用户名: 密码: 验证码:
洛克沙胂在土壤中的化学行为及其生物响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洛克沙胂(3-硝基-4-羟基苯砷酸)是一种有机胂饲料添加剂,在提高饲料利用率,对畜禽生长具有明显的促进作用的同时,还具广谱杀菌和抗球虫病的作用。故在我国畜禽养殖业中广泛使用。然而洛克沙胂在畜禽体内吸收较少,主要以药物原形随粪便排出。我国对于畜禽粪便无害化处理机制还不够完善,一般只经简单处理或不处理便作为有机肥用于农业生产,因此,洛克沙胂通过有机肥施用或随养殖场排污系统进入环境后,将可能对土壤和水质量造成不利影响,也可能对环境中的微生物、动植物乃至人类等产生生态毒性。
     本研究选取作为饲料添加剂的洛克沙胂为供试污染物,采用室内模拟培养、定期采样和室内分析的方法,研究了洛克沙胂在土壤中的化学行为及其生物响应状况。主要包括洛克沙胂在土壤中的降解特性;在土壤中的吸附解吸特性以及洛克沙胂对土壤微生物活性的影响。为进一步明确洛克沙胂的环境效应,丰富有机胂化合物在土壤中的行为研究以及科学的调控洛克沙胂的生物效应提供数据参考和理论依据。主要研究结果如下:
     1.对不同浓度残留的洛克沙胂进行室内模拟试验,得出洛克沙胂在土壤中的降解率随残留浓度的增大而降低,随着时间的延长而变缓,其半衰期介于42.92d~82.13d之间,参照农药在土壤中降解半衰期的等级划分标准,故洛克沙胂属于易降解有机化合物。
     2.洛克沙胂在土壤中的数量变化主要由微生物降解、光降解以及土壤颗粒吸附三种途径造成,分别占减少总量的53%、12.99%和34.01%。洛克沙胂的降解与土壤温度均成正比,升高温度能够促进土壤中洛克沙胂的降解;土壤相对湿度为70%时洛克沙胂的降解作用最强,湿度过高或过低不利于洛克沙胂降解;土壤有机质的减少造成微生物活性降低从而延缓洛克沙胂的降解。
     3.洛克沙胂在土壤及去除组分后土壤中的吸附和解吸过程均在24h基本达到平衡。原土壤对洛克沙胂的最大吸附量(Qm)为116.3mg·kg~(-1),去除土壤有机质能使其对洛克沙胂的吸附量增大,而分别去除游离氧化铁和无定形氧化铁后对洛克沙胂的吸附量显著降低,其贡献率分别为~(-1)5.10%、62.79%和34.88%。洛克沙胂在土壤上的解吸存在滞后现象,滞后系数描述其解吸难易顺序为去除游离氧化铁>去除无定形氧化铁>原土壤>去除有机质,即去除游离氧化铁的土壤最难被解吸下来。
     4.洛克沙胂在人工合成赤铁矿、针铁矿、水铁矿上的吸附、解吸平衡时间均为2h。人工合成铁氧化物对洛克沙胂的吸附量随初始浓度的增加而增大,铁氧化物对洛克沙胂的吸附属“L”型等温吸附线,即对低浓度洛克沙胂的亲和力较强,但吸附比例随着其浓度的增加增幅降低。
     5.采用Langmuir方程对洛克沙胂在三种人工合成铁氧化物上的等温吸附结果拟合效果最佳,计算得到最大吸附量分别为23.81g·kg~(-1)、45.05g·kg~(-1),和94.34g·kg~(-1),是自然土壤最大吸附量的200-800倍,就三种氧化铁矿物而言,其对洛克沙胂的吸附量大小顺序为水铁矿>针铁矿>赤铁矿。由Freundlich方程所得lgKf和1/n等参数也表明水铁矿的吸附容量要强于针铁矿和赤铁矿,而吸附强度正好相反。
     6.Langmuir方程对等温解吸结果拟合效果最佳,计算得到最大解吸量分别为14.90g·kg~(-1)、24.81g·kg~(-1)和31.45g·kg~(-1)。柠檬酸对氧化铁所吸附的洛克沙胂的解吸过程存在滞后现象,平均滞后系数分别为0.268,0.351和0.714,可见,赤铁矿<针铁矿<水铁矿,即水铁矿上所吸附的洛克沙胂被解吸下来的趋势最强。
     7.添加不同浓度洛克沙胂能显著抑制土壤脲酶、过氧化氢酶和中性磷酸酶活性,且各处理均表现为在培养的第10天达到最大抑制作用,在培养的第10天以后,各处理酶活性均逐渐开始恢复。毒性影响程度和影响时间顺序均为中性磷酸酶>过氧化氢酶>脲酶,毒性影响时间分别为55~188.4d、50.0~154d和21.8~51.7d。
     8.用米氏动力学方程推导出的模型y=c/1+bx计算得出土壤脲酶活性的ED50值为1667mg·kg~(-1)~10000mg·kg~(-1),土壤过氧化氢酶活性的ED50值为434.8mg·kg~(-1)~1111.1mg·kg~(-1),土壤中性磷酸酶活性的ED50值为169.5mg·kg~(-1)~588.2mg·kg~(-1),土壤中性磷酸酶活性的ED50值最小,在一定程度上可以表征土壤受洛克沙胂的污染程度。
     9.添加不同浓度的洛克沙胂能够不同程度的抑制土壤呼吸、氨化作用和硝化作用,到培养末期(27d)各处理对土壤呼吸作用的影响并不显著(p>0.05);到培养末期(27d)低浓度(20、50、100mg·kg~(-1))的洛克沙胂对氨化和硝化作用影响不显著(p>0.05),而高浓度处理(150、250mg·kg~(-1))仍具有显著差异。
Roxarsone (3-nitro-4-hydroxy arsenate) is an organoarsenic feed additives,which is used to improving feed utilization and animal growth stimulation,in the sametime it also have a broad-spectrum bactericidal and anti-ball insect role. Therefore, it iswidely used in livestock breeding industry in China. However, roxarsone is lessabsorption in the animal body, and excreted mainly in the drug prototype. Livestock andpoultry faeces harmless handling mechanism is not perfect in our country yet, it is usedfor agricultural production as organic fertilizer only after simply process or treatment.Consequently roxarsone come into the environment with organic fertilizer or with farmssewage system, which are likely to have adversely affected on soil and water quality,and may also have eco-toxicity on microorganisms in the environment, animals,plantsand even human.
     This study selected a feed additive-roxarsone as a tested pollutants, Simulatedindoor incubation experiment,regular sampling and laboratory analysis were carried outto study the roxarsone behavior in the soil and its biological response status. Includingroxarsone degradation characteristics in soil; the effect of roxarsone on soil microbialactivity in soil; the adsorption and desorption characteristics in soil in order to providethe reference data and theoretical basis for the further study of roxarsone environmentaleffects, enrich the behavior of organoarsenic compounds in the soil and the scientificregulation of theroxarsone biological effects. The main results are as follows:
     1. Indoor simulation experiments has carried out on different concentrations ofroxarsone residues, it is showed that the degradation rate of roxarsone in the soildecreases with the increasing of the residual concentration,and slowing down withextension of time, its half-life ranged from42.92d to82.13d, roxarsone are easilydegradable organic compounds reference to the grading standards of pesticide in the soildegradation half-life.
     2. The quantity change of roxarsone in the soil primarily by three ways: microbial degradation, light degradation and soil particles adsorption,which take up53%,12.99%and34.01%of the total decrement respectively. In the range of moisture andtemperature conditions in this experiment, the degradation of roxarsone is directproportional with soil temperature,so that the increase of temperature can promote thedegradation of roxarsone in soil; the reduction of soil organic matter result indecreasding microbial activity and bring about slowing down the roxarsonedegradation.
     3.The adsorption and desorption process of roxarsone in soil and componentsremoved soil are reach balance in24h.The max adsorption quantity is116.3mg·kg~(-1)insoil, which is larger in organic matte removed soil and fewer in free iron oxides andamorphous iron oxides removed soil significantly the contribution rate is~(-1)5.10%、62.79%and34.88%.The desorption process of roxarsone which absorbed on iron oxidesby citric acid exist lag phenomenon.Hysteresis index indicates that the difficultcoefficient is free iron oxides removed soil>amorphous removed soil>contrastsoil>organic matter removed soil, so the least desorption quantity is in free iron oxidesremoved soil.
     4.The roxarsone adsorption and desorption balance time are2h on hematite、geothite and ferrihydrite. The adsorption capacity of roxarsone is increased with theinitial concentration on three kinds of synthetic iron oxides. The isothermal adsorptionline is affiliated “L” model, means the affinity is stronger to low concentrationroxarsone,but the adsorption ratio growth is lower with the increasing of concentration.
     5.Langmuir equations can fitting the adsorption of roxarsone on three kinds ofsynthetic iron oxides, calculated the max adsorption quantity were23.81、45.05and94.34mg·kg~(-1), which is200~800times larger than natural soil. The order ofadsorption quantity is ferrihydrite>geothite>hematite.The parameters of Freundlichequation by the lgkf and1/n also shows that the adsorption capacity of ferrihydrite isbetter than goethite and hematite, and adsorption strength just the opposite.
     6. Langmuir equations can fitting the desorption of roxarsone best, the maxdesorption amount were14.90、24.81and31.45mg·kg~(-1).The desorption process of roxarsone which absorbed on iron oxides by citric acid existing lag phenomenon,average hysteresis index were0.268、0.351and0.714, so roxarsone has a strongdesorption trend on ferrihydrite.
     7.Adding different concentrations of roxarsone can significantly inhibit soil urease,catalase, and neutral phosphatase activity, and the peak inhibiting ratio appeared at the10th incubation day.After the first10days of incubation,all the processing enzymeactivity gradually began to recover. The toxic effect of the extent and chronologicalorder are neutral phosphatase> catalase> urease, and time of the toxic effect was55~188.4d,50.0~154d and21.8~51.7d respectively.
     8.Using the mode y=c/1+bx derived from the Michaelis-Menten kineticsequation calculat the ED50value of urease activity,catalase activity and neutralphosphatase activity:1667mg· kg~(-1)~10000mg·kg~(-1)soil,434.8mg· kg-1~1111.1mg· kg~(-1)soil169.5mg· kg-1~588.2mg· kg~(-1)soil,respectively,and the ED50valuesof neutral phosphatase activity was minimum, and to a certain extent can characterizethe soil's pollution degree of the roxarsone.
     9. Adding different concentrations of roxarsone can significantly inhibit soilrespiration, amination and nitrification. The effect on soil respiration is not significant atthe end of incubation (27d). To the end of incubation (27d) the effect on soilammoniation and nitrification is not significant by low concentration of roxarsone(20、50、100mg·kg~(-1))but it is still significant difference by high density dealing(150、250mg·kg~(-1)).
引文
1.柏凡,李云,高庆军.2006.用液相色谱一等离子质谱联用测定有机肿制剂中的无机砷含量.现代科学仪器,1:80-90.
    2.鲍士旦.2008.土壤农化分析[M].北京:中国农业出版社,204-205.
    3.蔡道基主编.1989.农药环境毒理学研究[M].北京:中国环境科学出版社.83-88.
    4.蔡玉祺,王珊龄,蔡道基.1992.甲基异柳磷等四种农药对土壤呼吸的影响[J].农村生态环境,(3):3640.
    5.蔡保松,陈同斌,廖晓勇,等.2004.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报,24(4):711-717.
    6.蔡立梅,黄兰椿,周永章,等.2010.东莞市农业土壤和蔬菜砷含量及其健康风险分析[J].环境科学与技术,33(1):197-200.
    7.陈海刚,李兆利,徐韵等.2006.三种兽药添加剂对赤子爱胜蚯蚓体内纤维素酶和SOD酶的活性影响[J].南京大学学报(自然科学),42(4):435-439
    8.陈继兰,赵玲,侯水生等.1994.砷制剂对肉仔鸡的生长效果试验[J].(9)23-24
    9.常思敏,马新明,蒋媛媛,等.2005.土壤砷污染及其对作物的毒害研究进展[J].河南农业大学学报,39(2):162-169.
    10.曹庆云,颜惜玲,周武艺,叶慧,管武太.2005.高效液相色谱测定鸡肝中洛克沙砷的方法研究[J].应用化工,34(10):640-643.
    11.陈恩凤、周礼恺、邱凤琼.1984.土壤肥力实质的研究I.黑土[J].土壤学报,21(3):229~237.
    12.陈同斌.1996.土壤溶液中砷及其与水稻生长效应的关系[J].生态学报,16(2):147-153.
    13.陈同斌,宋波,郑袁明,等.2006.北京市蔬菜和菜地土壤砷含量及其健康风险评价[J].地理学报,61(3):297-310.
    14.陈杖榴,杨桂香,孙永学等.2001.兽药和饲料添加剂残留的毒性与生态毒理研究进展[J].华南农业大学学报,22(1):88-91.
    15.陈冬梅.2007.洛克沙胂残留对土壤的生态毒性研究[D].扬州大学硕士论文.
    16.段建平,周训胜,张在整.1998.兽药洛克沙生产品质量的规范分析[J].福州大学学报(自然科学版),26(6):106-109.
    17.傅献彩,沈文霞,姚天扬,等.1997.物理化学(第四版)[M].北京:高等教育出版社,961-978.
    18.冯翰林.2011.洛克沙肿在土壤中的环境行为研究[D].华中农业大学硕士学位论文.
    19.龚道新,汪传刚,邹雅竹,等.2007.咪鲜胺及其三种主要代谢物在六种水稻土中的吸附[J].土壤学报,,44(1):90-97.
    20.关松荫.1986.土壤酶及其研究法[M].农业出版社,北京
    21.国家药典委员会.2000.中华人民共和国药典[M].北京化学工业出版社.
    22.郭效中,刘天余.2000.洛克沙胂、黄曲霉及杆菌肽锌在畜禽日粮中的应用及研究.饲料研究[J],(10)1-4.
    23.郭明,张小萍,曹玉.2001.3种杀虫剂对土壤磷酸酶活性的影响[J].西北农林科技大学学报(自然科学版),29(2):69-72
    24.和文祥,陈会明等.2000.汞铬砷元素污染土壤的酶监测研究[J].环境科学学报,20(3):338-343.
    25.蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展[J].土壤,2004,26(3):264-270.
    26.康立娟,李香丹,刘景华等.1996.砂壤水稻土添加砷对水稻生长发育和残留的研究[J].吉林农业大学学报,18(3):58-61.
    27.梁重山,党志,刘丛强,等.2005.土壤有机质对菲的吸附-解吸平衡的影响[J].高等学校化学学报,26(4):671-676.
    28.罗磊,张淑贞,马义兵.2008,土壤中砷吸附机理及其影响因素研究进展[J].土壤,40(3):351-
    359.
    29.陆春伟,李富君,孙贵范,等.1999.地砷病患者部分生化指标的测定[J].中国公共卫生,15(8):741-742.
    30.廖巧霞.2005.洛克沙胂在养殖业中的应用.广东畜牧兽医科技[J],30(4):9-10.
    31.李楠,华珞.1996.环境中的有机胂污染[J].土壤,28(2):76-79.
    32.李酉开.1984土壤农业化学常规分析方法[M].北京:科学出版社
    33.李道林,程磊.2000.砷在土壤中的形态分布与青菜的生物学效应[J].安徽农业大学学报,27(2):131-134.
    34.李芳柏,钟继洪,谭军.1999.广东集约化养猪业的环境影响及其防治对策.土壤与环境[J].8(4):245-249
    35.李铁军.1996.有机砷制剂对单胃动物营养作用的研究进展[J].中国畜牧杂志,32(3):59-61.
    36.李尚波,麦波,李兆仁.2000.畜禽十大高效饲料添加剂[M].辽宁科学技术出版社,144-152.
    37.李银生,曾振灵.2002,兽药残留的现状与危害[J].中国兽药杂志,36(1):29-33.
    38.李银生,曾振灵,陈杖榴,等.2003.洛克沙砷的作用、毒性及环境行为.上海畜牧兽医通讯[J],(1):10-12.
    39.李银生,曾振灵,陈杖榴,等.2004.洛克沙胂对蚯蚓的急性毒性试验[J].上海交通大学学报(农业科学版),22(2):115-119.
    40.李银生,曾振灵,陈杖榴,等.2005.2种含砷兽药对蚯蚓的急性毒性试验[J].中国兽医学报,25(4):425-427.
    41.李银生,曾振灵,陈杖榴.2006.洛克沙胂对养猪场周围环境的污染[J].中国兽医学报,2(6):665-668.
    42.刘纹芳.1990.有机砷化合物对肉鸡的促生长作用[J].黑龙江畜牧兽医,(4):8-10.
    43.刘茅玲,张迎.2000.饲用抗菌素有机胂制剂的毒性、排泄及残留问题的讨论[J].饲料研究,(7):28-29.
    44.刘志祥,吕明.2003.高效液相色谱测定饲料添加剂—洛克沙胂的含量[J].饲料博览,(2):20.
    45.刘维屏,季瑾.1996.农药在土壤和水环境中归宿的主要支配因素吸附和脱附[J].中国环境科学,16(1):25-30
    46.刘慧岚.2009.洛克沙胂在土壤中移动性的初步研究[D].扬州大学硕士论文.
    47.卢桂宁,陶雪琴,党志,等.2006.土壤中有机农药的自然降解行为[J].土壤.(38)2:130-135.
    48.马一冬.2009.洛克沙胂在土壤中降解的初步研究[D].扬州大学硕士论文.
    49.欧晓明,余淑英,罗玲,等.2007.新农药硫肟醚在土壤上的吸附[J].农业环境科学学报,26(2):577-582.
    50.潘穗华,梁玲.1994.有机砷制剂康乐1、康乐3饲养黄羽肉鸡的效果[J].中国饲料,(9)25
    51.邱江平,肖亿群,等.2003.洛克沙砷的作用、毒性及环境行为[J].上海畜牧兽医通讯,1:10-12.
    52.沈桂芹,廖瑞章.1987.重金属、非重金属、矿物油对土壤酶活性的影响[J].农业环境保护.6(3):24-27.
    53.沈建忠主编.1995.动物毒理学[M].中国农业出版社.
    54.孙永学,陈杖榴,刘志昌,等.2004.洛克沙胂在鲫鱼体内的残留及消除动力学研究[J].中国兽医杂志,40(8):65-68.
    55.孙永学,陈杖榴.2004.有机胂添加剂的毒性、代谢及环境行为研究进展[J].动物毒物学,19(1):7-10.
    56.孙永学,陈杖榴,陈展飞,等.2004.洛克沙胂对鲫鱼暴露胁迫的毒性效应[J].25(3):101-104.
    57.王家琪,吴欣颖,詹东荣.2010.有机胂动物用药品洛克杀生之使用效益与对环境之冲击[J].台湾兽医志,36(2):115-123.
    58.王斡,徐晓燕.2008.土壤固相吸附砷的研究进展[J].污染防治技术,21(6):60-64.
    59.王晓蓉.1993.环境化学[M].南京:南京大学出版社.255-259.
    60.王金荣,张丽英,马永喜.2005.饲料中洛克沙胂的固相萃取—高效液相色谱法检测技术研究.饲料工业[J],(14).
    61.王克俭,廖新俤.2005.猪场周围环境中砷的分布及迁移规律研究[J].家畜生态学报.26(2):29-32
    62.王付民,陈杖榴,孙永学,等.2006.有机胂饲料添加剂对猪场周围及农田环境污染的调查研究[J].生态学报,26(1):154-162.
    63.汪军,王毓芳,徐伯兴.1998.光催化降解有机污染物的进展[J].污染防治技术.(1)3:157-160.
    64.翁焕新,张宵宇,邹乐君,等.2000.中国土壤中砷的自然存在状况及其成因分析[J].浙江大学学报(工学版),34(l):58-92.
    65.谢显传,张少华,王冬生,等.2007.阿维菌素土壤吸附特性研究[J].中国农业科学,40(9):1959-1963.
    66.熊毅.1983土壤胶体.[M]科学出版社
    67.杨居荣,任燕,刘虹,等.1996.砷对土壤微生物及土壤生化活性的影响[J].土壤,2:101-105.
    68.杨文婕,刘更另.1997.植物体内砷和硒累积和分布的相互作用[J].中国农业科学,30(3):90-93.
    69.杨永嘉,王国忠,王雷.2001.高效液相色谱法测定洛克沙胂预混剂含量方法的研究.中国兽药杂志.35(6):23-26.
    70.殷斌烈,黄晓云,刘桂桂.1996.饲料添加剂3-硝基-4-羟基苯胂酸的合成和应用[J].粮食与饲料工业,(11):29-30.
    71.袁慧,陈竞峰,向建洲,等.2000.畜禽配合饲料中砷的污染量及其分析报告[J].湖南饲料,(3):2-3.
    72.严建刚,高峰.2004.有机胂制剂在畜牧生产中的应用与对环境污染问题的探讨[J].饲料广角,(17):11-13.
    73.杨文婕,刘更另.1997.植物体内砷和硒累积和分布的相互作用[J].中国农业科学,,30(3):90-93.
    74.曾希柏,胡留杰,白玲玉,等.2010.外源二甲基砷在土壤中的转化[J].应用生态学报,21,(12):3207一3211.
    75.周礼恺.1987土壤酶学[M].北京,科学出版社
    76.周岩民,杜文兴,韩兆玉,等.2001.洛克沙生对肉鸭生产性能和砷残留及组织病变的影响[J].南京农业大学学报,24(4):46-50.
    77.郑锋,尹丽欣.2004.原子荧光法烟叶土壤砷的测定[J].福建分析测试技术交流,13(3-4):2056-2057.
    78.张卫,林匡飞,韩小波,等.2006,农药阿维菌素在土壤中的吸附特性[J].农业环境科学学报,25(1):219-223.
    79.张子仪.1997.规模化养殖业及饲料工业中的生态文明建设问题[J].饲料工业,18(9):1-3.
    80.张劲强,董元华,安琼,等.2005.兽用药物抗生素在土壤环境中的行为[J].土壤,37(4):353-361.
    81.张雨梅.2007.洛克沙胂残留的生态毒理研究[D].扬州大学硕士论文.
    82.张雨梅,陈冬梅,陈军,等.2007.洛克沙胂在土壤中的吸附特性[J].农业环境科学学报,26(6):2075-2079.
    83.张中明,张伟,蒋凡,等.2009.甲磺隆在土壤中的吸附-解吸特性[J].西南大学学报,31(3):154-163.
    84.赵兵.2007.猪粪便中洛克沙胂的HPLC检测及消除规律[D].扬州大学硕士论文.
    85.周岩民,杜文兴,韩兆玉等.2001.洛克沙生对肉鸭生产性能和砷残留及组织病变的影响[J].南京农业大学学报,24(4)
    86.朱爱华.2007.洛克沙胂诱导斑马鱼组织中HSP70表达的研究[D].硕士论文.
    87. Bardgett R D,Speir T W,Ross D J, et al.1994.Impact of Pasture contamination by copper,chromium and arsenic timber presperative on soil microbial properties and nematodes[J].Biolfertil Soils,18(1):137-51.
    88. Boxall A B A,Blackwell P,Kay E.2002.The sorption and transport of a sulphonamide antibioticin soil systems[J].Toxicology Letters,131(1-2):19-28.
    89. Bednar A.J.,Garbarino J.R.,Ranville J.F..et al.Photodegradation of roxarsone in poultry litterleachates[J].The Science of the Total Environment2003,302:237-245
    90. Brown Brenda L.2003.The sorption of roxarsone,an organoarsenical animal feed additive[D].Athesis from the Faculty of the Virginia Polytechnic Institute,5,9.
    91. Brown B.L.,Slaughter A.D.,Schreiber M.E.,2005.Controls on roxarsone transport inagricultural watersheds[J].Applied Geochemistry,20:123-133.
    92. Calvert C C,Smith L W.1981.Arsenic in tissues of sheep and milk of dairy cows fed arsanilisacid and3-nitro-4-hydroxyphenylarsonic acid.Journal of animal science[J].51(2):414-421.
    93. Chen K.L., Chiout P.W.2001.Oral treatment of mule ducks with arsenicals for inducing fattyliver[J]. Poultry science, Mar,80(3):295-301.
    94. Doelman P, Haanstra L.1989.Short and long term effects of heavy metals on phosphataseactivity in soils: An ecological doseresponse model app roach. Biology and Fertility of Soils[J],8(3):235-240
    95. El Bahri L, Ben Romdane S.1991. Arsenic poisoning in livestock. Vet Hum Toxicol[J].33(3):259-264
    96. EuroPeanCommission.2003.Opinion of the scientific eommittee on animal nutrition onundesirable Substanees in feed[M].Brussels:European Commission Healthand ConsumerProteetion Direetorate
    97. Fink-Gremmels J,van M iert A S.1994.Veterinary drugs:disposition,bio-transformation and riskevaluation[J].Analyst,119(12):2521-2528.
    98. Garbarino J.R.,Chapman H D,Johnson ZB.2002.Use of antibiotics and roxarsone in broilerchickens in the USA:Analysis for the1995to2000[J].Pollut Sci81:356-364.
    99. Garbarino J R,Rutherford D W,Wershaw R L.2002.Degradation of Roxarsonein Poultry Litter:in the Proeeedings of Arsenie in the Environment Workshop[D].Abstraets,in the Proeeedingsof Arsenie in the Environment workshop,U.S.Geologieal Survey,Denver,Colorado.
    100. Garbarino J R,Bednar A J,Rutherford D W,etal.2003.Environmental fate of roxarsonein poultrylitter.1.Degradation of roxarsone during eomposting[J].Environment-al Seieneeand Technology,37:1509-1514.
    101. Gregory D G,Vanhooser S L,Stair E L.1995.Light and Eleetron Mieroscopic Lesions inPeripheral75. Nerves of Broiler Chickens Due to Roxarsone and Lasa1ocid Toxicoses[J].AvianDiseace,39:408-416
    102. Harvey M C.2006.Adsortion Properties of roxarsone and arsenate on goethite and kaolinite.(PhD dissertation)[D].Virginia:Virginia Polyteehnic Institute and State.University.
    103. Huang W.,Weber W J.1997.A distributed reactivity model for sorption by soils andsediments.10.Relationship between desorption,hysteresis,and the chemical characteristics oforganic domains[J].Environmental Science Technology,31:2562-2569
    104. Huang W, Weber W J.1998. A distributed reactivity model for sorption by soils and sediments.Slow concentration-dependent sorption rates [J]. Environ. Sci. Technol.,32:3549-3555.
    105. Jackson B.P.,Bertsch P.M.,2001.Seaman J.C.Determination of Arsenic Speciation in PoultryWastes by IC-ICP–MS[J].Environmental Science and Technology,35(24):4868-4873.
    106. Jackson BP, Bertsch PM, Cabrera ML.2003.Trance element speciation in poultry litter.[J].JEnviron Qual.32(2):535-540.
    107. Juma,N G,Tabatabai M A.1977.Effects of trace elements on Phosphatase activity in soils. SoilScience Society of America journal[J].41:343-346
    108. Kennedy S, Rice D A.1986,.Neuropathology of Experimental3-nitro-4-hydro-xyphenylarsonicacid. Toxicosis in pigs. Vet.Pathol[J].23:454-461
    109. Kerr K B,Cavett J W.etal.1963.The toxicity of an organic arsenical3–nitro-4-hydroxyphenylarsonic acid I.Acute and subacute toxicity. Toxicology and Applied Pharmacology[J].5(4):507-525.
    110. Liu C W,Lin C C,Jang C S,etal.2009.Arsenie accumulation by rice grown in soil treated withroxarsone[J].Journal of Plant Nutrition and Soil Science,172(4):550-556.
    111. Makris K C,Salazar J,Quazi S,etal.2008.Controlling the Fate of Roxarsone and Inorganic[D].
    112. McCall PJ,Laskowski DA,Swmann RL.1980.Test protocols for environmental fate andmovement of toxicants[J].P roc Symp AOAC,89-109.
    113. Moore PA, Daniel TC, Gilmour J T, etal.1998.Decreasing metal runoff from poultry litter withaluminum sulfate.[J] Environ Qual,27:92-99.
    114. Miller,C.V.,Foster,G.D.,Huff,T.B.etal.1999.Organic compounds and trace elements in thePocomo ke River and tributaries (D),Maryland,USGS Open File Report99-57.
    115. Miller,C.V.,Hancock,T.C.2000.Denver JM.Environmental fate and transportof arsenieal Feedamendments for animal agrieulture[J].Abstraet AmerieanGeoPhysiealUnion,Spring Meeting:Integrative Geoseienee Solutions-A start for the New Millennium,WashingtonDC
    116. Moore PA,Daniel TC,Gilmour JT et al.Decreasing metal runoff from poultry litter withaluminum sulfate[J]. Environ Qual.1998,27:92-99.
    117. Nachman KE, Graham JP, Price LB.2005.Arsenic: A rodablock to potential animal wastemanagement solutions.[J].Environ Health Perspect.113(9):1123-1124.
    118. Raquela A F.,Allisonleonard A M.2005.Sorption of Oxytetracycline to Iron Oxides and IronOxide-Rich Soils[J].Environmental Science Techno1ogy,39:6664-6671.
    119. Recep G.,Bilal A.,Mehmet H A.2004.Copper(Ⅱ)adsorption from aqueous solution byherbaceous peat[J].Journal of Colloid and Interface Science,269:303-309.
    120. Rice DA, Kennedy S, Mcmurray CH.1985.Experimental3-nitro-4-hydroxyphenylarsonic acidtoxicosis in pigs [J]. Research in veterinary science.39:47-51
    121. Roerdink A R,Aldstadt J H.2004.Sensitive method for the determination of roxarsone usingsolid-phase microextraction with multi-detector gas chromatography[J].Journal ofChromatography A,1057(1-2):177-183.
    122. Ronald S O,John F S.2003.The ecology of arsenic[J].Science,300:939-944
    123. Rutherford,DW,Garbarino JR,Kennedy K.2002.The sorption and extraction of arsenic in soilsthat have been amended with chicken manure. In the proceedings of Arsenic in theEnvironment Workshop[J]U.S.Geological Survey,Denver,Colorado,
    124. Rutherford D W,Bednar A J,Garbarino J R,2003.Needham K W,Staver K W,Wershaw R L.Envir onmental fate of roxarsone in poultry litter.PartⅡ.Mobility of arsenicin soils amendedwith poul try litter[J].Environ Sci Technol.37:1515-1520.
    125. Schmitt M O.,Schneider S.,2000.Spectroscopic investigation of complexation between varioustetracyclines and Mg2+or Ca2+[J].Phys Chem Comm,9:1-14.
    126. Sims,J.Wolf,D.1994.Poultry waste management-agricultural and environmental issues[J].Advances in Agronomy,(52):1-83.
    127. Sitaula B K.,Sitaula J B.,Aakra A.,et al.2001.Nitrification and methane oxidation in forest soil:Aciddeposition,nitrogeninput and plant effects[J].130(1-4):1061-1066.
    128. Speir T. W, Kettles H. A, Parshotam A,et al.1999. Simple kinetic approach to determine thetoxicity of As(V) to soil biological properties[J]. Soil Biol Biochem,31:705–713.
    129. Schwertmann U, cornell R M.2000. Iron oxides in the laboratory: preparation andcharacterization(2nd ed.)[J]. Wiley-VCH, Weinheim, Federal Republic of Germany. p:188.
    130. Qafoku,Nikolla P.,Malcolm E.2000.Anion transport in columns of variable chargesubsoils:nitrate and chloride[J].Journal of Environmental Quality,29(2):484-493.
    131. Tang Y L.,Wang R C.,Huang J F.2004.Relations between red edge Characteristics andagronomic parameters of crops[J].Pedosphere,14(4):467-474.
    132. Wang and Liao.2004.The function in animal production and influence on environment ofarsenic preparation[J].Eeol Domest Anim,24(2):41-43
    133. Wershaw RL,Garbarino JR,Burkhardt MR.1999.Roxarsone in Natural Water Systems,Effectsof animal feeding operations on water resources and the environment proceedings of thetechnical meeting [J],Fort Collins,Colorado:U.S.Geological Survey Open-File Report200-204.
    134. Wood J.M,,Koewius H,et al.1996.Subtoxic cadmium-concentrations reduce copper-toxicity inthe earthworm Enchytraeus buchholzi[J].chemosphere,32(11):2205-2210
    135. Yao L X,Dang G L,He Z H,etal.2009.Arsenic speciation in turnip as affected by application ofchicken manure bearing roxarsone and its metabolites[J].Plant and Soil,316(1-2):117-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700