用户名: 密码: 验证码:
莲纤维的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然纤维素纤维的开发利用一直是纺织行业的重要课题。近年来,随着棉粮争地、生态环境恶化和能源短缺等问题日益凸显,人们在不断地对常规植物纤维资源(如棉、麻等)加以利用之外,对新型纤维资源的开发也随之加强。采用可再生、可循环的植物纤维资源,尤其是农业废弃资源生产纤维素纤维,不仅可以缓解能源、环境问题,还丰富了纺织原料种类,对于产业的可持续发展有着重要意义。据目前国内外的研究现状而言,人们对莲纤维的认识和研究尚不深入,莲纤维的开发利用程度还非常低,对莲纤维的基础研究更是极少见诸报道。莲纤维在生物结构上与韧皮纤维存在本质的区别,因而评估莲纤维作为纺织材料的应用价值、研究莲纤维的提取制备和加工工艺均不能参照现有的植物纤维的分析和研究模式。因此,针对上述存在的问题,首先从植物解剖学的角度出发,详细研究了莲叶柄的结构组成特征、莲纤维在叶柄中的分布方式和来源组织,同时明确了莲纤维的定义及其形态结构特点,为研究莲纤维提取技术和解释莲纤维及其制品区别于其它植物纤维的结构与性能奠定基础。对于不同来源的植物纤维材料,其化学组成和纤维性能差异很大。论文在前人初步研究的基础上,深入分析了手工提取莲纤维的组成、结构及其与性能之间的关系。论文的主要工作及结论如下:
     (1)研究了莲叶柄的生物结构特征,明确了莲纤维的来源组织。
     利用石蜡切片技术研究了莲叶柄的解剖结构特征,发现莲叶柄主要是由致密的表皮组织、大量的薄壁细胞、发达的气道以及众多散生的维管束构成。其中气道约占叶柄横截面积的30%,基本薄壁组织占组织总量的60%左右。在一个发育成熟的莲叶柄横截面上可观察到100多个明显的维管束,一个维管束中通常含有1-4个不等的木质部管状分子。
     将成熟的新鲜莲叶柄进行组织离析,结果发现莲叶柄中主要含有5种植物细胞类型,即纤维细胞、表皮细胞、筛管、薄壁细胞和木质部管状分子细胞。除了木质部管状分子外,其它细胞均不适合用作纺织纤维材料,是被视为杂细胞而需要除去的组织。在扫描电子显微镜下观察发现,不同类型的维管束中,其木质部管状分子均可见螺旋状次生壁加厚。
     采用Jeffrey方法离析出单个木质部管状分子细胞,借助电子显微镜研究了其次生壁加厚类型及端壁微观结构。莲叶柄的木质部管状分子主要有环纹和螺纹两种加厚方式,但只有呈紧密带状螺旋式加厚的次生壁才能从叶柄中抽取出来成为莲纤维。管状分子的端壁微观结构特征显示,莲叶柄木质部中除了含有管胞外,还有处于发育早期的原始导管。
     由莲叶柄的生物结构研究可知莲纤维是存在于莲叶柄维管束中木质部管胞和原始导管的带状螺旋式次生壁加厚物。手工抽取的莲纤维呈黄白色,手感柔软,具有荷叶的天然清香,长度可达30 cm以上。每根莲纤维由数根细丝组成,细丝直径3μm左右,属于超细纤维范畴。
     (2)运用现代测试技术和植物纤维化学成分分析方法研究了莲纤维的主体成分及其在纤维中的分布、莲纤维的单糖组成及其功能成分的含量等。
     红外光谱分析表明莲纤维主要由纤维素、半纤维素和木质素组成,属于典型的木质纤维素纤维。化学成分分析表明,莲纤维中纤维素含量仅为41%左右,半纤维素、木质素和果胶质的含量达50%以上。透射电镜、激光扫描共聚焦显微镜等研究结果显示,大量的木质素成分主要分布在纤维的外围部分,而半纤维素嵌合在纤维素微纤丝之间,在整个纤维横截面上都有分布。
     采用高效液相色谱法分析了莲纤维的单糖组成,结果显示莲纤维多糖主要由葡萄糖、木糖、甘露糖和半乳糖组成,其中半纤维主要由木糖组成。
     高效液相色谱、电感耦合等离子体发射光谱和比色分析研究结果表明,总蛋白、总黄酮和生物碱含量分别为2.08%、0.34%和0.13%。微量矿质元素如Fe、Zn、Ca、Si的含量分别是棉纤维的33、4、7和12倍。
     (3)利用凝胶渗透色谱、广角X-射线衍射、原子力显微镜和透射电镜等详细研究了莲纤维纤维素的分子量和微细结构特征。
     莲纤维纤维素的平均聚合度为5696。成熟莲纤维的结晶度和取向度分别为48%和84%,微晶尺寸仅为2.5 nm,远小于棉纤维的。莲纤维表面形貌粗糙,呈现出颗粒状、纤维状和块状的形貌特征,并伴有大小不一的沟槽和孔隙。
     莲纤维经碱溶胀后制作超薄切片,置于透射电镜下观察,结果发现莲纤维主要是由非常薄的S1层和作为纤维主体的S2层组成,没有棉和竹纤维的次生壁多层次构造。纤维素微原纤在整个S2内以几乎平行于纤维轴的方向取向。微原纤的横向尺寸为5 nm左右。
     (4)研究了莲纤维的物理机械性能和抑菌性能,并分析了纤维性能与纤维组成和结构的关系。
     利用FAVIMAT AIROBOT全自动测试仪研究了莲纤维的线密度和一次拉伸断裂性能。莲纤维的平均细度、断裂强度、断裂伸长率和杨氏模量分别为0.91dtex、2.29 cN/dtex、2.58%和78.5 cN/dtex。统计分析结果表明,上述各指标测试值的分布离散程度大,但通过频数分析清楚地描述了各指标的取值分布状态。
     莲纤维的吸、放湿平衡回潮率分别为9.37%和12.30%,而在同样条件下测得棉纤维的吸、放湿平衡回潮率分别为6.22%和7.16%。莲纤维的吸、放湿速率亦高于棉纤维。莲纤维热降解过程中出现了两个明显的热失重峰,纤维素的热裂解起始温度约为361℃。
     抑菌性能研究发现,莲纤维对大肠杆菌只有在较短的接触时间内才表现出抑制作用,而对金黄色葡萄球菌则具有持续较强的抑菌效果,接触18h后测得抑菌率达99%以上。莲纤维的抑菌性能与它自身较多的黄酮和生物碱类化合物密切相关。
Considering the increasing competition for land between food grains and non-food crops, deterioration in ecological condition and energy crisis, it is always in need to investigate natural cellulose fibers other than commonly used cotton, flax, hemp, or ramie. Natural cellulose fibers production from renewable plant resources, especially from agricultural crop residues can help to not only mitigate energy and environmental issue but also diversify the fiber into textile products and promote sustainable development of textile industry. Lotus(Nlumbo nucifera Gaertn), an aquatic perennial native to subtropical and temperate zones, has been popular since ancient times due to its esthetic, religious, medicinal, nutritional and cultural value. Additionally, lotus is very adaptive and easy to grow, provided they get an ample supply of water and sunshine. Now, there are abundant lotus resources in China. However, the lotus petioles are not being fully used. Considerable amount of lotus petioles produced after blossom season or harvest of lotus root every year are left in the pond to decompose and wasted. As expected with lotus root, these residues could generate cellulosic fibers which can be used in textiles. An example of lotus fibers for textile use is Buddhist robes which are made in Myanmar. The lightweight lotus-fiber fabric can give coolness in hot weather and warmth in cold weather. It also features an everlasting pleasant lotus fragrance. But most importantly lotus fiber products have both cultural and Buddhist significance. Lotus robes are regarded as sacred in Buddhism. But the exploration and utilization of lotus fibers is currently very limited. Now, lotus fibers are mainly produced by hand-extraction method. No parameters are available on the structure, performance and processing technology of lotus fibers. Moreover, the traditional theories used in bast fibers research do not apply to the study of lotus fibers because lotus fibers are quite different from other plant fibers in origin, morphologies and so on. Therefore, the present study firstly investigated the anatomical characteristics of lotus petioles, the distribution features of lotus fibers in the petioles and microstructure of tracheary elements end walls from a botanical point of view, then established the definition, morphology and source tissue of lotus fibers. This lays a foundation for further study on fiber extraction technology and differences between lotus fibers and other plant fibers in principal fiber structure and performances. The properties of a material are crucial in determining the value of its products. And the performance of this material is to a large extent decided already by its own chemical composition as well as external and internal structure. For plant fibers of different resources, there is great difference in their composition and quality. On the basis of the previous studies, the present work is mainly to investigate the composition and structure of hand-extracted lotus fibers as well as their relation to fiber properties. The main work and result of this thesis are as follows:
     (1) The anatomical structure of lotus petiole was studied to reveal what is lotus fiber and from which tissue lotus fibers originate.
     The anatomy of lotus petiole was studied by the aid of the paraffin section technique. The results show that lotus petiole mainly comprises of a strong and dense epidermis, thin walled ground parenchyma cells, large aerenchyma and numerous vascular bundles. Aerenchyma occupies more than 30 percent of the total cross-sectional area of the petiole and the ground tissue occupies about 65 percent. Vascular bundles scatter throughout the whole petiole. There are about 100 distinct vascular bundles and the number of tracheary elements in each vascular bundle usually ranges from 1 to 4.
     Mature and fresh lotus petiole was macerated and observed under light microscope. It was found that lotus petiole comprises five types of cell, namely fiber cell, epidermic cell, sieve tube, parenchyma cell and tracheary element. The quantitative and morphological characteristics of these cells indicate that all the cells except tracheary elements can not be used as textile fibers. The tracheary element is more than ten times longer than fiber cell in the same petiole and its secondary cell wall can be extended up to several dozens of centimeters.
     The macerated tracheary elements from mature and fresh lotus petioles were examined under SEM to observe the patterns of secondary wall thickenings and microstructure of end walls. There are several patterns of secondary wall thickening present. However, only secondary thickening in a ribbon-like helical pattern can be drawn out from the petiole to form lotus fibers for subsequent utilization. Study of the microstructure of the tracheary elements reveals that there are two pit structures present in the end walls in addition to pits with intact pit membranes: those with porose or web-like remnants pit membrane and those that lack pit membranes. This is an indication of the transitional stage between tracheids and vessel elements. This study provides supportive evidence that lotus fibers are found in both helically thickened tracheids and helically thickened primitive vessels.
     On the basis of the anatomy of lotus petiole, it is demonstrated that lotus fibers are the band-like, helical secondary cell wall thickenings of both xylem tracheids and primitive vessel elements in lotus petioles. The hand-extracted lotus fibers have a white-yellow color, a soft handle, and an everlasting pleasant lotus fragrance. They are more than 30 cm long and each fiber is composed of several less thin filaments. The diameter of single filament is about 3μm, similar to that of microfiber. Lotus fiber has a solid construction without lumen, which is somewhat different from other natural fibers.
     (2) The chemical composition, distribution of main components, and composition of monosaccharide were investigated by modern testing and measurement technology, as well as analytical method for the composition analysis of plant fibers.
     The infrared spectroscopy analysis shows that lotus fibers belong to typical lignocellulose fiber, which is mainly composed of cellulose, lignin and hemicellulose. The chemical analysis results show that lotus fiber contains about 41 percent of cellulose, but the content of lignin, hemi-cellulose, and pectin is more than 50 percent. The TEM and CLSM examination reveals that lignin is highly concentrated on the periphery part of the fiber, whereas, hemi-cellulose dispersedly located between cellulose microfibrils throughout the whole cross section of the fiber.
     The HPLC, ICP, and colorimetry study reveals that lotus fiber contains various amino acid, mineral elements, and bioactive compounds in addition to polysaccharide and lignin. The content of total protein, flavonoids, and alkaloids is 2.08%,0.34%, and 0.13%, respectively. The amount of Fe, Zn, Ca, and Si is about 33,4,7, and 12 times higher than that of cotton fiber.
     (3) The characteristics of molecular weight, aggregate structure, and ultra-structure of lotus fiber were detailedly studied by the aid of GPC, wide-angle X-ray diffraction, AFM, and TEM technique.
     Lotus fiber has a weight average molecular weight similar to that of ramie and flax fiber and an average DP of more than 5000. The crystallinity of mature lotus fiber and preferred orientation of its cellulose microfibrils are 48% and 84%, respectively. Lotus fiber has a crystal size of about 2.5 nm, much lower than that of cotton fiber. The raw lotus fibers display a rough surface topography, with granular, fibrous, or block microstructure and grooves of varying depth.
     The TEM study reveals that lotus fiber do not has a distinct polylamellate structure seen in other plant fibers. The fiber is composed of only two layers, namely the very thin S1 layer and the broader S2 layer. Microfibrils are oriented almost parallel to longitudinal axis of the fiber and are arranged close to each other. The cellulose microfibril diameter was estimated as 12 nm, similar to that of cotton.
     (4) The physical and mechanical properties of lotus fiber, as well as their relationship to the fiber composition and structure characteristics were investigated in the end.
     The fiber linear density and tensile performance were determined using an FAVIMAT AIROBOT automatic single fiber tester. Lotus fiber has a fineness of 0.91 dtex, much smaller than that of cotton and bast fiber. Its average tensile strength, breaking elongation, and Young's modulus are 2.29%,2.58%, and 78.5cN/dtex, respectively. The statistical analysis indicates that the test values of the above items have a high degree of dispersion, but distribution of these values can be clearly determined by the results of frequency analysis.
     In comparison with cotton fiber, lotus fiber has higher moisture regain and quicker moisture absorption/desorption rate. The thermal behaviour of lotus fiber is slightly different from that of cotton fiber due to the fact that lotus fiber contains a relatively high amount of hemi-cellulose and lignin components.
     The antibacterial tests demonstrated bacteriostatic action of lotus fiber against both the Escherichia coli and the Staphylococcus aureus. The bacteriostatic activity against Escherichia coli was observed after only a short contact time, however, the activity against Staphylococcus aureus was significant and durative. The bacteriostatic rate on the latter strain was above 99% after an incubation time of 18 h. The bacteriostatic performance is closely linked with its relatively high amount of flavonoids and alkaloids.
引文
[1]Hutchinson J. The families of flowering plants (3ird edition). Oxford:Clarendon.1973, 403-407
    [2]倪学明主编.中国莲.北京:科学出版社.1987.
    [3]张世田,何泽成,姚之玲编.莲藕.郑州:河南科学技术出版社.1984年9月第1版
    [4]http://baike.baidu.com/view/150473.htm
    [5]柯卫东,李峰,刘玉平等.我国莲资源及育种研究综述上.长江蔬菜,2003,(4):5-9.
    [6]赵旭升主编.沙地莲藕节水栽培.郑州:河南科学技术出版社.2003.
    [7]张金忠,王金忠.莲叶柄导管次生壁蛋白的发现和初步研究.科学通报.1993,(6):1131-1134.
    [8]贺士元.莲.生物学通报.1998(11):26-27.
    [9]Huang, J., Tanabe, K., Itai, A. Identification of Flowering Lotus Cultivars by ISSR (Inter-Simple Sequence Repeat) Markers. Hort. Res.2003,2:259-264.
    [10]The angiosperm phylogeny group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APG Ⅱ. Botanical Journal of Linnean Society.2003,141:399-436.
    [11]Zanis M. J., Soltis D. E. The root of the angiosperms revisited. Proceedings of the National Academy of Sciences of the United States of America.2002,99(10):6848-6853.
    [12]http://baike.baidu.com/view/150473.html#1
    [13]于清泉编著.莲藕栽培与藕田套养技术.北京:金盾出版社.2003.
    [14]张长贵,董加宝,王祯旭.莲藕的营养保健功能及其开发利用.中国食物与营养.2006,(1):22-24.
    [15]Ibrahim,N., El-Eraqy,W. Protein content and amino acid composition of Nelumbo nucifera seeds and its evaluation as hypoglycaemic agent. Egyptian Journal of Pharmacological Science.1996,37:635-641
    [16]Sridhar K. R., Bhat R. Lotus-A potential nutraceutical source. Journal of Agricultural Technology.2007,3(1):143-155.
    [17]Bhat R., Sridhar K. R. Nutritional quality evaluation of electron beam-irradiated lotus (Nelumbo nucifera) seeds. Food Chemistry.2008,107:174-184.
    [18]http://baike.baidu.com/view/4411.htm
    [19]杨光.论莲荷历史文化及其不同部位药用功效.首都医药.2005,12(10):39-40.
    [20]王其超,张行言.浅析《本草纲目》与荷花.中国园林.2006,22(3):79-81.
    [21]刘建荣.莲花的药用价值.甘肃林业.2004,4:38.
    [22]田娜,刘仲华,黄建安.莲的化学成分及其药理作用研究进展.中国药学杂志.2005,40(16):1212-1214.
    [23]http://baike.baidu.com/view/39355.htm
    [24]王希庆.藕丝.中国植物学杂志,1950,5(1):14-17.
    [25]刘迪.莲纤维的形态结构及物质组成初探.青岛大学,2008.
    [26]Hamilton, R. W., Milgram, B. L.,& Sylvia Fraser-Lu. Material Choices:refashioning bast and leaf fibers in Aia and the Pacific. In R. W. Hamilton (Eds), Leaf and Bast Fibers in the Asia-Pacific Region:An Overview. Los Angeles:Fowler Museum at UCLA.2007:25-39.
    [27]Sae, Ogasawara. Lotus fiber-comparison with the lotus fiber weaving at Myanmar and the picture scroll of Taima-mandala. Sen'i Gakkaishi.2005,61 (11):10-14.
    [28]http://myanmarlotus.com/productionstep.html
    [29]张宏伟,李永兰,李南等.莲纤维的脱胶及其性能.纺织学报.2009,30(6):66-71.
    [30]陈东生,甘应进.莲纤维及其制取.闽江学院学报.2008,29(5):
    [31]http://www.coachbagspurse.com/blog/archives/128.html
    [32]http://www.myanmars.net/myanmar-culture/myanmar-lotus-robe.htm
    [33]王培红,寇修茂,蒋秀凤.棉藕丝混纺系列产品的开发.新纺织.2005,(6):25-27.
    [34]杨建年.藕丝纤维.200510020552.X.2005.03.21.
    [35]Liu, L., Han, G., Huang, J.& Zhang, Y. Compositon and stucture study of natural Nelumbo nucifera fiber. Carbohydrate Polymers.2009,75:39-43.
    [36]段慧,韩光亭,潘颖,张元明.莲纤维的结晶结构及理化性能研究.中国科技论文在线http://www.paper.edu.cn.2010,02.
    [37]Mwaikambo L. Y. Review of the history, properties and application of plant fibers. African Journal of Science and Technology Science and Engineering Series.2006,7(2):120-133.
    [38]王越平,高绪珊,张晓丹.儿种天然纤维素纤维的物理结构研究.纤维素科学与技术.2006,14(4):32-37.
    [39]Narendra Reddy. Structure and Properties of Natural Cellulose Fibers Abstained from Cornhusks, Cornstalks, Rice, Wheat, Soybean Straw and Sorghum Stalks and Leaves. University of Nebraska, December 2006.
    [40]T. E. Chernova, T. A. Gorshkova. Biogenesis of plant fibers. Russian Journal of Developmental Biology.1997,38 (4):221-232.
    [41]Maiti, R. K. A study of the microscopic structure of the fiber strands of common Indian bast fibers and its economic implications. Economic Botany.1979,33(1):78-87.
    [42]C. Garcia-Jaldon, D. Dupeyre, M. R. Vignon. Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass and Bioenergy 1998,14(3):251-260.
    [43]Fredi Bruhlmann, Marianne Leupin, Erismann Karl H. Enzymatic degumming of ramie bast fiber. Journal of Biotechnology,2000,76:43-50.
    [44]X.F.Sun, F.Xu, R.C.Sun, et al. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research,2005,340:97-106.
    [45]Kozlowski R., Batog J., Konczewicz W. Enzymes in bast fibrous plant processing. Bictechnology Letters,2006,28:761-765.
    [46]Kessler R.W., Becker U., Kohler R. Steam Explosion of Flax-Superior Technique for Upgrading Fiber value. Biomass and Bioenergy.1998, (14):237-249.
    [47]Zimbardi F., Viola E., Nanna F., Larocca E. Acid impregnation and steam explosion of corn stover in batch processes. Industrial Crops and Products.2007,26:195-206.
    [48]Murali K., Mohan Rao, K. Mohana Rao. Extraction and tensile properties of natural fibers: Vakka, date and bamboo [J]. Composite Structures.2007,77:288-295.
    [49]Narendra Reddy, Yiqi Yang. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresource Technology.2008,99:2449-2454.
    [51]邝仕均.植物纤维原料的超微结构与制浆造纸工艺.中国造纸.1981,5:43-48.
    [52]贾景农,边栋材,闻艳萍等.棉纤维微观结构差异与纤维强度的关系.纺织学报.1992,13(5):9-12.
    [53]Mirkamilov S. M., Tillashaikov M. S., Sidikov A. S. Dependence of the supermolecular structure of cotton plant stem cellulose on the technological processes of its production. Chemistry of Natural Compounds.1996,32(6):905-908.
    [54]Osullivan A. C. Cellulose:the structure slowly unravels. Cellulose.1997,4:173-207.
    [55]Baird M. S., Osullivan A. C. A native cellulose microfibril model. Cellulose.1998,5: 89-111.
    [56]Yamamoto H. Generation mechanism of growth stresses in wood cell walls:roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Science and Technology.1998,32:171-182.
    [57]Tanaka E, Okamura K. Characterization of cellulose molecules in bio-system studied by modeling methods. Cellulose.2005,12:243-252.
    [58]肖红,于伟东,施楣梧.木棉纤维的微细结构研究—胞壁层次结构与原纤尺度.东华大学学报(自然科学版).2006,32(3):85-90.
    [59]Krakhmalev V. A., Paiziev A. A. Spiral structures of cotton fiber. Cellulose.2006,13:45-52.
    [60]Donaldson L. Cellulose microfibril aggregates and their size variation with cell wall type. Wood Science and Technology.2007,41:443-460.
    [61]Zhao H., Kwak J. K., Zhang Z., Brown H. M., Arey B. W., Holladay J. E. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers.2007,68: 235-241.
    [62]Subramanian R., Kononov A., Kang T., Paltakari J., Paulapuro H. Structure and properties of some natural cellulosic fibrils. BioResources.2008,3(1):192-203.
    [1]周云龙主编.植物生物学.北京:高等教育出版社,1999:73.
    [2]New World Encyclopedia Encyclopedia. Fiber. http://www.newworldencyclopedia.org/entry/Fiber?oldid=865429,2008.
    [3]Li Y., Mai Y. W., Ye L. Sisal fiber and its composites:a review of recent developments. Composites Science and Technology.2000,60:2037-2055.
    [4]杨淑惠编.植物纤维化学.北京:中国轻工业出版社,2005.
    [5]于伟东主编.纺织材料学.北京:中国纺织出版社,2006:183.
    [6]田慧敏,蔡玉兰.竹原纤维微观形态及聚集态结构的研究.棉纺织技术.2008,9:32-35.
    [7]蔡再生编.纤维化学与物理.北京:中国纺织出版社.2004:156-161.
    [8]姚穆,周锦芳,黄淑珍等主编.纺织材料学(第二版).北京:中国纺织出版社.1990:19-91.
    [9]Kim, H.J., Triplett, B.A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol.2001,127:1361-1366.
    [10]邢声远,刘政,周湘祁.竹原纤维的性能及其产品开发.纺织导报.2004,4:43-48.
    [11]杨之礼,高洗,刘海敏.剑麻纤维形态结构的特征.纤维素科学与技术.1993,1(1):38-44.
    [12]Liu, D., Han, G, Huang, J., Zhang, Y. Composition and structure study of natural Nelumbo nucifera fiber. Carbohydr Polym.2009,75:39-43.
    [13]Schneider, E.L., Carlquist, S. SEM studies on vessels in ferns.17. Psilotaceae. Am. J. Bot. 2000,87:176-181.
    [14]Schneider, E.L., Carlquist, S. Vessel origins in Nymphaeaceae:Euryale and Victoria. Bot. J. Linn. Soc.1995,119:185-193.
    [15]Schneider, E.L., Carlquist, S. Vessels in Nelumbo (Nelumbonaceae). Am. J. Bot.1996,83: 1101-1106.
    [16]Carlquist, S., Schneider, E.L. Origin and nature of vessels in monocotyledons.5. Araceae subfamily Colocasioideae. Bot. J. Linn. Soc.1998,128:71-86.
    [17]Kosakai, H., Moseley, M.F., Cheadle, V.I. Morphological studies of the Nymphaeaea. V. does nelumbo have vessels. Am. J. Bot.1970,57:487-494.
    [18]王希庆.藕丝.中国植物学杂志,1950,5(1):14-17.
    [19]胡光万,刘克明,雷立功.睡莲属三属植物液的比较解剖学研究.生命科学研究.2003,7(3):243-248.
    [20]陈维培,张四美,严素珍.莲营养器官的结构及其对水生生活的适应.南京师院学报(自然科学版).1980,2:64-70.
    [21]陈维培,张四美.莲的生态结构学研究.生态学报.1988,8(3):277-284.
    [22]曾宪锋.谈藕丝.生物学通报,1992,(2):44.
    [23]李正理.植物制片技术.北京:科学出版社,1978:91-95.
    [24]林钧安编.实用生物电子显微术.辽宁:科学技术出版社,1989.
    [25]Sass, J.E.. Elements of Botanical Microtechnique. New York:McGraw Hill Book Co.,1940.
    [26]Carlquist, S. Pit membrane remnants in perforation plates of primitive dicotyledons and their significances. Am. J. Bot.1992,79:660-672.
    [27]Carlquist, S., Schneider, E.L. Origin and nature of vessels in monocotyledons.11. Primary xylem microstructure, with examples from Zingiberales. Int. J. Plant Sci.2010,171: 258-266.
    [1]林润惠.制浆造纸分析与检验.中国轻工业出版社,2007.
    [2]屈维均主编.纸浆造纸实验.北京:中国轻工业出版社,1990:25-56.
    [3]Foster, C. E., Martin, T. M., Pauly, M., Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part Ⅱ:Lignin http://www.jove.com/details.stp?id=1745 doi: 10.3791/1745. J Vis Exp.37 (2010).
    [4]Foster, C. E., Martin, T. M., Pauly, M., Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part Ⅱ:Carbohydrates http://www.jove.com/details.stp?id=1837 doi:10.3791/1837. J Vis Exp.2010,37.
    [5]Rowell, R. M. Moisture properties. In R. M. Rowell (Ed), Handbook of wood chemistry and wood composites. Boca Raton, Florida:CRC Press Inc,2005:77-98.
    [6]Cerhard Stock, et al. Upgrading rycycled pulps using enzymatic treatment.1995,78(2):9
    [7]Marianne marx-figini, et al. Enzymatic degradation of cotton cellulose by separated endo-and exo-cellulase. Cellulose chemistry and technology,1997,31:155.
    [8]Krishna S H, et al. Studies on the production and application of cellulose from Trichoderma reesei QM-9414. Bioprocess Enginering,2000,22:467.
    [9]Gierlinger, N., Goswami, L.,& Schmidt, M. In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. Biomacromolecules.2008,9:2194-2201.
    [10]Salamone, J. C. (1996). Polymeric materials encyclopedia (Vol.5). Jute, (pp.3507). Boca Raton, Florida:CRC Press Inc.
    [11]L.J.贝拉米著,黄维垣聂崇实译.复杂分子的红外光谱.北京:科学出版社.1975:107-127.
    [12]Hubbell, C. H.,& Ragauskas, A. J. Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technology,2020,101:7410-7415.
    [13]杨淑慧.植物纤维化学.北京:中国轻工业出版社,2001,4-21,43,50,69,163.
    [14]李雄彪,张金忠编.简明植物生物化学.天津:南开大学出版社,1992:56-108.
    [15]Awano T, Takabe K, Fujita M, Daniel G,2000. Deposition of glucuronoxylans on the secondary cell wall of Japanese beech as observed by immuno-scanning electron microscopy, Protoplasma,212:72-79.
    [16]Spiegelberg H. L. The effect of hemicelluloses on the mechanical properties of individual pulp fibers [D]. Georgia Institure of Technology, January 1966.
    [17]陈嘉翔.植物纤维化学结构的研究方法.广州:华南理工大学出版社,1989.
    [18]郁铭芳,孙晋良,邢声远,季国标.纺织新原料与纺织品应用领域新发展.北京:清华大学出版社.2002:10.
    [19]蔡再生编.纤维化学与物理.北京:中国纺织出版社.2004:156-161.
    [20]陈嘉翔编.制浆化学.北京:中国轻工业出版社,1990:45-116.
    [21]Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. Determination of Extractives in Biomass. Biomass Program Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO.2005.
    [22]国家技术监督局.GB/T2677.6-94造纸原料有机溶剂抽出物含量的测定.北京:中国标准出版社.1995.
    [23]国家技术监督局.GB/T 2677.5-93造纸原料1%氢氧化钠抽出物含量的测定.北京:中国标准出版社.1993.
    [24]Sun, R., Fang, J. M., Goodwin, A., Lawther, J. M.,& Bolton, A. J. Fractionation and characterization of polysaccharides from abaca fibre. Carbohydrate Polymers.1998,37: 351-359.
    [25]Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, CO.2008.
    [26]林钧安编.实用生物电子显微术.辽宁:科学技术出版社,1989.
    [27]Donaldson L. A. Lignin distribution during latewood formation in Pinus radiata D. Don. IAWA Bulletin n.s.1992,13:381-387.
    [28]Donaldson, L. A., Singh, A. P., Yoshinaga, A.,& Takable, K. Lignin distribution in mild compression wood of Pinus radiata. Canadian Journal of Botany.1999,77:41-50.
    [29]McDougall, G. J. Isolation and partial characterization of the noncellulosic polysaccharides of flax fibre. Carbohydr. Res.1993:241:227-236.
    [30]石淑兰主编.制浆造纸分析与检测.北京:中国轻工业出版社,2003:22-56.
    [31]国家技术监督局.GB/T 2677.10-95造纸原料综纤维素含量的测定.北京:中国标准出版社.1996.
    [32]李之工编译.纤维素物理化学.北京:中国财政经济出版社,1965:53-63.
    [33]Hepler P. K., Fosket D. E. Lignification during secondary wall formation in Coleus:an electron microscopic study. Am. J. Bot.1970,57 (1):85-96.
    [34]Maurer A., Fengel D. A new process for improving the quality and lignin staining of ultrathin sections from wood tissue. Holzforschung.1990:44 (6):453-460.
    [35]Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. Preparation of samples for compositional analysis. National Renewable Energy Laboratory, Golden, CO. 2008.
    [36]Gumuskaya E., Usta M., Balaban M. Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. Bioresources Technology.2007,98: 491-497.
    [37]姚穆,周锦芳,黄淑珍等.纺织材料学(第二版).北京:中国纺织出版社.
    [38]亓军红.我国古代荷的种植及其经济文化价值研究.南京农业大学硕士学位论文,2006.
    [39]张长贵,董加宝,王祯旭.莲藕的营养保健功能及其开发利用.中国食物与营养.2006,(1):22-24
    [40]Lamport,D.T.A.; Northcote,D.H. Hydroxyproline in primary cell walls of higher plants. Nature.1960,188:665-666.
    [41]杨明,顾莉琴,钱和生,查刘生.天然彩棉与普通白棉中微量元素的比较研究.光谱学与光谱分析.2008,28(1):203-205.
    [42]许申鸿,杭瑚,郝晓丽.葡萄籽化学成分分析及其抗氧化性质研究.食品工业科技.2000,21(2):18-20.
    [43]芮玉奎,张福锁,王正瑞.ICP-MS/ICP-AES法快速测定转基因棉花种子中的矿质元素和重金属含量.光谱学与光谱分析.2008,28(2):188-190.
    [44]韩丽琴,董顺福,刘建华.治疗呼吸系统疾病中草药微量元素含量测定.光谱学与光谱分析.2008,28(2):453455.
    [45]陈计峦,吴继红,江英,胡小松.微波消解/ICP-MS法检测八种梨果实中主要矿质元素含量.光谱学与光谱分析.2009,29(2):496-498.
    [46]Ji X., Li Y., Liu H., Yan Y., Li J. Determination of the alkaloid content in different parts of some Mahonia plants by HPCE. Pharmaceutica Acta Helvetiae.1999,74:387-391.
    [47]Zhang L., Shan Y., Tang K., Putheti R. Ulutrasound-assisted extraction flavonoids from Lotus (Nelumbo nuficera Gaertn) leaf and evaluation of its anti-fatigue activity. International Journal of Physical Sciences.2009,4(8):418-422.
    [48]薛晓丽.荷叶总黄酮的提取工艺研究.安徽农业科学.2009,37(12):5500-5501 5503.
    [49]王伟,谭晓梅.荷叶总生物碱含量测定方法的研究.中药材.2007,27(1):50-51.
    [50]洪庆慈,汪海峰.荷叶中黄酮类物质含量的测定.郑州工程学院学报.2001,26(2):50-54.
    [51]Agnihotri, V.K., ElSohly, H.N., Khan, S.I., Jacob, M.R., Joshi, V.C., Smillie, T., Khan, I.A., Walker, L.A. Constituents of Nelumbo nucifera leaves and their antimalarial and antifungal activity. Phytochem Lett.2008,1:89-93.
    [52]Ling, Z.Q., Xie, B.J., Yand, E.L. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J. Agric. Food Chem.2005,53:2441-2445.
    [1]姚穆,周锦芳,黄淑珍等.纺织材料学(第二版).北京:中国纺织出版.1990:16-17.
    [2]蔡再生编.纤维化学与物理.北京:中国纺织出版社.2004:156-161.
    [3]于伟东,储才元.纺织物理.上海:中国纺织大学出版社.2001:15-18.
    [4]Brown MR Jr:The biosynthesis of cellulose. J Macromol Sci — Pure Appl Chem 1996, A33:1345-1373
    [5]Larsson PT, Wickholm K, Iversen T A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res.1997,302:19-25
    [6]潘志娟.纤维材料近代测试技术.中国纺织出版社,2005.
    [7]叶雄干.植物纤维是如何形成的.Paper and paper making.2006,25:85-94.
    [8]陈嘉翔.植物纤维化学结构的研究方法.华南理工大学出版社,1989.
    [9]Alexander W.J., Mitchell R.L. Rapid measurement of cellulose viscosity by nitration methods. Anal. Chem.1949,21(12):1497-1500.
    [10]Hubbell C. H.,& Ragauskas A. J. Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technology.2010,101:7410-7415.
    [11]Geller B. E., Polovnikova M. V., Tairov M. Sh., Vostrilova N. V., Sushkevich T. I., Sakalauskas Z.,& Grabauskas V. Molecular weight distribution in cellulose triacetates and its effect on the mechnical properties of fibers. Fiber Chemistry.1971,1:544-547.
    [12]Timell, T. E. Chain length and chain-length distribution of untreated cotton, flax, and ramie celluloses. Industrial and Engineering Chemistry.1955,47(10):2166-2172.
    [13]Timell, T. E. Some properties of native hemp, jute, and kapok celluloses. Text. Res. J.1957, 27(11):854-859.
    [14]Reddy, N.,& Yang, Y. Properties of natural cellulose fibers from hop stems. Carbohydrate Polymers.2009,77:898-902.
    [15]Thygesen A., Oddershede J., Lilholt H., et al. On the determination of crystallinity and cellulose content in plant fibres. Cellulose.2005,12(6):563-576.
    [16]腾凤恩.X射线结构分析与材料性能表征.北京:科学出版社,1997:236-345.
    [17]王越平,高绪珊,邢声远.儿种天然纤维素纤维的结构研究.棉纺织技术.2006,02:74.
    [18]Reddy, N., Yang, Y. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer.2005,46(15):5494-5500.
    [19]Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M. An empirical method for estimating the degree of crystallinity using the X-ray diffractometer. Text. Res. J.1959,29 (10):786-794.
    [20]Mwaikambo, L. Y., Ansell, M. P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J of Appl Polym Sci.2002,84(12):2222-2234.
    [21]朱育平,曹秋玲,陈晓等.天然彩棉的结晶度和取向度研究.东华大学学报(自然科学版).2009,12:627.
    [22]Reddy, N., Yang, Y. Characterizing natural cellulose fibers from velvet leaf(Abutilon theophrasti) stems. Bioresour. Technol.2008,99(7),2449-2454.
    [23]李栋高编.纤维材料学.北京:中国纺织出版社,2006:19-20.
    [24]Ward, K. Crystallinity of cellulose and its significance for the fiber properties. Text. Res. J. 1950,20 (6):363-372.
    [25]Hindeleh, A.M. Crystallinity, crystallite size, and physical properties of native Egyptian cotton. Text. Res. J.1980,50 (11):667-674.
    [26]Gumuskaya, E., Usta, M., Kirci, H. The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym. Degrad. Stab.2003,81:559-564.
    [27]Focher, B., Palma, M. T., Canetti, M. Structural differences between non-wood plant celluloses:evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crops Prod.2001,13:193-208.
    [28]Gindl W., Martinschitz K.J., Boesecke P., et al. Orientation of cellulose crystallites in regenerated cellulose fibers under tensile and bending loads. Cellulose,2006,12:623-624.
    [29]Bohn, A., Fink, H.P., Ganster, J., et al. X-ray texture investigations of bacterial cellulose. Macromol Chem and Phys.2000,201 (15):1913-1921.
    [30]He, J., Tang, Y, Wang, S. Differences in morphological characteristics of bamboo fibers and other natural cellulose fibers:studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iranian Polymer Journal.2007,16(12): 807-818.
    [31]Han G., Wang L., Liu M., Zhang Y. Component analysis and microfiber arrangement of Apocynum venetum fibers:The MS and AFM study. Carbohydrate Poymers.2008,72: 652-656.
    [32]邝仕均.甘蔗渣的超微结构及半纤维素在其纤维细胞壁上的分布.中国造纸.1980,(4):17-23.
    [33]Prodhan A K M A, Ohtani J, Funada R, Abe H and Fukazawa F. Ultrastructural investigation of tension wood fiber in Fraxinus mandshurica rupr. var. japonical Maxim. Annals of Botany.1995,75:311-317.
    [34]Brandstrom J, Bardage S L, Daniel G and Nilsson T. The structural organization of the S1 cell wall layer of Norway spruce tracheids. IAWA Journal.2003,24(1):27-40.
    [35]肖红,于伟东,施楣梧.木棉纤维的微细结构研究.东华大学学报(自然科学版).2006,32(3):85-90.
    [36]宴春耕.苎麻韧皮纤维超微结构的研究.湖南农业大学学报.2000,26(1):31-33.
    [37]张镁,吴红霞,马长华,胡伯陶.彩棉纤维的形态结构、超微结构和主要化学组成.印染.2002,6:1-6.
    [38]Parameswaran, N., Lises, W. On the fine structure of bamboo fibers. Wood Science and Technology.1976,10:231-246.
    [39]Jain, S., Kumar, R.,&Jindal, U. C. Mechanical behaviour of bamboo and bamboo composite. Journal of materials science.1992,27:4598-4604.
    [1]姚穆,周锦芳,黄淑珍等.纺织材料学(第二版).北京:中国纺织出版社,1990:355-372.
    [2]Reddy, N., Yang, Y. Natural cellulose fibers from soybean straw. Bioresour. Technol.2009, 100(14),3593-3598.
    [3]Reddy, N., Yang, Y. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour. Technol.2009,100(14):3563-3569.
    [4]蔡再生编.纤维化学与物理.北京:中国纺织出版社.2004:112.
    [5]于伟东,储才元.纺织物理.上海:中国纺织大学出版社.2001:56-70.
    [6]郭建国,孙岩峰,张玉苍,何连芳.聚合物/木质素共混复合材料的研究进展.塑料科技.2010,38(9):97-101.
    [7]官爱华,张健飞.牛奶蛋白纤维与羊毛纤维吸湿性能对比分析.棉纺织技术.2007,12:728.
    [8]S. Das, A.K. Saha, P.H. Choudhury, R.K. Basak, B.C. Mitra, T. Todd, S. Lang and R.M. Rowell. Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. Journal of Applied Polymer Science.2000,76:1652-1661.
    [9]A.L.F.S. d'Almeida, D.W. Barreto, V. Calado and J.R.M. d'Almeida. Thernal ananlysis of less common lignocellulose fibers.2008,91(2):405-408.
    [10]Bismarck A, Mohanty AK, Aranberri-Askargorta I, Czapla S, Misra M, Hinrichsen G and Springer J. Surface characterization of natural fibers:surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chemistry.2001,3:100-107.
    [11]Manikandan Nair K C, Thomas S and Groeninckx G. Thermal and dynamical analysis of polystyrene composites reinforced with short sisal fibers. Compos Sci Technol.2001,61: 2519-2529.
    [12]B. Wielage, T. Lampke, G Marx, K. Nestler, D. Starke. Thermogravimetric and differential scanning calorimetric analysis of natural fibers and polypropylene. Thermochimica Acta, 1999:169-177.
    [13]Trindade W G, Hoareau W, Megiatto J, Razera I A T, Castellan A and Frollini E. Phenolic thermoset matrices reinforced with unmodified and surface grafted furfuryl alcohol sugarcane bagasse and curaua fibers:properties of fibers and composites. Biomacromol. 2005,6:2485-2496.
    [14]U. Schuchardt, M. L. Bianchi, A. R. Gon alves, A. A. S. Curvelo, F. C. Biscolla and L. O. Peres. Piassava fibers (Attalea funifera). I. Chmeical analysis, extraction and reactivity of its lignin. Cellulose Chem. Technol.1995,29:705-712.
    [15]纪丽莲.荷叶中抑菌成分的提取及其抑菌活性的研究.食品科学.1999,20(8):64-66.
    [16]Akinjogunla O. J., Adegoke A. A., Udokang I. P., Adebayo-Tayo B. C. Antimicrobial potential of Nymphaea lotus (Nymphaeaceae) against wound pathogens. Journal of Medicinal Plants Research.2009,3(3):138-141.
    [17]刘树兴,赵芳.荷叶生物碱的含量测定方法及抑菌活性研究.食品研究与开发.2008,29(3):124-127.
    [18]纤维制品卫生加工协议会编.Shake Flask法.纤维制品卫生加工协议会.1985:1-5.
    [19]肖桂青.荷叶总生物碱提取、纯化及生物活性研究.湖南农业大学硕士论文,2007.
    [20]Schempp CM, Pelz K, Wittmer A, et al. Antibacterial activity of hyperforin from St John's wort against multiresistant Staphylococcus aureus and gram-positive bacteria. Lancet.1999, 353(9170):2129.
    [21]Reichling J, Weseler A, Saller R. A current review of the antimicrobial activity of hypericum perforatum L. Pharmacopsychiatry,2001,34 Suppl 1:S116-S118.
    [22]张英,沈建福,俞卓裕,陆柏益,楼鼎鼎.竹叶黄酮作为抗衰老护肤因子的应用基础研究.林产化学与工业.2004,24(1):95-100.
    [23]刘胜贵,彭斯文,闵丹.18种抗炎症中草药的抑菌作用研究.现代中医药.2007,27(2):4145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700