Nature, 1995,375: 676-677
    [193] Wasteneys GO. Progress in understanding the role of microtubules in plant cells. Curr. Opin. Cell Biol, 2004,7:651-660
    [194] Shibaoka H. Microtubules and the regulation of cell morphogenesis by plant hormones. In: Lloyd C W, ed. the cytoskeletal basis of plant growth and form. London: Academic Press, 1991,159-168
    [195] Lloyd CW. The cytoskeleton in plant growth and development. Academic Press, London. 1982
    [196] Meylan BA. Microfibril angle as a parameter in timber quality. For Prod J, 1969,19(4): 30-33
    [197] Barnett JR, Chaffey NJ, Bariow PW. Microtubules and microfibril angle. In: Butterfield BG, (ed). Significance of microfibril angle to wood quality, IAWA/IUFRO.Canterbury, New Zealand, 1998, 253-271
    [198] Seagull RW. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J. Cell Sci. 1992, 101: 561-577
    [199] Lloyd CW, Wells B. Microtubules are at the tips of root hairs and form helical patterns corresponding to inner wall fibrils. J. Cell Sci, 1985, 75: 225-238
    [200] Wiesler B, Wang Qiyan, Nick P. The stability of cortical microtubules depends on their orientation. The Plant J, 2002, 32:1023-1032
    [201] Mellet VS, Gaillard J, Vantard M. Katanin's severing activity favors bundling of cortical microtubules in plants. The Plant J, 2006,46: 1009-1017
    [202] Bisgrove SR. Cytoskeleton and early development in Fucoid Algae. Journal of Integrative Plant Biology, 2007,49 (8): 1192-1198
    
    [203] Lloyd CW. The plant cytoskeleton: the impact of fluorescence microscopy. Annu Rev Plant Physiol, 1987,38:119-139
    [204]Sachs H,Grimm J,Robinson DG.Structure,synthesis and orientation of microfibrils I.Architecture and development of the wall of Oocystis solitaria.Cytobiologie.14:49-60.
    [205]McCann MC,Stacey NJ,Wilson R,Roberts K.Orientation of macromolecules in the wall of elongating carrot cells.J.Cell Sci,1993,106:1347-1356
    [206]Holdaway NJ,White RG,Overall RL.Is the recovery of microtubule orientation in pea roots dependent on the cell wall? Cell Biol.Int.Rep,1995,19:916-918
    [207]McClinton RS,Sung ZR.Organisation of cortical microtubules at the plasmamembrane in Arabidopsis.Planta,1997,201:252-260
    [208]Nick P.Signaling to the microtubular cytosketeton in plants.Int.Rev.Cytol,1998,184:33-80
    [209]Gal V,Martin S,Bayley P.Fast disassembly of microtubules induced by Mg~(2+) or Ca~(2+).Biochem Biophys Res Commun,1988,155(3):1464-1470
    [210]Falconer MM,Donaldson G,Seagull RW.MTOCs in higher plant cells:an immunofluorescent study of microtubule assembly sites following depolymerization by APM.Protoplasma,1988,144:46-55
    [211]Palevitz BA.Microtubules and possible microtubule nucleation centers in the cortex of stomatal cells as visualized by high voltage electron microscopy.Protoplasma,1981,107:115-125
    [212]Galatis B,Mitrakos K.The ultrastructural cytology of the differentiating guard cells of Vigna sinensis.American Journal of Botany,1980,67(8):1243-1261
    [213]Galatis B,P Apostolakos,C Katsaros.Microtubules and their organizing centres in differentiating guard cells ofAdianturn capillus veneris.Protoplasma,1983,115:176-192
    [214]Hardham AR,Gunning BES.Some effects of colchicine on microtubules and cell division in roots of Azolla pinnata.Protoplasma,1980,102:31-51
    [215]Clayton L,Black CM,Lloyd CW.Microtubule Nucleating Sites in Higher Plant Cells Identified by an Auto-Antibody against Pericentriolar Material.J.Cell Biol,1985,101(1):319-324
    [216]Chaffey NJ,Barlow PW,Barnett JR.Cortical microtubules rearrange during differentiation of vascular cambial derivatives,microfilaments do not.Trees,1997,11:333-341
    [217]Chaffey NJ,Barnett JR,Barlow PW.Endomembranes,cytoskeleton and cell walls:aspects of the ultrastructure of the vascular cambium of taproots of Aesculus hippocastanum L.(Hippocastanaceae).Int J.Plant Sci,1997,158:97-109
    [218]Chaffey N,Barnett J,Barlow P.A cytoskeletal basis for wood formation in angiosperm trees:the involvement of cortical microtubules.Planta,1999,208:19-30
    [219]衣艳君.植物体细胞周期中的微管周期.生物学通报,2001,36(11):22-23
    [220]于荣,袁明,王学臣.微管骨架的动态特性及其调控.植物学通报,1998,15(6):19-29
    [221]Bieling P,Laan L,Schek H,et al.Reconstitution ofa microtubule plus-end tracking system in vitro.Nature,2007,450(7172):1100-1105
    [222]Stoppin V,Vantard M,Schmit AC,et al.Isolated Plant Nuclei Nucleate Microtubule Assembly:The Nuclear Surface in Higher Plants Has Centrosome-like Activity.Plant Cell,1994,6(8):1099-1106
    [223]Olsen OA,Brown RC,Lemmon BE.Pattern and process of wall formation in developing endosperm.BioEssays,1995,17(9):803-812
    [224]Van Lammeren AAM.Structure and function of the microtubular cytoskleleton during endosperm development in wheat:an immunofluorescence study Protoplasma.1988,146:18-27
    [225]Wick SM.Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells.Ⅲ.Transition between mitotic/cytokinetic and interphase microtubule arrays.Cell Biol Int Rep,1985,9(4):357-371
    [226]Hasezawa S,Marc J,Palevitz BA.Microtubule reorganization during the cell cycle in synchronized BY-2 tobacco suspensions.Cell Motility and the Cytoskeleton,1991,18(2):94-106
    [227]杨清秀,王隆华.植物微管研究进展.植物生理学通讯,2000,36(2):158-164
    [228]Wardrop AB.Lignification and Xylogenesis.In:Barnett JR,(ed) Xylem cell development.Kent:Castle House Publications Ltd.,1981,115-146
    [229]Sarkanen KV,Ludwig CH.Lignins,Occurrence,Formation,Structural and Reactions,Wiley Interscience:New York,1971
    [230]Higuchi T.Biosynthesis of wood components.In:Higuchi T,(ed).Biosynthesis and molecular biology of wood.Berlin,Heidelberg:Springer Verlag,1997,154-181
    [231]Baucher M,Monties B,Montagu MV,et al.Biosysthesis and genetic engineering of lignin.Critical Review in Plant Science,1998,17(2):125-197
    [232]Wardrop A B.The phase of lignification in differentiation of wood fibers.Tappi,1957,40:225-243
    [233]Fergus BJ,Goring DAI.The distribution of lignin in Birch wood as determined by ultrabiolet microscopy.Holzforschung,1970,24:118-124
    [234]Yoshizawa N,Inami A,Miyake S,et al.Anatomy and lignin distribution of reaction wood in two Magnolia species.Wood Sci.Technol,2000,34:183-196
    [235]Alexandre AA,Silvia RM.Stem protective tissue in Erythroxylum tortuosum(Erythroxylaceae),Afire tolerant species from cerrado.IAWA Journal,2008,29(1):69-77
    [236]刘晓丽.人工林尾巨桉生长应变与木材性质关系基高生长应变形成机理的研究,中国林科院博士论文,2005,1-127
    [237]Artemio C,Ingo M,Gerald K,Frantisek H.Wood anatomical characteristics and chemical composition of Prosopis laevigata grown in the northeast of mexico.IAWA Journal,2008,29(1):25-34
    [238]Donaldson LA.Abnormal lignin distribution in wood from severely drought stressed pinus radiate trees.IAWA Journal,2002,23(2):161-178
    [239]Donaldson L A.Mechanical constrains on lignin deposition during lignification.Wood Sci.Technol,1994,28:111-118
    [240]Frankenstein C,Schmitt U,Koch G.Topochemical Studies on Modified Lignin Distribution in the Xylem of Poplar(Populus spp.) after Wounding.Annals of Botany,2006,97(2):195-204
    [241]Saka S,Thomas RJ.A study lignification in loblolly pine tracheids by the SEM-EDXA technique.Wood Sci.Technol,1982,16:167-169
    [242]Hafren J,Fujino T,Itoh T,et al.Ultrastructural Changes in the Compound Middle Lamella of Pinus thunbergii During Lignification and Lignin Removal.Holzforschung,2000,54(3):234-240
    [243]Yoshizawa N,Watanabe N,Yokata S,Idei T.Distribution of guaiacyl and syringgl lignins in normal and compression wood of Buxus microphylla var.insularis Nakai.IAWA J,1993,14(2):139-151
    [244]Yoshizawa N,Ohba H,Uchiyama J,et al.Deposition of Lignin in Differentiating Xylem Cell Walls of Normal and Compression Wood of Buxus microphylla var.insularis Nakai.Holzforschung,1999,53(2):548-557
    [245]Watanabe Y,Kojima Y,Ona T,et al.Histochemical study on heterogeneity of lignin in Eucalyptus species Ⅱ.The distribution of lignins and polyphenols in the walls of various cell types.IAWA Journal,2004,25(3):283-295
    [246]李正理.植物制片技术.北京:科学出版社,1978,61-69
    [247]申宗圻.木材学.北京:中国林业出版社,1982,64-66
    [248]Liese W,Weiner G.Ageing of bamboo culms:A review.Wood Sci Technol,1997,30:67-89
    [249]He L and Terishima N.Formation and structural diversity of the lignin in the cell wall of sugarcane and rice plants studied by ultraviolet microscopic spectroscopy.Holzforschung,1991,45:191-198
    [250](O|¨)nnerud H,Gellerstedt G.Inhomogeneities in the chemical structure of hardwood lignins.Holzforschung,2003,57:255-265
    [251]Fengel D,Wegener G.Wood Chemistry,Ultrastructure and Reactions,Walter de Gruyter:Berlin,1989
    [252]Lawoko M,Henriksson G,Gellerstedt G.New method for quantitative preparation of lignin-carbohydrate complex from unbleached softwood kraft pulp:Lignin-polysaccharide networks I.Holzforschung,2003,57:69-74
    [253]Kondo R,Sako T,Limori T,Imamura H.Formation of glycosidic lignincarbohydrate coplex in the dehadrogenative polymerization of conyferyl alcohol.Mokuzai Gakkaishi,1990,36:332-338
    [254]Yoshinaga A,et al.Secondary wall thickening and lignification of oak xylem components during latewood formation.Mokuzai Gakkaishi,1997,43:377-383
    [255]Kiyoshi Suzuki,Takao Itoh.The changes in cell wall architecture during lignification of bamboo Phyllostachys aurea Carr.Trees,2001,15:137-147
    [256]Lybeer B,Koch G,Van A,et al.Lignification and Cell Wall Thickening in Nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra.Annals of Botany,2006,97(4):529-539
    [257]Boutelje JB,Eriksson I.Calculation of lignin concentration and porosity of cell wall regions by interference microscopy.Sven.Papperstidn,1972,75:683-686
    [258]Boutelje JB,Eriksson I.Analysis of lignin in fragments from mechanical spruce pulp by ultraviolet and interference microscopy.Holzforschung,1984,38:249-252
    [259]Westermark U,Lidbrandt O,Eriksson I.Lignin distribution in spruce(Picea abies) determined by met curization with SEM-EDXA technique.Wood Sci.Technol,1988,22:243-250
    [260]于文吉,江泽慧,叶克林.竹材特性研究及其进展.世界林业研究,2002,15(2):50-55
    [261]黄盛霞,马丽娜,邵卓平等.毛竹微观构造特征与力学性质关系的研究.安徽农业大学学报,2005,32(2):203-220
    [262]冼杏娟,冼定国.竹材的微观结构及其与力学性能的关系.竹子研究汇刊,1990,9(3):10-12
    [263]Mott L,Shaler SM,Groom LH.A technique to measure strain distribution in single wood pulp fiber.Wood and Fiber Science,1996,28(4):429-437
    [264]Eichhorn SJ,Sirichalsit J,Young RJ.Deformation mechanisms in cellulose fibers,paper and wood. Journal of Matierials Science.2001,36:3129-3135
    [265]余雁,江泽慧,任海青等.管胞细胞壁力学研究进展评述.林业科学.2003,39(5):133-139
    [266]张泰华,杨业敏.纳米硬度计及其在微机电系统中的应用.现代科学仪器,2002,(1):32-37
    [267]张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展,2002,32(3):349-364
    [268]Gibson LJ,Ashby MF.Cellular solids,structure and properties.Pergamon Press,1988
    [269]Liese W.竹子结构与性质和利用的关系.国际竹类工业利用研讨会.北京,1992:83-87
    [270]周祖福.复合材料学.武汉:武汉理工大学出版社,2004
    [271]杨云芳,刘志坤.毛竹材抗拉弹性模量及抗拉强度.浙江林学院学报,1996,13(1):21-27
    [272]刘一星,赵广杰.木质资源材料学.北京:中国林业出版社,2004
    [273]Lee S,S Wang,G Pharr.Nano-mechanical properties of the interphase in a cellulose fiber- reinforced polypropylene composite by continuous nanoindentation.Composites:Part A,2007,61(3):254-260.
    [274]江泽慧,余雁,费本华等.纳米压痕技术测量管胞次生壁S_2层的纵向弹性模量和硬度.林业科学,2004,40(2):113-118
    [275]Page DH,EI-Hosseiny F,Winkler K,et al.Elastic modulus of single wood pulp fibers.Tappi,1977,60(4):114-117
    [276]Page DH,EI-Hosseiny F.The mechanical properties of single wood pulp fibers:Part Ⅵ.Fibril angle and the shape of the stress- strain curve.Journal of Pulp and Paper Science,1983,99-100
    [277]Salmen L,Alf de Ruvo.A model for the prediction of fiber elasticity.Wood and Fiber Science,1985,17(3):336-350
    [278]Koponen S,Toratti T,Kanerva P,et al.Modeling elastic and shrinkage properties of wood based on cell structure.Wood Science and Technology,1991,25(1):25-32
    [279]张爱珍,余观夏,阮锡根.竹材动态杨氏模量影响因子的分析.南京林业大学学报,2003,27(5):43-46
    [280]Sakurada I,Nukushina Y,Ito T.Experimental determination of the elastic modulus of crystalline region in oriented polymers.Journal of Polymer Science,1962,57:651-660
    [281]Tze WTY,Wang S,Rials TG,et al.Nanoindentation of wood cell wall:continuous stiffness and hardness measurements.Composites:Part A,2007,38:945-953
    [282]Wang S,Lee SH,Tze WTY,et al.Nanoindentation as a tool for understanding nano- mechanical properties of cell wall and biocomposites.2006 International Conference on Nano-technology,Marriott Marquis,Atlanta,GA,April 26-28,2006:7
    [283]Wang S,Lee SH,Tze WTY,et al.Investigating nano-mechanical properties of the wood and its comp sites by continuous nanoindentation.The 8th Pacific Rim Bio-Based Composites Symposium,Kuala Lumpur,Malaysia,2006
    [284]Wang Xin,Han Ye,Chen Changbin,et al.Wheat RAN1 affects microtubules integrity and nucleocytoplasmic transport in fission yeast system.The 9~(th) National Meeting of the Chinese Society for Plant Physiology,2004
    [285]Yu Yan,Fei Benhua,Zhang Bo,et al.Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation.Wood and Fiber Science,2007,39(4):527-535

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700