用户名: 密码: 验证码:
纤维素酶吸附致钝特性研究及其改造策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质在固-液界面处的吸附通常存在不可逆的吸附,这种不可逆的吸附在酶反应体系中也经常发生。在纤维素酶-纤维素水解体系中,由于纤维素的水不溶性形成了固体纤维素-液相两相系统,纤维素酶吸附和水解作用是发生在固-液界面处的。借助表面等离子共振技术,在恒温40℃的条件下观察了外切纤维二糖水解酶Ⅰ在纤维素表面的吸附特征并测定了吸附动力学数据。吸附在纤维素表面的纤维素酶CBH I在纤维素-液相界面处表现出部分不可逆的吸附特点。考虑到不可逆吸附的特点,建立了能够很好的描述纤维素酶在纤维素表面实际吸附过程的数学模型。其中模型的相关动力学参数:Kads,0.26(L·cm~(-2)·s~(-1));Ktra,0.41(s~(-1))。为了评估纤维素酶吸附对酶水解纤维素的影响,使用纤维素CF11和纤维素酶CBHⅠ反应体系来测定反应动力学动态变化。以不可逆吸附的纤维素酶CBHⅠ的表面密度同反应过程中的水解速率作图,直观的显示了它们之间负相关的特点,即随着反应过程中表面密度的增加,纤维素的水解速率呈现下降。发现纤维素酶CBHⅠ的不可逆吸附同纤维素水解速率的变化相关,提出了产生这种结果的可能机制,同时提供了通过改变纤维素酶的不可逆吸附的特点来提高纤维素酶水解效率的思路。
     开展了采用酶工程技术手段改善纤维素酶的特性的研究。首先考察了噬菌体展示技术应用于纤维素酶改造工程上的可行性。通过将来自瑞氏木霉的外切纤维素酶CBHⅠ和内切纤维素酶EGⅠ的cDNA基因序列克隆到噬菌粒载体pCANTAB 5E中,分别构建了重组噬菌粒载体pCANTAB-cbh I和pCANTAB-egⅠ。经IPTG诱导后在大肠杆菌TG1中得到表达,表达的纤维素酶连接着噬菌体基因3编码的尾丝蛋白PⅢ,以融合蛋白的形式展示在噬菌体M13的表面。分别测定了对外切纤维素酶和内切纤维素酶各自的水溶性底物pNPC和CMC的水解活性,表明噬菌体展示的纤维素酶依然保持酶水解活力。ELISA实验结果表明噬菌体展示的纤维素酶对滤纸纤维素有吸附活性。总之,噬菌体展示的纤维素酶依然保持它们的生物学功能,噬菌体展示系可以用在纤维素酶工程上。利用随机突变PCR技术结合噬菌体展示系统进行了纤维素酶的定向进化。通过优化随机突变PCR反应体系条件和参数,在扩增外切纤维素酶CBHⅠ的基因时,PCR反应体系中加入3%的DMSO,获得高质量的扩增效果。扩增的纤维素酶基因片段的突变频率控制在4.5~5.1/Kb水平,对应于蛋白质的突变频率发生数个氨基酸的变化,适合蛋白质的定向进化研究。优化了连接体系,克隆DNA片段同载体的摩尔比为5∶1时连接效果最佳。改进了利用KOB培养基培养TG1制备高效电转感受态的方法,获得的感受态效率达到3×10~(8~9)/μg质粒。基于这些工作基础,构建的外切纤维素酶CBHⅠ和内切纤维素酶EGⅠ的突变体库的库容都达到10~6克隆子水平。利用变性剂盐酸胍处理噬菌体展示酶库,在逐渐提高筛选压力的过程中筛选掉稳定性差的展示突变体。这为利用噬菌体展示突变体酶库开展纤维素酶的定向进化研究打下了基础。
     为了进一步拓展新型纤维素酶的筛选范围,利用表型特征以及系统进化分析和分子生物学的方法鉴定了一株源自招远金矿酸性水样的细菌ZY-1,并分析了其在分类学上的地位。根据16S rDNA序列,菌株ZY-1在进化亲缘关系上同Acidiphilium属的一些种较近,同Acidiphilium cryptum和Acidiphilium multivorum聚在同一个亚类中。菌株ZY-1的细胞脂肪酸以直链、支链、不饱和脂肪酸的形式存在。其中,菌株ZY-1的脂肪酸主要是以饱和脂肪酸为主,但也含有一定量的不饱和脂肪酸18∶1ω9t,以及i16∶0支链脂肪酸,少量带有一个环丙烷的脂肪酸19∶0 cycloω9c。虽然菌株ZY-1的16S rDNA序列同A.cryptum和A.multivorum的相似度为99%,但是在生理生化以及形态特征上并不一致。菌株ZY-1生长温度范围28~42℃,最适生长温度约在37℃。生长的pH值范围2.0~4.0,最适生长pH在3.0附近。ZY-1的菌落呈白色,光滑,凸起,最大直径1mm。革兰氏阴性,短棒状。碳源利用分析表明在耗氧条件下能够以多种营养物为唯一碳源进行异养生活。以含有不同碳源的培养基培养时,菌株ZY-1表现出不同的菌体特征,当以葡萄糖为唯一碳源进行培养时,菌体的表面比较光滑。但是当在纤维素为唯一碳源培养时,菌体的表面分布有很多突起物。这也是首次在Acidiphilium属中发现能够利用纤维素的菌株。通过透射电镜观察发现,嗜酸菌ZY-1菌体表面在降解纤维素时生长的突起物和报道的纤维小体较为类似。另外,也分离出一株能够利用纤维素的真菌ZY-E1,经表型分析和18S rDNA鉴定表明这株真菌属于烟曲霉,同时展示了矿区极端酸性环境栖息微生物的多样性。
In this study the work focused on three points:study on adsorption and hydrolysis reaction of cellulase during cellulose hydrolysis process; directed evolution of cellulase;isolation of novel cellulase from environment.
     First,study on adsorption and hydrolysis of cellulase during hydrolysis process.Protein adsorption onto solid substrates usually takes place in an irreversible fashion and this irreversible adsorption also occurs in some enzymatic reactions.In fact,the adsorption and hydrolysis of cellulose by cellulases occurred at the solid-liquid interface in the biphasic system on account of the insolublecellulose in liquid.In this study the adsorption characteristic of cellobiohydrolaseⅠonto cellulose was monitored by surface plasmon response.The results show that once cellulase adsorbes onto cellulose,it's desorption is not easy and partially irrevisible adsorption can be observed.Taking into account the irreversible adsorption,the developed model properly exhibits the actual adsorption behavior of cellulase.Several simulated parameters in the equation such as Kads(0.26L·cm~(-2)·s~(-1))and Ktra 0.41 (s~(-1))were given.
     To evaluate the influence of adsorption on cellulose enzymatic hydrolysis,the reaction dynamics on pure cellulose were determined.A plot of the hydrolysis rate against the surface density of irreversibly adsorbed cellobiohydrolaseⅠ,revealed an inverse relationship in which an apparent decrease in the hydrolysis rate was observed with increasing surface density.Taken together,results presented here should be useful for modifying the binding characteristics of CBHⅠand making them more effective in cellulose hydrolysis.
     Second,directed evolution of cellulase.To test whether the phage display technology could be applied in cellulase engineering,the phagemids harboring the genes encoding the mature forms of CBHⅠand endoglucanaseⅠfrom filamentous fungus Trichoderma reesei, respectively,were constructed.CBHⅠand EGⅠfused to the phage coat protein encoded by the g3 gene were displayed on phage M13.The phage-bound cellulases retained their activities as determined by hydrolysis of the corresponding substrates.Also,their binding abilities to insoluble cellulose substrate were confirmed by an ELISA method. Overall,these results demonstrate that cellulases can be displayed on phage surface while maintaining their biological function,implicating phage display to be a potentially useful technology platform for directed evolution of improved cellulases.
     The cbhⅠDNA can be properly obtained with the addition of 3% DMSO in the random mutant PCR system.The mutant frequency of PCR production per Kb fell into 4.5~5.1/Kb,which is optimum to make the corresponding mutant protein have a variety with several amnion acids, was controlled by optimizing parameters of random mutant PCR.The optimal molar ratio of DNA and vector is 5 to 1 used in the ligation system.Transformation efficiency of 3×10~(8~9)/μg supercoiled pUCmt- 18 with E.coli TG1 can be obtained,when electrocompetent cell prepared by developed KOB medium.The primary library size of CBHⅠand EGⅠapproximately reached 10~6 members,respectively,when used the above mentioned optimal mutant PCR system,molar ratio in ligation and elcetrocomepent TG1.Subsequently the phage libraries were subjected to denaturing conditions to exert selection pressure on protein stability before panning in the primary library treated by low concentration of denatured reagent GdnHC1.
     Third,isolation of novel cellulases from environment.A bacterial strain,ZY-1,which was isolated from acid stream of gold mine in Zhao Yuan city,was subjected to a polyphasic taxonomic study using phenotypic characterization and phylogenetic and genetic methods. Phylogenetic analysis based on 16S rDNA sequences showed that strain ZY-1 forms an evolutionary lineage within the radiation enclosing Acidiphilium species and,in particular,a coherent cluster with Acidiphilium cryptum and Acidiphilium multivorum.Strain ZY-1 had a cellular fatty acid profile containing straight-chain,branched, unsaturated and 9-cyclo fatty acids.The major fatty acid was saturated fatty acid.Moderate amounts of branched-chain fatty acids(i16:0)and fatty acid with a cyclopropane(19:0 cycloω9c)were present. Importantly,the unsaturated fatty acid(18:1ω9t)existed substantially with lower amounts.The 16S rDNA of strain ZY-1 has a high similarity to that of the relative strains of A.cryptum and A.multivorum.However, there exist obvious differences in physiological characteristics and morphological distinctiveness.The range of growth temperature of strain ZY-1 was from 28 to 42℃,which reveals that the strain is a mesophilic bacterium,and the optimal growth temperature is around 37℃.Strain ZY-1 is an acidophile growing optimally at approx,pH 2~4 and the optimum growth pH value is around 3.0.Colonies of ZY-1 are smooth,shiny,convex,and white and have a maximum diameter of 1 mm.The cells display short rods and Gram-negative.The organisms grew heterotrophically under aerobic conditions and they did use a broad range of organic substrate as the sole carbonsource.Phenotypic distinctiveness was shown when strain ZY-1 was cultured in medium with various nutrients as the sole carbon source.The surface of the strain ZY-1 cells cultured with glucose as the sole carbon source was smooth observed by transmission electron microscope,while protrusions can be observed on the cell surface when cured with the sole carbon source of cellulose.This is the first report that the strain in Acidiphilium genus has the ability to use of cellulose.Importantly, these appendixes of strain ZY-1 cultured in cellulose medium were similar to the feature of cellosome.In addition,a fungal strain named ZY-E1,which can digest cellulose,was isolated and identified.Strain ZY-E1 belongs to Aspergillus fumigatus based on the phenotypic characteristic and the sequence of 18S rDNA.The bacterial and the fungal strains were isolated which also displayed the diversity of microbe community inhabiting mostly acid environment.
引文
Abuja PM, Pilz I, Tomme P, Claeyssens M. 1989. Structural changes in cellobiohydrolase I upon binding of a macromolecular ligand as evident by SAXS investigations. Biochem Biophys Res Commun 165:615-23.
    Aharoni A, Griffiths AD, Tawfik DS. 2005. High-throughput screens and selections of enzyme-encoding genes. Curr Opin Chem Biol 9:210-6.
    
    Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143-69.
    Arnold FH. 2001. Combinatorial and computational challenges for biocatalyst design. Nature 409:253-7.
    
    Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF. 2004. Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264-71.
    
    Baker CS, Suvajittanont W, Bothwell MK, McGuire J. 2001. Adsorption of Thermomonospora fusca E5 and Trichoderma reesei cellobiohydrolase I cellulases on synthetic surfaces. Appl Biochem Biotechnol 94:29-40.
    Baker JO, McCarley JR, Lovett R, Yu CH, Adney WS, Rignall TR, Vinzant TB, Decker SR, Sakon J, Himmel ME. 2005. Catalytically enhanced endocellulase Cel5A from Acidothermus cellulolyticus. Appl Biochem Biotechnol 121-124:129-48.
    
    Bayer EA, Belaich JP, Shoham Y, Lamed R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521-54.
    
    Bayer EA, Lamed R. 1986. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J Bacteriol 167:828-36.
    
    Bayer EA, Lamed R, Himmel ME. 2007. The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237-45.
    Beldman G, Voragen AGJ, Rombouts FM, Searle-van Leeuwen MF, Pilnik W. 1987. Adsorption and. kinetic behaviour of purified endoglucanases and exoglucanases. from Trichoderma viride. Biotechnol. Bioeng. 30:251-257.
    Bond PL, Smriga SP, Banfield JF. 2000. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842-9.
    Bornscheuer UT, Pohl M. 2001. Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5:137-43.
    Brune A. 2007. Microbiology: woodworker's digest. Nature 450:487-8.
    Case ME, Schweizer M, Kushner SR, Giles NH. 1979. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A 76:5259-63.
    Chaparro-Riggers JF, Polizzi KM, Bommarius AS. 2007. Better library design: data-driven protein engineering. Biotechnol J 2:180-91.
    Cherry JR, Fidantsef AL. 2003. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438-43.
    Cohen R, Suzuki MR, Hammel KE. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2412-7.
    Converse AO, Matsuno R, Tanaka M, Taniguchi M. 1988. A model of enzyme adsorption and hydrolysis of microcrystalline cellulose with slow deactivation of the adsorbed enzyme. Biotechnol Bioeng 32:38-45.
    Converse AO, Optekar JD. 1993. A synergistic kinetics model for enzymatic cellulose hydrolysis compared to degree-of-synergism experimental results. Biotechnol Bioeng 42:145 - 8.
    Cooper MA. 2003. Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377:834-42.
    
    Demain AL, Newcomb M, Wu JH. 2005. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124-54.
    Den Haan R, Rose SH, Lynd LR, van Zyl WH. 2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87-94.
    
    Desai SG, Converse AO. 1997. Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose. Biotechnol Bioeng 56:650-5.
    
    Eriksson T, Karlsson J, Tjerneld F. 2002. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 101:41-60.
    
    Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, 3rd, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291-6.
    Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM. 2006. Ethanol can contribute to energy and environmental goals. Science 311:506-8.
    
    Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX. 2007. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75:319-28.
    
    Fernandez-Gacio A, Uguen M, Fastrez J. 2003. Phage display as a tool for the-directed evolution of enzymes. Trends Biotechnol 21:408-14.
    
    Freeman A, Cohen-Hadar N, Abramov S, Modai-Hod R, Dror Y, Georgiou G. 2004. Screening of large protein libraries by the cell immobilized on adsorbed bead approach. Biotechnol Bioeng 86:196-200.
    
    Goldemberg J. 2007. Ethanol for a sustainable energy future. Science 315:808-10.
    Gray JJ. 2004. The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14:110-5.
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804-7.
    Himmel ME, Ruth MF, Wyman CE. 1999. Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10:358-64.
    Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G. 2005. A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581-8.
    Hughes SR, Riedmuller SB, Mertens JA, Li XL, Bischoff KM, Qureshi N, Cotta MA, Farrelly PJ. 2006. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell. Proteome Sci 4:10.
    Igarashi K, Wada M, Hori R, Samejima M. 2006. Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid-liquid interface. FEBS J 273:2869-78.
    Jindou S, Borovok I, Rincon MT, Flint HJ, Antonopoulos DA, Berg ME, White BA, Bayer EA, Lamed R. 2006. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J Bacteriol 188:7971-6.
    Johnson DB, Hallberg KB. 2003. The microbiology of acidic mine waters. Res Microbiol 154:466-73.
    Kamm B, Kamm M. 2004. Principles of biorefineries. Appl Microbiol Biotechnol 64:137-45.
    Kan J, Hanson TE, Ginter JM, Wang K, Chen F. 2005. Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Systems 1:7.
    Kang HJ, Uegaki K, Fukada H, Ishikawa K. 2007. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii. Extremophiles 11:251-6.
    
    Karlsson M, Ekeroth J, Elwing H, Carlsson U. 2005. Reduction of irreversible protein adsorption on solid surfaces by protein engineering for increased stability. J Biol Chem 280:25558-64.
    Kashima Y, Mori K, Fukada H, Ishikawa K. 2005. Analysis of the function of a hyperthermophilic endoglucanase from Pyrococcus horikoshii that hydrolyzes crystalline cellulose. Extremophiles 9:37-43.
    Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. 2005. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099-106.
    Kehoe JW, Kay BK. 2005. Filamentous phage display in the new millennium. Chem Rev 105:4056-72.
    
    Kennedy D. 2007. The biofuels conundrum. Science 316:515.
    Kim SJ, Lee CM, Kim MY, Yeo YS, Yoon SH, Kang HC, Koo BS. 2007. Screening and characterization of an enzyme with beta-glucosidase activity from environmental DNA. J Microbiol Biotechnol 17:905-12.
    Kim YS, Jung HC, Pan JG. 2000. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol 66:788-93.
    Kintisch E. 2007. Clint Chappie profile. How to make biofuels truly poplar. Science 315:786.
    
    Koonin SE. 2006. Getting serious about biofuels. Science 311:435.
    Kubartova A, Moukoumi J, Beguiristain T, Ranger J, Berthelin J. 2007. Microbial diversity during cellulose decomposition in different forest stands: I. microbial communities and environmental conditions. Microb Ecol 54:393-405.
    Kyriacou A, Neufeld RJ, MacKenzie CR. 1989. Reversibility and competition in the adsorption of Trichoderma reesei cellulase components. Biotechnol Bioeng 33:631-7.
    Labrou NE. 2005. Bridging the gap between natural enzymes and commercial applications. Biomolecular Engineering 22:vii-ix.
    
    Lebbink JH, Kaper T, Bron P, van der Oost J, de Vos WM. 2000. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry 39:3656-65.
    Lee I, Evans BR, Woodward J. 2000. The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy 82:213-221.
    Leisola M, Turunen O. 2007. Protein engineering: opportunities and challenges. Appl Microbiol Biotechnol 75:1225-32.
    Lin Y, Tanaka S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627-42.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506-77.
    Lynd LR, Wyman CE, Gerngross TU. 1999. Biocommodity Engineering. Biotechnol Prog 15:777-93.
    McCarthy JK, Uzelac A, Davis DF, Eveleigh DE. 2004. Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. J Biol Chem 279:11495-502.
    Medve J, Karlsson J, Lee D, Tjerneld F. 1998a. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59:621-34.
    Medve J, Lee D, Tjerneld F. 1998b. Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein chromatograph. J Chromatogr A 808:153-6.
    Medve J, Stahlberg J, Tjerneld F. 1997. Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose. Appl Biochem Biotechnol 66:39-56.
    Mulakala C, Reilly PJ. 2005. Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study. Proteins 60:598-605.
    Murashima K, Kosugi A, Doi RH. 2002. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol Microbiol 45:617-26.
    Nakanishi K, Sakiyama T, Imamura K. 2001. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91:233-44.
    Nidetzky B, Steiner W. 1993. A new approach for modeling cellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 42:469-79.
    Nidetzky B, Steiner W, Claeyssens M. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. Biochem J 303 817-23.
    Otten LG, Quax WJ. 2005. Directed evolution: selecting today's biocatalysts. Biomol Eng 22:1-9.
    Otzen DE, Christiansen L, Schulein M. 1999. A comparative study of the unfolding of the endoglucanase Cel45 from Humicola insolens in denaturant and surfactant. Protein Sci 8:1878-87.
    Palonen H, Tenkanen M, Linder M. 1999. Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl Environ Microbiol 65:5229-33.
    Pennisi E. 2003. Microbiology. Neither cold nor snow stops tundra fungi. Science 301:1307.
    
    Ponsard I, Galleni M, Soumillion P, Fastrez J. 2001. Selection of metalloenzymes by catalytic activity using phage display and catalytic elution. Chembiochem 2:253-9.
    Qu Y, Zhu M, Liu K, Bao X, Lin J. 2006. Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol J 1:1235-40.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Jr., Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. 2006. The path forward for biofuels and biomaterials. Science 311:484-9.
    
    Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D, Mack RN. 2006. Ecology. Adding biofuels to the invasive species fire? Science 313:1742.
    
    Receveur V, Czjzek M, Schulein M, Panine P, Henrissat B. 2002. Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J Biol Chem 277:40887-92.
    Sattler W, Esterbaue H, Glatter O, Steiner W. 1989. The effect of enzyme concentration on the rate of hydrolysis of cellulose. Biotechnol Bioeng 33:1221-34.
    
    Saul DJ, Williams LC, Grayling RA, Chamley LW, Love DR, Bergquist PL. 1990. celB, a gene coding for a bifunctional cellulase from the extreme thermophile " Caldocellum saccharolyticum". Appl Environ Microbiol 56:3117-24.
    
    Schmidt T. 2007. MICROBIOLOGY: Life in the Really Hard Places. Science 318:1727.
    Schulein. M. 2000. Protein engineering of cellulases. Biochimica et Biophysica Acta 1543:239-52.
    Service RF. 2007. Cellulosic ethanol. Biofuel researchers prepare to reap a new harvest. Science 315:1488-91.
    
    Shi X, Karkut T, Alting-Mees M, Chamankhah M, Hemmingsen SM, Hegedus DD. 2003. Enhancing Escherichia coli electrotransformation competency by invoking physiological adaptations to stress and modifying membrane integrity. Anal Biochem 320:152-5.
    
    Simbahan J, Drijber R, Blum P. 2004. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA. Int J Syst Evol Microbiol 54:1703-7.
    
    Smith GP. 1985. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315-7.
    Snopok BA, Kostyukevich EV. 2006. Kinetic studies of protein-surface interactions: A two-stage model of surface-induced protein transitions in adsorbed biofilms. Anal Biochem 348:222-31.
    
    Somerville C. 2006. The billion-ton biofuels vision. Science 312:1277.
    Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H. 2004. Toward a systems approach to understanding plant cell walls. Science 306:2206-11.
    Stahlberg J, Johansson G, Pettersson G. 1991. A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Bio/technology 9:286-90.
    Stahlberg J, Johansson G, Pettersson G. 1993. Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157:107-13.
    Steiner W, Sattler W, Esterbaue H. 1988. Adsorption of Trichoderma reesei cellulase on cellulose: experimental data and their analysis by different equations. Biotechnol Bioeng 32:853-65.
    Stephanopoulos G. 2007. Challenges in engineering microbes for biofuels production. Science 315:801-4.
    Tatsumi H, Katano H, Ikeda T. 2006. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Anal Biochem 357:257-61.
    Tilman D, Hill J, Lehman C. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598-600.
    Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M. 1988. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 170:575-81.
    Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jerez CA. 2006. Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24:197-211.
    Valjamae P, Sild V, Pettersson G, Johansson G. 1998. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur J Biochem 253:469-75.
    Verhaert RM, Beekwilder J, Olsthoorn R, van Duin J, Quax WJ. 2002. Phage display selects for amylases with improved low pH starch-binding. J Biotechnol 96:103-18.
    Verhaert RM, Van Duin J, Quax WJ. 1999. Processing and functional display of the 86 kDa heterodimeric penicillin G acylase on the surface of phage fd. Biochem J 342 415-22.
    Voutilainena SP, Harry Boera, Markus B. Lindera, Terhi Puranenb, Juha Rouvinenc, Vehmaanperab J, Koivula A. 2007. Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme and Microbial Technology 41:234-43.
    
    
    Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T. 2005. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22:89-94.
    Wittrup K.D. 2001. Protein engineering by cell-surface display. Curr Opin Biotechnol 12:395-99.
    Wolfenden R, Snider MJ. 2001. The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34:938-45.
    Wong TS, Zhurina D, Schwaneberg U. 2006. The diversity challenge in directed protein evolution. Comb Chem High Throughput Screen 9:271-88.
    Woodward J, Lee NE, Carmichael JS, McNair SL, Wichert JM. 1990. Comparison of the hydrolytic activity and fluorescence of native, guanidine hydrochloride-treated and renatured cellobiohydrolase I from Trichoderma reesei. Biochim Biophys Acta 1037:81-5.
    Zhang S, Wilson DB. 1997. Surface residue mutations which change the substrate specificity of Thermomonospora fusca endoglucanase E2. J Biotechnol 57:101-13.
    Zhang YH.2006.Outlook for cellulase improvement:Screening and selection strategies.Biotechnology Advances 24:452-81.
    Zhang YH,Lynd LR.2005.Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis.Biomacromolecules 6:1510-5.
    曲音波.1996.可持续发展与二十一世纪的生物技术.世界科技研究与发展18:40-2.
    曲音波,高培基,王祖农.1988.斜卧青霉纤维素酶系的酶学研究.微生物学报28:121.
    沈萍,范秀容,李广武.1999.微生物学实验(第3版).21-3.
    胡军.1999.酶技术发展与酶定向进化.工业微生物29:37-42.
    郭晓君.1999.蛋白质电泳实验技术.北京:科学出版社.
    许钦坤.2005.蛋白质定向进化的研究进展及其应用前景.生物技术通讯16:191-3.
    齐飞,张颖舒,高培基.1999.生孢噬纤维细菌的分离纯化和鉴定.山东大学学报31:484-7.
    Boer H, Teeri TT, Koivula A. 2000. Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69:486-94.
    Cooper MA. 2003. Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377:834-42.
    Desai SG, Converse AO. 1997. Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose. Biotechnol Bioeng 56:650-655.
    Deshpande MV, Eriksson KE, Pettersson LG. 1984. An assay for selective determination of exo-l,4,-beta-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138:481-487.
    Eriksson T, Karlsson J, Tjerneld F. 2002. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (ce17B) of Trichoderma reesei. Appl Biochem Biotechnol 101:41-60.
    Gray JJ. 2004. The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14:110-5.
    
    Karlsson M, Ekeroth J, Elwing H, Carlsson U. 2005. Reduction of irreversible protein adsorption on solid surfaces by protein engineering for increased stability. J Biol Chem 280:25558-64.
    Koutsopoulos S, Tjeerdsma AM, Lieshout JF, van der Oost J, Norde W. 2005. In situ structure and activity studies of an enzyme adsorbed on spectroscopically undetectable particles. Biomacromolecules 6:1176-84.
    
    Kyriacou A, Neufeld RJ, MacKenzie CR. 1989. Reversibility and competition in the adsorption of Trichoderma reesei cellulase components. Biotechnol Bioeng 33:631-637.
    
    Li FC, Qi X, Geng MY. 2003. A novel method of immobilization of 911 for surface plasmon resonance biosensor. Chinese J Anal Chem 31:266-270.
    
    Medve J, Karlsson J, Lee D, Tjerneld F. 1998b. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59:621-34.
    
    Medve J, Lee D, Tjerneld F. 1998a. Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein chromatograph. J.Chromatogr A 808:153-156.
    Nakanishi K, Sakiyama T, Imamura K. 2001. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91:233-44.
    
    Nidetzky B, Steiner W, Claeyssens M. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. Biochem J 303:817-23.
    Otter DE, Munro PA, Scott GK, Geddes R. 1989. Desorption of Trichoderma reesei cellulase from cellulose by a range of desorbents. Biotechnol Bioeng 34:291-298.
    Palonen H, Tenkanen M, Linder M. 1999. Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl Environ Microbiol 65:5229-33.
    Sakiyama T, Tanino K, Urakawa M, Imamura K, Takahashi T, Nagai T, Nakanishi K. 1999. Characteristics of tryptic fragments of bovine β-lactoglobulin on a stainless steel surface. J Biosci Bioeng 88:536-541.
    
    Sattler W, Esterbaue H, Glatter O, Steiner W. 1989. The effect of enzyme concentration on the rate of hydrolysis of cellulose. Biotechnol Bioeng 33:1221-1234.
    Stahlberg J, Johansson G, Pettersson G. 1993. Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157:107-13.
    Steiner W, Sattler W, Esterbaue H. 1988. Adsorption of Trichoderma reesei cellulase on cellulose: experimental data and their analysis by different equations. Biotechnol Bioeng 32:853-865.
    Su TJ, Lu JR, Thomas RK, Cui ZF, Penfold J. 1998. The Adsorption of Lysozyme at the Silica-Water Interface: A Neutron Reflection Study. J Colloid Interface Sci 203:419-29.
    Teeri TT. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160-167.
    Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA. 1998. Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173-8.
    Valjamae P, Sild V, Pettersson G, Johansson G. 1998. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur J Biochem 253:469-75.
    Zhang YH, Lynd LR. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797-824.
    Zhang YH, Lynd LR. 2005. Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510-5.
    Atwell S, Wells JA (1999) Selection for improved subtiligases by phage display. Proc Natl Acad Sci USA 96:9497-9502.
    Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438-443.
    Chirumamilla RR, Muralidhar R, Marchant R, Nigam P (2001) Improving the quality of industrially important enzymes by directed evolution. Mol Cell Biochem 224:159-168.
    Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124-154.
    Deshpande MV, Eriksson KE, Pettersson LG (1984) An assay for selective determination of exo-l,4,-beta-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138:481-487.
    Fernandez-Gacio A, Uguen M, Fastrez J (2003) Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 21:408-414.
    
    Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426:611-612.
    Kamm B, Kamm M (2004)' Principles of biorefineries. Appl Microbiol Biotechnol 64:137-145.
    Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056-4072.
    Kim YS, Jung HC, Pan JG (2000) Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol 66:788-793.
    Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345-351.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506-577.
    Mansfield SD, Mooney C, Saddler JN (1999) Substrate and Enzyme Characteristics that Limit Cellulose Hydrolysis. Biotechnol Prog 15:804-816.
    
    McCarthy JK, Uzelac A, Davis DF, Eveleigh DE (2004) Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. J Biol Chem 279:11495-11502.
    
    Medve J, Lee D, Tjerneld F (1998) Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein chromatograph. J Chromatogr A 808:153-156.
    
    Moreira N (2005) Growing expectations: new technology could turn fuel into a bump crop. Sci News Onine 168:209-224.
    Otten LG, Quax WJ (2005) Directed evolution: selecting today's biocatalysts. Biomol Eng 22:1-9.
    
    Ponsard I, Galleni M, Soumillion P, Fastrez J (2001) Selection of metalloenzymes by catalytic activity using phage display and catalytic elution. Chembiochem 2:253-259.
    
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Jr., Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484-489.
    Sheng Y, Mancino V, Birren B (1995) Transformation of Escherichia coli with large DNA molecules by electroporation. Nucleic Acids Res 23:1990-1996.
    
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315-1317.
    
    Smogyi M (1952) Notes on sugar determination. J Biol Chem 195:19-23.
    Verhaert RM, Beekwilder J, Olsthoorn R, van Duin J, Quax WJ (2002) Phage display selects for amylases with improved low pH starch-binding. J Biotechnol 96:103-118.
    Verhaert RM, Van Duin J, Quax WJ (1999) Processing and functional display of the 86 kDa heterodimeric penicillin G acylase on the surface of phage fd. Biochem J 342: 415-422.
    Wittrup KD (2001) Protein engineering by cell-surface display. Curr Opin Biotechnol 12:395-399.
    Wong TS, Zhurina D, Schwaneberg U (2006) The diversity challenge in directed protein evolution. Comb Chem High Throughput Screen 9:271-288.
    Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700