用户名: 密码: 验证码:
丝状真菌纤维素酶性质的研究以及酶水解条件的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传统化石资源日益的枯竭,世界正在面临着严重的能源危机。所以,寻找可再生新型能源成为了目前世界广泛关注的热点。木质纤维索来源广泛、资源丰富、价格低廉并且大都来自农作物的废弃物。以这些废弃物为原料生产生物乙醇,不仅可以缓解能源危机,而且很大程度上减少了对环境的污染,特别是温室气体的排放。这种能够变废为宝,绿色友好型的能源生产方法已成为一种必然趋势。但是,以木质纤维素等非粮生物质生产乙醇的工艺普遍存在两方面的关键技术问题:纤维素酶生产成本高和酶解效率低、纤维索酶用量大。本论文主要通过针对金属离子对纤维素酶水解的影响以及消除其作用、酶液之间的协同作用和纤维素乙醇生产工艺中酶水解条件优化三方面的研究,从而能够提高纤维素酶水解效率,增加乙醇产率并降低乙醇生产成本。本论文的主要研究内容及结果如下
     1金属离子对纤维素酶水解的影响以及消除其作用的研究
     金属离子很大程程度上可以影响酶的活性,甚至在一些酶的活性中心中起决定性作用。在纤维素酶使用的过程中,往往会接触到各种金属。因此,本实验重点研究了金属离子对纤维素酶水解的影响,特别是Fe~(3+)针对斜卧青霉(Penicillium decumbens) JUA10-1菌株生产的纤维素酶活性的研究。首先确定了各种金属离子对纤维素酶水解是有影响的,但是影响的程度不一样。其中Fe~(3+)对纤维素酶水解的抑制作用最大。其次,进一步深入研究了Fe~(3+)对纤维素酶水解木质纤维素类底物抑制作用的机理,很可能在水解底物和纤维素酶两个方面发生了变化。一、纤维素的葡萄糖分子被Fe~(3+)氧化,氧化后的纤维素影响了纤维素酶的酶解;二、金属离子导致纤维素酶活性的失活。最后,我们根据推测的金属离子抑制机理,通过添加化学试剂二硫苏糖醇(DTT)或螯合剂(EDTA)的方法消除了Fe~(3+)对纤维素酶水解的抑制作用。2里氏木霉酶液与棘孢曲霉酶液之间协同作用的研究
     在本章的实验研究中,我们首先从棘孢曲霉(Aspergillus aculeatus) ZLF酶液中纯化出β-葡萄糖苷酶。然后分别研究了棘孢曲霉酶液、β-葡萄糖苷酶与里氏木霉(Trichoderma reesei)酶液的协同作用。发现,ZLF酶液与β-葡萄糖苷酶都可以提高纤维索酶的水解作用,并且提高的效果是一样的。另外,从对复配酶的酶活性测定数据可得,β-葡萄糖苷酶活性的提高可以很大程度上提高纤维素酶的水解作用。此外,滤纸酶活的测定方法是以化学成分较为单一的滤纸为水解底物,而预处理后的木质纤维索化学成分和结构较为复杂。所以我们的实验证明滤纸酶活单位和预处理后的木质纤维素的酶解效率没有直接的关联。对于斜卧青霉(P. decumbens)来说,虽然斜卧青霉菌株分泌的纤维索酶中含有较高的β-葡萄糖苷酶活性,但是添加棘孢曲霉酶液依然可以提高纤维素酶的水解能力。但是,这种水解能力的提高只在脱木素木糖渣时才能表现出来,而对于木素含量较高的木糖渣来说,没有太明显的效果。
     3纤维素乙醇工艺中酶水解条件的优化
     纤维素酶水解效率低,用酶量大已成为以木质纤维素等非粮生物质为原料生产乙醇工艺的最大限制因素。为了解决这一问题,本实验侧重对酶蛋白负载量、水解底物两方面进行纤维素酶水解条件优化的研究,并同时对纤维索乙醇生产工艺进行了优化。一方面,分别以汽爆芦竹和碱处理木糖渣(DCCR)为水解底物,按照每克绝干底物对应不同酶蛋白负载量添加酶液,45℃糖化。结果表时不管是预处理的芦竹还是脱木素木糖渣,对于每克干物质来说都存在着酶负载量饱和点,90mg酶蛋白。纤维素酶水解中酶负载量大于饱和点时,就会造成酶液的浪费。另一方面,在乙醇生产工艺条件优化中,补料和酶液复配都可以很大程度上提高纤维素乙醇的产率。
The human society has been facing a severe energy crisis accompanying the depletion of traditional fossil fuels, making the search for renewable energy sources a focus of investigations. The lignocellulosic biomass is an excellent candidate energy source because it is abundantly distributed, generally cheap, and mostly from agricultural residues. Producing renewable energy from lignocellulosic biomass not only relieves the world from current energy crisis, but also significantly decreases environmental pollution, in particular the production of greenhouse gases. This environment friendly energy source has received widespread attention. However, two key technical problems still exist:the high cost and low efficiency of lignocellulose degrading enzymes, as well as the large dosage of enzymes required for lignocellulose degradation. This thesis documents the studies on three aspects aiming at improving cellulase efficiency, improvement of ethanol production and lowering ethanol production cost:1) identification of and relief from metal ion induced cellulase-catalyzed cellulose hydrolysis;2) identification of cellulase synergism;3) optimization of the cellulose hydrolysis process during lignocellulosic ethanol production. The results obtained from these studies include:
     1The impact of metal ions on enzyme-catalyzed cellulose hydrolysis and the removal of metal ion-induced inhibition
     Metal ions can largely impact, or even determine the activities of enzymes. During cellulase-catalyzed cellulose degradation, the presence of metal ions is inevitable. Our research investigated this metal ion impact on cellulase-catalyzed cellulose hydrolysis, in particular the impact of Fe3+on reactions catalyzed by cellulases from P. decumbens JUA10-1. We first identified the impact of metal ions on the activities of the cellulases, showing a varied degree of impact for different metal ions, out of which Fe3+leads to the highest level of inhibition. We subsequently investigated the mechanism underlying the inhibition of Fe3+on lignocellulose degradation catalyzed by cellulases from P. decumbens. The inhibitory effects are shown to be present on two different levels:Fe3+inhibits the reaction by reacting on the reducing ends of the substrate and improves the resistance to degradation; Fe3+also inhibits the catalytic abilities of cellulases by competing for enzyme binding with the substrate. Finally, we identified two approaches to abolish the inhibitory effect of Fe3+:the addition of reducing reagent DTT or chelating reagent EDTA.
     2Synergism between cellulases from Trichoderma reeseil Penicillium decumbens and Aspergillus aculeatus
     The P-glucosidase from A. aculeatus ZLF was purified to apparent homogeneity in this study. We further identified the synergistic effects between T. reesei cellulases or A. aculeatus cellulases and β-glucosidases. We found that both A. aculeatus cellulases show identical synergistic effects with cellulases from T. reesei. Our further investigations on the enzymatic activities of cellulase cocktails showed that the improvement of β-glucosidase activities leads to the increase of cellulose hydrolysis, while the filter paperase activity (FPA) of the cellulase cocktails stayed unchanged. The FPA was assayed by using filter paper as the substrate, which has a much simpler structure in comparison with natural substrates and more susceptible to enzymatic degradation. The FPA can therefore not represent the'true'abilities to hydrolyze cellulose for cellulases. For P. decumbens JUA10-1cellulases, although a higher level of β-glucosidase activity is present in the enzyme, supplementation of A. aculeatus ZLF cellulases can still improve the ability of the enzyme cocktails to hydrolyze cellulose. This synergistic effect is only obvious when delignined corncob residues serve as the substrate, while it is not apparent for substrates containing a higher level of lignin such as corncob residues.
     3Optimization of the cellulose degradation process during lignocellulosic ethanol production
     The low efficiency and high dosage requirement of cellulases have become the biggest problems during lignocellulosic ethanol production. We tried to optimize the cellulose degradation process by changing enzyme loading and substrates, in order to find solutions to these problems and optimize the lignocellulosic ethanol production process. We first used steam exploded Arundo donax Linn or delignined corncob residues as the substrate, changed the enzyme loadings, and carried out saccharification experiments at45℃. We found that both substrates and saccharification performance ceases to improve at an enzyme loading of90mg/g substrate, and the enzymes would be wasted when more enzymes were used. We further characterized the fed batch process and using cellulase cocktails for lignocellulosic ethanol production, and found both improve the production of lignocellulosic ethanol.
引文
1.官巧燕,福霖,国内外生物质能发展综述.农机化研究,2007.11:20-24.
    2.陈达,张玮,风能利用与研究综述.节能技术,2007.25(144):329-359.
    3.庄新姝,袁振宏等,中国燃料乙醇的应用及生产技术的分析与评价.太阳能学报,2009.30(4):526-531.
    4. Chang, R, and Qu, X, The pollution of automobile exhaust and control in china-Yunnan Environ Sci,1999.18(3):30-32.
    5. Guo, Y, and Chen, S.L, Pollution of automobile exhaust and control strategy. Chongqing Environ Sci,1999.18(3):9-13.
    6. Sheehan, J.J, Bioconversion for Production of Renewable Transportation Fuels in the United States, in ACS Symposium Series.2001:ACS Publications.
    7. Berndes, G, and Hoogwijk, M, et al, The contribution of biomass in the future global energy supply, a review of 17 studies. Biomass Bioenerg,2003.25(1): 1-28.
    8. Lynd, L.R, and Weimer, P.J, et al, Microbial cellulose utilization:fundamentals and biotechnology. Microbiol Mol Biol Rev,2002.66(3):506-577.
    9.曲音波,高培基等,纤维素类废弃物生物转化技术研究进展.纤维素科学技术,1997.5(2):1-9.
    10. Liu, K, and Lin, X.H, et al, High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour Technol,2010.101(13):4952-4958.
    11. Demirbas, A, Progress and recent trends in biofuels. Prog Energ Combust Sci, 2007.33(1):1-18.
    12.匡延云,白克智等,我国生物质发展战略的几点意见化学进展,2007.19(7):1060-1063.
    13.李希宏,国内外生物液体燃料发展趋势.当代石油石化,2007.15(13):7-13.
    14.苏小军,熊兴耀,燃料乙醇发酵技术研究进展.湖南农业大学学报,2007.33(4):480-485.
    15.杨一峰,孙国旺.第二代生物燃料…生物质合成液体燃料.全球科技经济瞭望,2006.12:48-50.
    16.张平平,刘宪华,纤维素生物降解的研究现状与发展.天津农学学报,2004.11(13):48-54.
    17.赵彩云,王异静,纤维素乙醇研究进展.酿酒科技,2009.10:87-90.
    18.邹儒楠,陈大明,从文献和专利看纤维素燃料乙醇技术的发展.工业生物技术发展报告,2009:90-93.
    19. Qu, Y.B, and Zhu, M.T, et al, Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol J,2006.1(11):1235-1240.
    20. Rosillo-Calle, F, and Cortez, L.A, Towards ProAlcool Ⅱ:a review of the Brazilian bioethanol programme. Biomass Bioenerg,1998.14(2):115-124.
    21. Wooley, R, Biofuels program semiannual report. Second Half FY,2000.12.
    22. De Oliveira, M.E.D, and Vaughan, B.E, et al, Ethanol as fuel:energy, carbon dioxide balances, and ecological footprint. BioScience,2005.55(7):593-602.
    23.汪维云,朱金华,纤维索科学及纤维索酶的研究进展.1998.19(3):20-28.
    24.汪天虹.王春卉,纤维素酶分子的纤维索结晶区的结构和功能.生物工程,2000.20(2):37-40.
    25. Begum, P, and Lemaire, M, The cellulosome:an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol Biol,1996.31(3): 201-236.
    26. Bayer, E.A, and Belaich, J.P, et al, The cellulosomes:multienzyme machines for degradation of plant cell wail polysaccharides. Annu Rev Microbiol.,2004.58: 521-554.
    27. Adsul, M.G, and Bastawde, K.B, et al, Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresour Technol, 2007.98(7):1467-1473.
    28. Boisset, C, and Fraschini, C, et al, Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Ce16A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol,2000.66(4):1444-1452.
    29. Sakon, J, and Irwin, R, et al, Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol,1997.4(10):810-818.
    30. Phillips, C.M, and Iavarone, A.T, et al, Quantitative proteomic approach for cellulose degradation by Neurospora crassa. J Proteome Res,2011.10(9): 4177-4185.
    31. Koseki, T, and Mese, Y, et al, Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl Microbiol Biotechnol,2008.77(6):1279-1285.
    32. Quinlau, R J, and Sweeney, M.D, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA,2011.108(37):15079-15084.
    33. Westereng, B, and Ishide, T, et al, The putative endoglucanase PcGH6ID from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PloS one,2011.6(11):e27807.
    34. Wood, T, and McCrae, S.I, The purification and properties of the C1 component of Trichoderma koningii cellulase. Biochem J,1972.128(5):1183.
    35. Reese, E.T, and Siu, R.G, et al, The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol,1950.59(4):485.
    36. Kuhls, K, and Lieckfeldt, E, et al, Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci USA,1996.93(15):7755-7760.
    37. Martins, L.F, and Kolling, D, et al, Comparison of Penicillium echimilatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol,2008.99(5):1417-1424.
    38.林建强,曲音波,纤维索糖化发酵工艺.技术进展,2008.6:44-47.
    39. Gan, Q, and Allen, S, et al, Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis. Biochem Eng J,2002.12(3):223-229.
    40. Lee, S.M, and Koo, Y.M, et al, Production of lactic acid from paper sludge by simultaneous saccharification and fermentation. Adv Biochem Eng Biotechnol, 2004.87:173-194.
    41. Lin, J.Q, and Lee, S.M, et al, Modeling and simulation of simultaneous saccharification and fermentation of paper mill sludge to L-lactic acid. J Microbiol Biotechnol,2004.15:40-47.
    42.王丹,林建强等,直接生物转化纤维素类资源生产燃料乙醇研究的进展.山东农业大学学报,2002.33:32-36.
    43.王丹,林建强等,氧限制下粗糙脉孢菌乙醇发酵的数学模型及过程模拟.生物加工过程,2005.3:32-36.
    44. Wang, M, and Wu, M, et al, Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ Res Lett,2007.2(2): 024001.
    45. Fang, X, and Yano, S. et al, Strain improvement of Acremonium cellulolylicus for cellulase production by mutation. J Biosci Bioeng,2009.107(3):256-261.
    46. Mo, H, and Zhang, X.L, Control of gas phase for enhanced cellulose production by Penicillium decumbens in solid-state culture. Process Biochem,2004.39: 1293-1297.
    47. Qu, Y.B, and Zhao, X, et al, Cellulase production from spent sulfite liquor and paper-mill waste fiber. Appl Biochem Biotechnol,1991.28(1):363-368.
    48. Wei, X.M, and Zheng, K, et al, Transcription analysis of lignocellulolytic enzymes of Penicillium docwnbens 114-2 and its catabolite-repression-resistant mutant. C R Biol,2011.334:806-811.
    49. Yu, B and Chen, H.Z, Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresour Technol,2010.101(23):9114-9119.
    50. Rawat, R, and Tewari, L, Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LFS3. Extremophiles,2012:1-8.
    51. Shi, H, and Yin, X, et al, Cloning and bioinformatics analysis of an endoglucanase gene (Aucel12A) from Aspergillus usamii and its functional expression in Pichia pastoris. J Ind Microbiol Biotechnol,2012.39(2):347-357.
    52. Harris, P.V, and Welner, D, et al, Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61:structure and function of a large, enigmatic family. Biochemistry,2010.49(15):3305-3316.
    53. Zhou, Y, and Zhu, G, Rapid automated in-situ monitoring of total dissolved iron and total dissolved manganese in underground water by reverse-flow injection with chemiluminescence detection during the process of water treatment. Talanta, 1997.44(11):2041-2049.
    54. Lowry, O.H, and Rosebrough, N.J, et al. Protein measurement with the Folin phenol reagent. J Biol Chem,1951.193(1):265-275.
    55. Hideno, A, and Inoue, H, et al, Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme Microb Technol,2011.48(2): 162-168.
    56. Mandels, M, and Hontz, L, et al, Enzymatic hydrolysis of waste cellulose. Biotechnol Bioeng,2004.16(11):1471-1493.
    57. Ma, L, and Zhang, J, et al, Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microb Technol,2011.49(4):366-371.
    58. Cheng, Y, and Song, X, et al, Genome shuffling improves production of cellulose by Penicillum decumbens JUA10. J Appl Microbiol,2009.107:1837-1846.
    59. Magalhaes, P.O, and Ferraz, A, et al, Enzymatic properties of two β-glucosidases from Ceriporiopsis subvermispora produced in biopulping comditions. J Appl Microbiol,2006.101:480-486.
    60. Tao, Y.M, and Zhu, X. Z, et al, Purification and properties of endoglucanase from a sugar cane bagasse hydrolyzing strain, Aspergillus glaucus XC9. J Agr Food Chem,2010.58(10):6126-6130.
    61. Hoa, T, and Quyen, D.T, Cloning, Expression, Purification, and Properties of an Endoglucanase Gene (Glycosyl Hydrolase Family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris. J Microbiol Biotechnol,2011.21(10):1012-1020.
    62. Clarke, A.J, and Adams, L.S, Irreversible inhibition of Schizophyllum commune cellulase by divalent transition metal ions. BBA-Protein Struct M,1987.916(2): 213-219.
    63. Lassig, J.P, and Shultz, M.D, et al, Inhibition of cellobiohydrolase I from Trichoderma reesei by palladium. Arch Biochem Biophys,1995.322(1):119-126.
    64. Juhasz, T, and Egyhazi, A, et al,β-glucosidase production by Trichoderma reesei. in Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals.2005: Springer.
    65. Chen, M, and Zhao, L, et al, Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbonhyd Polym,2008.71(3):411-415.
    66. Manonmani, H.K, and Srikantiah, K.R, Saccharification of sugar-cane bagasse with enzymes from Aspergilhis sutus and Trichoderma viride. Enzyme Microb Technol,1987.9:484-488.
    67. Chahal, D.S, Solid-state fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol,1985.49(1):205-210.
    68. Hong, J, and Ye, X, et al, Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir,2007.23(25):12535-12540.
    69. Ohgren, K, and Bura, R, et al, Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol,2007. 98(13):2503-2510.
    70.王体科,世界植物纤维水解概况.世界林业研究所,1993.6:51-57.
    71.文新亚,李燕松等,酶解本质纤维素的预处理技术研究进展.酿酒科技,2006.146(8):97-100.
    72.张失,植物原料水解工艺学.中国林业出版社,1992.
    73.刘稳,高培基,半纤维素酶分子生物学.纤维素科学与技,1998.6(1):9-15.
    74.陆中华,陈俏彪,食用菌储藏与加工技术.中国农业出版社,2004.
    75. Zhang, Y.P, and Lynd, L.R, Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulase systems. Biotechnol Bioeng, 2004.88(7):797-824.
    76. Rosgaard, L, and Andric, P, et al, Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl Biochem Biotechnol, 2007.143(1):27-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700