用户名: 密码: 验证码:
化学成分对木材细胞壁力学性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材细胞壁是树木的实质承载结构,是以纤维素微纤丝为增强相,木素/半纤维素为基质的层板结构纳米复合材料。纤维素、半纤维素和木质素各组分在细胞壁中的分布、结合方式以及各组分自身的性能对木材细胞壁及其宏观力学性能有着重要的影响,因此,细胞壁结构和功能研究对了解木材物理力学性质的本质起源,指导树木遗传改良、仿细胞壁结构复合材料设计、以及制浆造纸等应用研究都具有重要意义。本论文以人工林杉木[Cunninghamia lancolata(Lamb)Hook]成熟材晚材管胞为研究对象,采用亚氯酸钠法和碱液浓度分级抽提法选择性地脱除细胞壁中的木质素和半纤维素,应用湿化学分析、红外和拉曼光谱技术监测细胞壁化学成分变化,利用X射线衍射技术分析化学脱除方式对细胞壁晶体结构的影响,并利用单根纤维拉伸技术和纳米压痕技术测试基体成分脱除后细胞壁的力学性能响应,揭示了化学成分对木材细胞壁力学性能的影响机理。
     论文的主要结论和成果如下:
     (1)光谱分析表明,亚氯酸钠处理后,细胞壁中木质素发生降解,随后逐步增加碱液浓度抽提处理,木聚糖发生降解,葡甘露聚糖最后降解。其中,10%氢氧化钠溶液处理后,有部分纤维素II生成。X射线衍射分析表明脱木素和脱半纤维素(6%、8%氢氧化钠溶液处理)后,纤维素相对结晶度提高,纤维素晶型没有变化。10%的氢氧化钠溶液处理后,纤维素相对结晶度降低,纤维素晶型由纤维素I变为纤维素II。同时,纤维素晶体尺寸在脱木素处理后增大,脱半纤维素处理后减小。
     (2)对杉木单根纤维单周期、多周期循环拉伸研究表明,细胞壁化学成分的变化不会改变单根纤维本身的应力应变特性。单根纤维(微纤丝角10°左右)的拉伸应力-应变曲线从初始到断裂都呈现良好的线性关系,多周期循环拉伸测试证实化学成分选择性脱除处理前后单根纤维均呈现明显的粘弹塑性特性。纳米压痕测试也证实化学处理前后细胞壁压入载荷-位移曲线特性未发生变化。
     (3)组成细胞壁基质的木质素,在干燥状态下,对细胞壁的纵向拉伸弹性模量和压入模量影响程度不大。木质素(减少99%)脱除后,细胞壁纵向弹性模量损失约为5.10%,压入模量损失约为6.53%。而木质素对细胞壁的拉伸强度、断裂伸长率以及硬度影响显著。细胞壁的拉伸强度和断裂伸长率随着木质素含量的减少而增大,细胞壁的硬度却随着木质素的脱除,降低了16.98%。
     (4)组成细胞壁基质的另一种成分半纤维素,对细胞壁的纵向拉伸弹性模量和压入模量影响显著。半纤维素脱除后,细胞壁的纵向拉伸弹性模量损失约为11.57%。其中木聚糖脱除后,细胞壁的纵向拉伸弹性模量损失约为9.55%;而葡甘露聚糖脱除后,纵向拉伸弹性模量损失仅为2.24%。细胞壁的压入模量随着半纤维素的脱除损失了约9.16%。半纤维素尤其是木聚糖对细胞壁的拉伸强度、断裂伸长率影响显著。细胞壁的拉伸强度和断裂伸长率随着半纤维素的降解而降低。与脱木素处理的细胞壁相比,半纤维素脱除后,细胞壁的拉伸强度降低了32.15%,断裂伸长率减少了21.12%,硬度仅降低了0.87%。
     (5)单根纤维拉伸和纳米压痕测试结果表明,与未处理样品相比,基质(木质素和半纤维素)脱除后,纤维素对细胞壁的纵向拉伸模量的贡献仍可达84%,对压入模量的贡献约占85%,对拉伸强度的贡献占96%,对断裂伸长率占95%,对硬度的贡献占82%。
     (6)杉木木材纤维细胞壁化学成分选择性脱除处理前后纤维的断裂形式存在一定的差异。机械剥离纤维和脱木素处理纤维的断口形状多呈斜齿形,断口粗糙,表现出较多“韧性断裂”特性;而脱半纤维素的纤维断口相比较平滑,表现出明显的“脆性断裂”特性。这与脱半纤维素的纤维较低的平均断裂伸长率的测试结果相一致。
     (7)从力学的角度,建立了细胞壁各组分之间关系的结构模型。模型表明,纤维素是细胞壁的主要结构成分,在细胞壁中充当骨架物质,是细胞壁强度的主要来源。半纤维素(葡甘露聚糖、木聚糖)连接纤维素微纤丝和木质素,其中大部分木聚糖连接着葡甘露聚糖和木质素,葡甘露聚糖与纤维素微纤丝结合紧密,木聚糖与葡甘露聚糖之间的作用力小于纤维素微纤丝与葡甘露聚糖之间的作用力。木聚糖在细胞壁中充当连接纤维素和木质素的界面偶联剂,其存在对维持细胞壁力学的完整性具有重要作用。木质素与木聚糖相连,但这种连接很容易破坏,其存在在一定程度上增强了细胞壁的力学性能。
Wood cell wall is a load-bearing unit in trees. It can be regarded as laminated nano-composites that cellulose microfibril as a reinforcement embedded in matrix of hemicellulose and lignin. Wood cell wall mainly consists of cellulose, hemicellulose and lignin. The arrangement of chemical components, their interaction and their mechanical properties results in specific mechanical properties of wood cell wall, which finally affect the macroscopic properties of wood. A better understanding of these structure-property relationships is crucial for insighting into the origin of the nature of wood physical and mechanical properties, for guiding the genetic improvement of trees, for cell wall structural composite material stimulations, as well as for a substantial improvement of wood and paper products. In this study, the mature latewood tracheids of Chinese Fir (Cunninghamia lancolata (Lamb.) Hook) were selected, and targeted modification method, which is sodium chlorite (NaClO2) for delignification and sodium hydroxide (NaOH) at different concentrations for extraction of hemicellulose, was used. We applied wet chemical analysis, Infrared and Raman spectroscopy to monitor the changes of chemical components in cell wall. At the same time, we used X-ray diffraction to study the influence of chemical components on cell wall structure. And we used single-fiber-test and nanoindentation technology to study the effect of chemical components on mechanical properties of wood cell wall. Subsequently, we attempted to establish the quantitative relationship between chemical components and mechanical properties of wood cell wall, to clarify the mechanism behind. The main results are summarized as follows:
     (1) Spectra analysis showed that the degradation of lignin happened first after treatment with sodium chlorite, thereafter xylan degraded, and finally glucomannan degraded by treatments with sodium hydroxide at different concentrations. At the same time, cellulose I transformed into cellulose II after treatment with 10% NaOH. The crystallinity and cellulose crystallite size of different treatments were studied by X-ray diffraction. And the relative crystallinity increased. While the cellulose crystal structure transformed into cellulose II after treatment with 10% NaOH. Meanwhile the relative crystallinity decreased. The cellulose crystallite size increased after the delignification treatment. However,the cellulose crystallite size reduced after the hemicellulose-extracted treatment.
     (2) The tensile test and cyclic tensile tests on single fibers of the mature latewood of Chinese Fir showed that the change of chemical components did not affect single fibers tensile behavior. The tensile stress-strain curves of single fibers (MFA around 10°) showed only small plastic deformations before rupture. And the cyclic tensile curves of single fibers with targeted modification treatments also showed visco-elastic plastic characteristic.
     (3) Lignin as one of the matrix had little impact on the longitudinal tensile elastic modulus and indentation modulus of cell wall in dry condition. The loss rate of longitudinal tensile elastic modulus and indentation modulus was about 5.10% and 6.53% respectively after treatment for delignification (reduced 99%). While lignin affected the tensile strength, elongation and hardness, significantly. The tensile strength and elongation of cell wall increased with the reduction of lignin content. The hardness of cell wall reduced 16.98% after delignified treatment.
     (4) Hemicelluloses affected the longitudinal tensile elastic modulus and indentation modulus of cell wall, significantly. The loss rate of longitudinal tensile elastic modulus and indentation modulus was about 11.57% and 9.16%, respectively, after hemicellulose extracted treatments; and the loss rate of longitudinal tensile elastic modulus was 9.55% after xylan extracted; while after glucomannan extracted, the loss rate was only 2.24%. Hemicellulose (especially xylan) affected the tensile strength and elongation of cell wall, significantly. The tensile strength and elongation of cell wall increased with the degradation of hemicellulose. Compared to delignified cell wall, the tensile strength,elongation, hardness reduced 32.15%, 21.12%,0.87%, respectively after hemicellulose ectracted.
     (5) Single fiber tests and nanoindentation tests showed that the contribution of cellulose for longitudinal tensile elastic modulus up to 84%, for indentation modulus up to 85%, for the tensile strength up to 96%, for elongation up to 95% and for hardness up to 82%.
     (6) The fracture mode of mechanical isolated fiber, delignified fiber and hemicellulose-extracted fiber was different. The fracture shape of mechanical isolated fiber and delignified fiber presented oblique tooth profile and the fracture surface was rough. It showed obvious ductile brittle fracture performance. While the fracture shape of hemicellulose-extracted fiber, had low elongation, brittle surface, and smoother than the other fibers.
     (7) We established a structural model on the relationship between cellulose, hemicellulose and lignin in cell wall. It showed that cellulose which was the source of cell wall strength, was the main structural component in cell wall working as a framework substance. Hemicelluloses (xylan and glucomannan) connected with the highly ordered cellulose of the microfibrils and lignin, and most of xylan contacted with glucomannan and lignin. Glucomannan and cellulose in close contact within the cell wall, and the force between xylan and glucomannan was less than that between glucomannan and cellulose. Xylan acted as an interfacial coupling agent between highly ordered cellulose of the microfibrils and lignin, which was important to maintain the integrity of cell wall mechanics. Lignin linked to xylan, but the connection was easy to destroy. To a certain extent, its existence enhanced the mechanical properties of cell wall.
引文
[1] Ashby M F,Gibson L J,,Wegst U. The mechanical properties of nature materials.I. Msterial property charts. Proceedings: Mathematical and Physical Sciences,1995,450(8):123-140
    [2] Smith L B. Molecular mechanisitic origin of the toughness of natural adhesives, Fibres and composites,1999,399:761-763
    [3] Tensile Properties of Loblolly Pine Strands Using Digital Image Correlation and Stochastic Finite Element Method
    [4] Peterlik H,Roschger P,Klaushofer K,et al. Fratzl P. From brittle to ductile fracture of bone. Nature Materials,2006,5:52-55
    [5] Thompson J B. Bone indentation recovery time correlates with bond reforming time. Nature,2001,414:773-776
    [6] Takagi H,Takura R,Ichihara Y,et al. The mechanical properties of bamboo fibers prepared by steam-explosion method. Journal of the Society of Materials Science,2003,52(4):353-356
    [7]江泽慧,彭镇华.世界主要树种木材科学特性.北京:科学出版社,2001
    [8]余雁,费本华,张波等.针叶材管胞细胞壁不同壁层的纵向弹性模量和硬度.北京林业大学学报,2006,28(5):114-118
    [9]费本华,张波,余雁,等.马尾松纤维的力学性能.中国造纸学报,2006,21(4):1-4
    [10]田根林,王汉坤,余雁,等.微纤丝取向对木材细胞壁力学性能的影响.纳米科技,2010,2:63-66
    [11]余雁,江泽慧,任海青,等.管胞细胞壁力学研究进展评述.林业科学,2003,39(5):133-139
    [12] Smook G A. Handbook for Pulp and Paper Technologists. GA:TAPPI Press,1982
    [13] Jakob H F,Fratzl P,Tschegg S E. Size and arrangement of elementary cellulose fibrils in wood cells-a small angle X-ray-scattering study of Picea abies. J. Struct. Biol.,1994,113(1):13–22
    [14] Jakob H F,Fengel D, Tschegg S E,et al. The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle Xray scattering, and wide-angle X-ray scattering results. Macromolecules,1995,28(26):8782-8787
    [15] Jakob H F,Tschegg S E,Fratzl P. Hydration dependence of the wood-cell wall structure in Picea abies.A small-angle X-ray scattering study. Macromolecules,1996,29(26):8435-8440
    [16] Andersson S,Wikberg H,Pesonen E,et al.Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees-Structure and Function,2004,18(3):346-353
    [17] Altaner C,Apperley D C,Jarvis M C. Spatial relationships between polymers in Sitka spruce: proton spin-diffusion studies. Holzforschung,2006,60(6):665-673
    [18] Fahlén J,Salmén L. Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules,2005,6(1):433-438
    [19] Donaldson L A. A three-dimensional computer model of the tracheid cell wall as a tool for interpretation of wood cell wall ultrastructure. Iawa J.,2001,22(3):213-233
    [20] Altaner C,Apperley D C,Jarvis M C. Spatial relationships between polymers in Sitka spruce: proton spin-diffusion studies. Holzforschung,2006,60(6):665-673
    [21] Wenzl H F J. The Chemical Technology of Wood. New York:Academic Press,1970
    [22] Highley T L. Changes in chemical components of hardwood and softwood by brown-rot fungi. Material und Organismen,1987,22(1):39-45
    [23] Panshin A J,Zeeuw C D. Textbook of wood technology. New York:McGraw Hill Book Co.,1980
    [24] Hammel K. Plant Litter Quality and Decomposition. CAB International,1996
    [25]刘一星,赵广杰.木材资源材料学.北京:中国林业出版社,2004
    [26]杨淑惠.植物纤维化学.北京:中国轻工业出版社,2009
    [27] Sakurada I A,Nukushina T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science,1962,57(165):651-660
    [28] Matsuo M,Sawatari C,Iwai Y,et al. Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Biomacromolecules,1990,23(13):3266-3275
    [29] Mark R E. Cell Wall Mechanics of Tracheids. 2edition. USA:Yale University Press,1967
    [30] Cousins W J. Elastic modulus of lignin as related to moisture content. Wood Science and Technology.1976,10(1):9-17
    [31] Cousins W J. Young's modulus of hemicellulose as related to moisture content.Wood Science and Technology. 1978,12(3):161-167
    [32] Bergander A,Salmén L. Cell wall properties and their effects on the mechanical properties of fibers. J. Materials Sci.,2002,37(1):151-156
    [33] Cave I D. Modeling Moisture-Related Mechanical-Properties of Wood I. Properties of Wood Constituents. Wood Science and Technology,1978,12(1):75-86
    [34] Persson K. Micromechanical Modelling of Wood and Fibre Properties. Doctoral Thesis,2000
    [35] Fengel D,Wegener G. Wood: chemistry, ultrastructure, reactions. Berlin:Walter de Gruyter,1983
    [36] Abe H R,Funada J,Ohtani,et al. Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees-Structure and Function,1997,11(6):328-332
    [37] Panshin A J,Zeeuw C D. Textbook of wood technology. McGraw-Hill. New York,1980
    [38] Westermark U O,Lidbrandt,Eriksson I. Lignin distribution in spruce (Picea abies) determined by mercurization with SEM-EDXA technique. Wood Science and Technology,1988,22(3):243-250
    [39] Meier H. The distribution of polysaccharides in wood fibers. Journal of Polymer Science,1961,51(155):11-18
    [40]黄艳辉,费本华,赵荣军,等.木材单根纤维力学性质研究进展.林业科学,2010,46(3):146-152
    [41] Niklas K J. Plant Biomechanics in wood. Nature materials,2003,2:775-776
    [42] Burgert I. Exploring the micromechanical design of plant cell walls. American Journal of Botany, 2006,93:1391-1402
    [43] Jayne B A. Some mechanical properties of wood fibers in tension. Forest Products Journal,1960,10(6):316-322
    [44] Page D H,El-Hosseiny F,Winkler K. Behaviour of single wood fibers under axial tensile strain.Nature,1971,229(5282):252-253
    [45] Tamolang F N,Wangaard F F. Strength and stiffness of hardwood fibers. Tappi,1967,50 (2):68-72
    [46] Kersavage P C. A systemfor automatically recording the load-elongation characteristics of single wood fibers under controlled relative humidity conditions. USDA,1973
    [47] Groom L H,Mott L,Shaler S M. Mechanical properties of individual southern pine fibers. Part I: Determination and variability of stress-strain curves with respect to tree height and juvenility. Wood and Fiber Science,2002a,34(1):14-27
    [48] Kompella M K,Lambros J. Micromechanical characterization of cellulose fibers. Polymer Testing,2002,21(5):523-530
    [49] Burgert I,Keckes J,Frühmann K,et al. A comparison of two techniques for wood fiber isolation evaluation by tensile tests of single fibres with different microfibril angle.Plant Biology,2002,4(1):9-12
    [50] Burgert I,Frühmann K,Keckes J,et al. Microtensile testing of wood fibers combined with video extensometry for efficient strain detection. Holzforschung,2003,57(6):661-664
    [51] Burgert I,Frühmann K,Keckes J,et al. Structure-function relationships of four compression wood types Micromechanical properties at the tissue and fibre level. Trees-Structure and Function,2004,18(4):480-485
    [52] Burgert I,Gierlinger N,Zimmermann T. Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: Structural and chemical characterization. Holzforschung,2005a,59(2):240-246
    [53] Burgert I,Eder M,Frühmann K,et al. Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L] Karst.). Part 3: Mechanical characterisation. Holzforschung,2005b,59(3):354-357
    [54] Mott L,Shaler S,Groom L,et al. The tensile testing of individual wood fibers using environmental scanning electron microscopy and video imaging analysis. Tappi Journal,1995,78(5):143-148
    [55] Puxkandl R,Zizak I,Paris O,et al. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Phil T R Soc B,2002,357(1418):191-197
    [56] Eichhorn S J,Hughes M,Snell R,et al. Strain induced shifts in the Raman spectra of natural cellulose fibers. Journal of Materials Science Letters,2000,19(8):721-723
    [57] Gierlinger N,Schwanninger M,Reinecke A,et al. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules,2006a,7(7):2077-2081
    [58] Gierlinger N,Schwanninger M. Chemical imaging of Poplar wood cell walls by confocal Raman microscopy. Plant Physiology,2006b,140(4):1146-1254
    [59]曹双平.植物单根纤维力学性能测试技术及应用.中国林业科学研究院硕士论文,2010
    [60]曹双平,王戈,余雁,等.几种植物单根纤维力学性能对比.南京林业大学学报,2010,34(5):87-90
    [61]王汉坤.水分对毛竹细胞壁及宏观力学行为的影响机制.中南林业科技大学硕士论文,2010
    [62]万建松,岳珠峰.采用压痕实验获得材料性能的研究现状.实验力学,2002,17(2):131-139
    [63] Oliver W C,Pharr G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.Mater.Res,1992,7(6):1564-1583
    [64] Wimmer R,Lucas B N,Tsui T Y,et al.Longitudinal hardness and Young’s modulus of spruce trachied secondary walls using nanoindentation technique.Wood Science and Technology,1997,31(2):131-141
    [65] Wimmer R,Lucas B N. Comparing mechanical properties of secondary cell wall and cell corner middle lamella in spruce wood. IAWA Journal,1997,18:77-88
    [66] Gindl W,Gupta H S,Grunwald G. Lnifiction of spruce tracheids secondary cell wall related to longitudinal hardness and modulus of elasticity using nano-indentation.Canadian Journal of Botany,2002,80(10):1029-1033
    [67] Wang S,Lee S H,Tze W T Y,et al. Nanoindentation as a tool for understanding nano-mechanical properties of cell wall and biocomposites. International conference on Nanotenchnology,2006,26-28
    [68]江泽慧,余雁,费本华,等.纳米压痕技术测量管胞次生壁S2层的纵向弹性模量和硬度.林业科学,2004,40(2):113-118
    [69] Owen N L,Thomas D W. Infrared studies of“Hard”and“Soft”woods. Applied Spectroscopy,1989,43(3):451-455
    [70] Rodrigues J,Faix O,Pereira H. Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung,1998,52(1):46-50
    [71] Steffen Fischer,Karla Schenzel,Klaus Fischer,et al. Applications of FT Raman Spectroscopy and Micro Spectroscopy characterizing cellulose and cellulosic biomaterials.Macromolecular Symposia,2005,223(1):41-56
    [72] Agarwal U P,Landucci L L.FT-Raman investigation of bleaching of spruce thermomechanical pulp.J. Pulp Paper Sci.,2004,30(10):269
    [73] Lee C L. Crystallinity of wood cellulose fibers studies by X-ray methods. Forest Prod. J.,1961,11:108-112
    [74]江泽慧,费本华.长江滩地不同品系杨树木材纤维形态、微纤丝角和结晶度变异研究.安徽农学院学报,1992,19(4):255-262
    [75]杨新萍.X射线衍射技术的发展和应用.山西师范大学学报(自然科学版),2007,21(1):72-76
    [76] Hermans P H,Weidinger A. Quantitative X-ray investigations on the crystallinity of cellulose fibers. Journal of Applied Physics.,1948,19(5):491-506
    [77] Paakkari T,Blomberg M,Serimaa R,et al. A texture correction for quantitative X-ray powder diffraction analysis of cellulose. J. Appl. Crystallogr.,1988,21:393-397
    [78] Dwianto W,Tanaka F,Inoue M,et al. Crystallinity changes of wood by heat or steam treatment. Wood Res.,1996,83:47-49
    [79] Kubojima Y,Okano T,Ohta M. Effect of annual ring widths on structural and vibrational properties of wood.Journal of the Japan Wood Research Society,1997,43(8):634-641
    [80]李坚,刘一星,崔永志,等.人工林杉木幼龄材与成熟材的界定及材质早期预测.东北林业大学学报,1999,27(4):24-28
    [81]中华人民共和国国家标准:《纸浆苯醇抽出物得测定法》GB 10741-89
    [82] Karin Jungnikl,Oskar Paris,Peter Fratzl,et al. The implication of chemical extraction treatments on the cell wall nanostructure of softwood.Cellulose,2008,15(3):407-418
    [83]中华人民共和国国家标准:《造纸原料酸不溶木素含量的测定》GB/T 2677.8-94
    [84]徐卫林.红外技术与纺织材料.北京:化学工业出版社,2005
    [85]董炎明.高分子分析手册.北京:中国石化出版社,2004
    [86] Segal L,Creely J J,Martin Jr,et al. An empirical methods for estimating the degree of crystallinity of mative cellulose using X-ray diffractometer. Texile Research Journal,1959,29(10):786-794
    [87] Schwanninger M,Rodrigues J C,Pereira H,et al. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy,2004,36(1):23-40
    [88] ?kerholm M,Salmén L. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung ,2003,57(5):459-465
    [89] Marchessault R H. Applications of infrared spectroscopy to the study of wood polysaccharides. Spectrochim Acta,1962,18:876-876
    [90] Liang CY,Marchessault R H. Infrared spectra of crystalline polysaccharides.II. Native celluloses in the region from 640 to 1700 cm-1. Journal of Polymer Science,1959,39(135):269-278
    [91] Nelson M L. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I.Spectra of lattice types I, II, III and of amorphous cellulose. Journal of Applied Polymer Science,1964,8(3):1311-1324
    [92] Agarwal U P. An overview of Raman spectroscopy as applied to lignocellulosic materials. Advances in lignocellulosics characterization. TAPPI,1999,201-225
    [93] Agarwal U P,Ralph SA,Aalla R H. FT Raman Spectroscopic study of softwood lignin.Proc.9th ntl.Symp. Wood Pulp.Chem,1997,8-10
    [94] Pandey K K,Pitman A J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration and Biodegradation,2003,52(3):151-160
    [95] Isogai A,Usuda M,Kato T,et al. Solid state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules,1989,22(7):3168
    [96]俞春华,冯新星,贾长兰,等.高温脱胶对大麻纤维成分与结构的影响.纺织学报,2006,27(10):80-83
    [97] Seppo A,Ritva S,Timo P,et al. Crystallinity of wood and the size of cellulose crystallites in Norway spruce(Picea abies). Journal of Wood Science,2003,49(6):531-537
    [98] Bergander A,Salmen L. The transverse elastic modulus of the native wood fibre wall. Journal of Pulp and Paper Science,2000a,26(6):234-238
    [99]张波.马尾松木材管胞形态及微力学性能研究.中国林业科学研究院,硕士学位论文,2007
    [100] Mark R E. Cell Wall Mechanics of Trachieds. Yale Univ.Press,1967
    [101] Cave I D. The anisotropic elasticity of the plant cell wall.Wood Science and Technology,1968,2(4):268-278
    [102] Cave I D. The longitudinal Young’s modulus of Pinus radiata.Wood Science and Technology,1969,3(1):40-48
    [103] Salmén L,De-Ruvo A. A model for the prediction of fiber elasticity.Wood and Fiber Science,1985,17(3):336-350
    [104] Salmén L,Kolseth P,et al. Modelling of small strain properties and environmental effects on paper and cellulosic fibers. Composite Systems from Natural and Synthetic Polymers,1986,36:211-223
    [105] Bergander A,Salmén L. Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science,2002,37(1):151-156
    [106] Gassan J,Chate A,et al. Calculation of elastic properties of natural fibers.Journal of Materials Science,2001,36(15): 3715-3720
    [107] Koponen S T,Toratti,Kanerva P. Modelling elastic and shrinkage properties of wood based on cell structure. Wood Science and Technology,1991,25(1):25-32
    [108] Navi P,Huet C. A three dimensional multilevel technique to study influence of the fiber microstructure on wood macroscopic elastic properties. Mechanics of Cellulosic and Polymeric Materials,New York,1989
    [109] Harrington J J,Booker R.,et al. Modeling the elastic properties of softwood. Part I: The cell-wall lamellae.European Journal of Wood and Wood Products,1998,56(1):37-41
    [110] Persson K. Micromechanical modeling of wood and wood fiber properties. Department of mechanics and materials, structural mechanics, LUND University-Sweden,2000,223
    [111] Navi P,Rastogi P,et al. Micromechanics of wood subjected to axial tension. Wood Science and Technology,1995,29(6):411-429
    [112] Uhlin K I,Atalla R H,Thompson N S. Bacterial cellulose and its Polymeric Nanocomposites. Cellulose,1995,2(2):129-44
    [113] Tokoh C,Takabe K,Fujita M,et al. Cellulose synthesized by Acetobadcter xylinum in the prsence of acetyl glucomannan.Cellulose,1998,5(4):249-261
    [114] Atalla R H,Hackney J M,Uhlin I,et al. Thompson NS. Hemicellulose as structure regulators in the aggregation of native cellulose.International Journal of Biological Macromolecules,1993,15(2):109-112
    [115] Iwata T,Indrarti L,Azuma J I. Affinity of hemicellulose for cellulose produced by acetobacter xylinum.Cellulose,1998,5(3):215-228
    [116] Bergander A,Salmen L. The transverse elastic modulus of the native wood fibre wall. Journal of Pulp and Paper Science,2000,26(6):234-238
    [117] Salmén L. Micromechanical understanding of the cell wall structure. C.R. Biol.,2004,327:873-880
    [118] Navi P,Stanzl-Tschegg S. Micromechanics of creep and relaxation of wood. A review. Holzforschung,2009,63(2):186-195
    [119] Wild P M,Provan J W. The effects of cyclic axial loading of single wood pulp fibers at elevatedtemperature and humidity. Tappi.,1999,82(4):209-215
    [120] Keckes J I,Burgert. Cell-wall recovery after irreversible deformation of wood. Nature Materials,2003,2:810-814
    [121]陈红,王戈,程海涛,等.不同化学离析方法对单根竹纤维表面润湿性能及断面形态的影响.北京林业大学,2011,33(1):115-118
    [122] Groom L H,Mott L,Shaler S M. Mechanical properties of individual southern pine fibers. Part I: Determination and variability of stress-strain curves with respect to tree height and juvenility. Wood and Fiber Science,2002a,34(1):14-27
    [123] Groom L H,Shaler SM,Mott L. Mechanical properties of individual Southern Pine fibers. Part III: Global relationships between fiber properties and fiber location within an individual tree. Wood and Fiber Science,2002b,34 (2):238-250
    [124] Reiterer A,Lichtenegger H,Tschegg S,et al. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philosophical Magazine A,1999,79(9):2173-2184
    [125] Page D H,Hosseiny E F. The mechanical properties of single wood pulp fibres. Part VI. Fibril angle and the shape of the stress-strain curve. J. Pulp Pap. Sci.,1983
    [126] Goswami L,Eder M,Gierlinger N,et al. Inducing large deformation in wood cell walls by enzymatic modification.Journal of Materials Science,2008,43(4):1286-1291
    [127] Duchesne I,Hult E-L,Molin U,et al. The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR.Cellelose,2001,8(2):103-111
    [128] Boyd J D. An anatomical explanation for visco-elastic and mechanosorptive creep in wood, and effects of loading rate on strength. In: New Perspective in Wood Anatomy. Ed. Baas, P. Martinus Nijhoff/Dr W Junk Publishing, La Hague. 1982,171-222
    [129]肖青.纤维化学组分变化对纸张物理强度的影响研究.湖北造纸,2008,4:12-13
    [130] Highley T L. Changes in chemical components of hardwood and softwood by brown-rot fungi. Material und Organismen,1987,22(1):39-45
    [131]赵汉生,陈小燕,邱佩琼,等.张力对竹原纤维碱处理的影响.纺织科技进展,2009(1):62-64
    [132] Hinterstoisser B,?kerholm M,Salmén L. Load Distribution in Native Cellulose.Biomacromolecules,2003,4(5):1232-1237
    [133] Nakano T,Sugryama J,Normoto M.Contractive force and transformation of microfibril with aqueous sodium hyroxide solution of wood.Holzforschung,2000,54(3):315-320
    [134] Mark R E. Cell wall mechanics of trachieds. Yale Univ. Press,1967
    [135] Mott L. Micromechanical properties and fracture mechanism of single wood pulp fibers. Doctoral dissertation from Maine University, USA, 1995
    [136] Niklas K J.Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press,Chicago,Illinois,USA,1992
    [137] Cheng Q,Wang S,Rials T.G,et al. Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibrils isolated from regenerated cellulose fibers. Cellulose,2007,14(16):593-602
    [138] Shibata M,Oyamada S, Kobayashi S,et al. Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. Journal of Applied Polymer Science,2004,92(6):3857-3863
    [139] Zini E,Baiardo M,Armelao L,et al. Biodegradable polyesters reinforced with surface·modified vegetable fibers. Macromolecular Bioscience,2004,4(3):286-295
    [140] Nilsson T,Gustafsson P J. Influence of dislocations and plasticity on the tensile behaviour and hemp fibres. Composites Part A,2007,38(7):1722-1728
    [141] Wang S,Lee S H,Tze W T,et al. Nanoindentation as a tool for understanding nano—mechanical properties of cell wall and biocomposites. International Conference On Nanotechnology for the Forest Products Industry,2006
    [142] Mark R E,Gillis P P. New models in cell-wall mechanics. Wood and fiber science,1970,2(2):79-95
    [143] Habelitz S,Marshall S J,Marshall J,et al. Mechanical properties of human dental enamel on the nanometer scale. Archives of Oral Biology,2001,46(2):173-183
    [144] Rho J Y,Pharr G M. Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. Journal of Materials Science:Materials in Medicine,1999,10(8):485-488
    [145] Turner C,Rho J Y,Takano Y,et al. The elastic properties of trabecular and cortical bone issues are similar: Results from two microscopic measuremnt techniques. Journal of Biomechaics,1999,32(3):437-441
    [146] Tze W T,Wang S, Rials T G,et al. Nanoindentation of wood cell wall:Continuous stiffness and hardness measurements.Composites Part A,2007,38:945-953
    [147] Gindl W,Sch?berl T. The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements.Composites Part A:Applied Science and Manufacturing,2004,35(11):1345-1349
    [148]朱丽霞.生物学中的电子显微技术.北京,北京大学出版社,1983
    [149]张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展,2002b,32(3):349-364
    [150]张泰华,杨业敏.纳米硬度计及其在微机电系统中的应用.现代科学仪器,2002a,(1):32-37
    [151]谢存毅.纳米压痕技术在材料科学中的应用明.实验技术,2000,30(7):432-435
    [152]张泰华.微/纳米力学测试技术及其应用.北京:机械工业出版社,2004
    [153]张振宇.基于纳米压痕仪的薄膜力学性能纳米测试与表征研究.天津大学博士学位论文,2005
    [154] Xing C,Wang S,Pharr G M,et al. Effect of thermo-mechanical refining pressure on the properties of wood fibers as measured by nanoindentation and atomic force microscopy. Holzforschung,2008,62(2):230-236
    [155] Yu Y,Tian G L,Wang H K,et al. Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique. Holzforschung,2011,65(1):113-119
    [156] Fan Z,Swadener J G,Rho J Y,et al. Anisotropic properties of human tibial cortical bone as measured by nanoindentation. Journal of Orthopaedic Research,2002,20(4):806-810
    [157] Fushitani M. The stress relaxation of delignification treated wood. The 15th conference on Japan wood science Research Institute,1965
    [158] Sumiya K,Nomura T,Yamada T. Greep and infrared spectra of chemically treated Hinoki wood. Material,1967,16(169):830-833
    [159] Tze W T Y,Wang S,Rials T G,et al. Nanoindentation of wood cell walls: Continuous stiffness and hardness measurements. Composites Part A:Applied Science and Manufacturing,2007,38(3):945-953
    [160] Gindl W,Gupta H S,Grünwald C. Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation.Canadian Journal of Botany,2002,80(10):1029-1033
    [161] Kerr, A.J. and D.A.I. Goring. The ultrastructural arrangement of the wood cell wall Cellulose Chem. Technol.,1975,9:563-573
    [162] Liang C Y,Bassett K H,McGinnes E A,et al. Infrared spectra of crystalline polysaccharides VII. Thin wood sections. Journal Tappi.,1960,43(12):1017-1024
    [163] Page D H. A note on the cell wall structure of softwood tracheids. Wood and Fiber Science,1976,7(4):246-248
    [164] Atalla R H,Agarwal U P. Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science,1985,227(4687):636-638
    [165] Agarwal U P,Atalla R H. In-situ Raman microprobe studies of plant cell walls: Macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P. Planta, 1986,169(3):325-332
    [166] Kataoka Y,Saiki H,Fujita M. Arrangement and superimposition of cellulose microfibrils in the secondary walls of coniferous tracheids. Journal of the Japan Wood Research Society,1992,38(4):327-335
    [167] Terashima N K,Fukushima L F,Takabe K. Comprehensive model of the lignified plant cell wall In: Forage Cell Wall Structure and Digestibility. H.G. Jung, R.D. Hatfield and J. Ralph Eds. WI,1993
    [168] Fengel D. Ideas on the ultrastructural organization of the cell wall components. Journal of Polymer Science Part C:Polymer Symposia,1971,36(1):383-392
    [169] Salmén L,Olsson A M. Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. Journal of Pulp and Paper Science,1998,24(3):99-103
    [170] Iwata T L,Indrarti,Azuma J I. Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose,1998,5(3):215-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700