用户名: 密码: 验证码:
高温液态水中单糖分解反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着不可再生资源的日益消耗,从可再生生物质资源尤其是木质纤维素类生物质出发制备新型平台化合物越来越引起关注。木质纤维素转化的途径之一是水解生成单糖(葡萄糖、木糖),单糖再进一步分解生成化学品。其中单糖的生成和降解是影响整个反应过程选择性的关键步骤。木质纤维素水解一般采用液体酸作为催化剂,存在对设备腐蚀严重、污染环境等问题。围绕高温液态水中生物质资源绿色转化这一目标,本文开展了以下研究工作。
     利用搅拌高压反应釜研究了研究了压力10MPa,温度180℃至220℃范围内高温液态水中葡萄糖无催化分解反应动力学。实验结果表明:葡萄糖在实验范围内可完全分解,分解反应符合一级反应,分解反应活化能为118.85kJ/mol。反应主要产物为5—羟甲基糠醛、果糖、甲酸、乙酰丙酸和腐殖质。实验范围内5—羟甲基糠醛最大产率为32.0mol%,乙酰丙酸最大产率为2.0mol%。
     研究了压力10MPa、温度180℃至260℃范围内高温液态水中5—羟甲基糠醛无催化分解反应。实验结果表明,5—羟甲基糠醛在实验范围内可完全分解,分解反应符合一级反应,分解反应活化能为95.40kJ/mol。反应主要产物为甲酸、乙酰丙酸和腐殖质,同时还有两种未知产物需进一步定性。
     研究了压力10MPa、温度220℃至280℃和反应时间4h至32h范围内,高温液态水中乙酰丙酸稳定性。实验结果表明:高温液态水中乙酰丙酸很稳定,280℃、乙酰丙酸反应32小时,其转化率仅为7.0mol%。乙酰丙酸分解反应符合一级反应,分解反应活化能为31.29kJ/mol.
     在上述研究的基础上提出了10MPa,温度180℃至220℃范围内高温液态水中葡萄糖带有平行反应的一级连续降解动力学模型,从实验数据拟合得到了模型参数,模型计算值与实验数据符合良好,表明模型能很好地描述葡萄糖降解过程。
     研究了压力10MPa下,温度180℃至220℃范围内高温液态水中木糖无催化分解反应动力学。实验结果表明,木糖在实验范围内可完全分解,反应产物为糠醛、甲酸和腐殖质,糠醛最大产率为50.6mol%。提出了由木糖降解生成糠醛的带有平行反应的一级连续降解动力学模型,从实验数据拟合得到了模型参数,模型计算值与实验数据符合良好,表明模型能很好地描述木糖降解过程,木糖分解反应活化能为123.27kJ/mol。
     为了提高高温液态水中乙酰丙酸产率,本文探索利用35w大孔磺酸树脂催化葡萄糖或果糖制备乙酰丙酸。同时也研究了35w大孔磺酸树脂催化木糖制备糠醛。
     利用微型水热合成釜研究了130℃至160℃范围内,不同催化剂量、不同温度对乙酰丙酸产率的影响。实验结果表明:实验范围内树脂催化葡萄糖、果糖生成乙酰丙酸的产率均高于无酸催化下产率;葡萄糖生成乙酰丙酸的最高产率为27.4mol%,果糖生成乙酰丙酸的最高产率为49.7mol%。
     同时研究了140℃至160℃范围内,不同催化剂量、不同温度对木糖制备糠醛产率的影响。木糖生成糠醛的最高产率为26.3mol%。
With the rapid consumption of non-renewable resources, the renewable biomass resources, in particular lignocellulosics biomass, has received more attention in producing chemicals. Lignocellulose may be converted to bulk chemicals by a hydrolysis reaction. During hydrolysis, the lignocellulose is cleaved to give monosaccharide, which can be decomposed further into useful chemicals. Results of most research showed that the first step (lignocellulose →monosaccharide) was a crucial step and had substantial impact on the selectivity and yield of chemical product. The traditional hydrolysis of biomass used liquid acid as catalysts such as hydrochloric acid and sulfuric acid, but the liquid acid had a negative impact on the reactor and on the global environment. Foucsing on the conversion of bimass in high temperature liquid water (HTLW), following study was did in this paper.
    Decomposition kinetics of glucose in HTLW was studied in the temperature ranges from 180 to 220℃ and pressure of 10 MPa with a stirred autoclave. The result showed that the glucose could decompose completely at experimental conditions. According to first order reaction mechanism, activation energy of non-catalyzed decomposition of glucose was 118.85 kJ/mol. The decomposition products were 5-hydromethylfurfural (5-HMF), fructose, levulinic acid (LA) and humic substance. At experimental conditions, the maximum yield of 5-HMF was 32.0 mol% and the maximum yield of levulinic acid was 2.0 mol%.
    Decomposition kinetics of 5-HMF in HTLW was studied at temperature ranges from 180 to 260℃ and pressure of 10 MPa. The decomposition products were formic acid, LA, two unknown products and humic substance. According to first order reaction mechanism, activation energy of non-catalyzed decomposition of 5-HMF was 95.40 kJ/mol.
    The stability of levulinic acid in HTLW was studied in the temperature ranges from 220 to 280 ℃ and pressure of 10 MPa. The result showed that the conversion of LA was only 7.0 mol% after 32 hours of reaction at 280 ℃. According to first order reaction mechanism, activation energy of non-catalyzed decomposition of LA
    was 31.29kJ/mol.
    A kinetic model according to above experiments was proposed, in which decomposition kinetics of glucose in HTLW in the temperature ranges from 180 to 220℃ was described by a series first-order reactions with parallel by-reaction. The model parameters were correlated from the experimental data and the results calculated by the model were in well accordings with the experimental data.
    Decomposition kinetics of xylose in HTLW was studied at temperature ranges from 180 to 220℃ and pressure of 10 MPa. The decomposition products were furfural, formic acid and humic substance. The maximum yield of furfural was 50.6 mol%. A kinetic model was proposed, in which the process was described by a series first-order reactions with parallel by-reaction. The model parameters were correlated from the experimental data and the results calculated by the model were in well accordings with the experimental data. Activation energy of non-catalyzed decomposition of xylose was 123.27 kJ/mol.
    In order to improve the yields of levulinic acid in HTLW, 35w strong acid resin was used as an acid catalyst to prepare levulinic acid from glucose or fructose in this paper. Moreever 35w strong acid resin was also used to catalyze xylose to prepare furfural.
    The influence of temperature and catalyst loading on the levulinic acid yields in temperature ranges from 130 to 160℃ was studied using a small hydrothermal reactor. The result showed that by adding the resin, monosaccharide conversion was enhanced and levulinic acid formation was promoted. The maximum yield of levulinic acid formed from glucose was 27.4 mol%, and the maximum yield of levulinic acid formed from fructose was 49.7 mol %.
    The influence of temperature and catalyst loading on the furfural yields at temperature ranges from 130 to 160℃ was also studied. The maximum yield of furfural formed from xylose was 26.3 mol %.
引文
[1] 高洁,汤烈贵,纤维素科学,北京:科学出版社,1999,183~209.
    [2] 刘荣厚,牛卫生,张大雷,生物质热化学转化技术,北京:化学工业出版社,2005.
    [3] 肖军,段菁春,王华,生物质利用现状,安全与环境工程,2003,10(1):11~14.
    [4] 陈冠益,高文学,马文超,生物质制氢技术的研究现状与展望,太阳能学报,2006,27(12):1276~1284.
    [5] 于洁,肖宏,生物质制氢技术研究进展,中国生物工程杂志,2006,26(5):107~112
    [6] 路鹏,江滔,李国学,木质纤维素乙醇发酵研究中的关键点及解决方案,农业工程学报,2006,22(9):237~240.
    [7] 岑沛霖,穆江华,赵春晖,林建平,从可再生资源获得新型绿色“平台化合物”乙酰丙酸的研究与开发,生物加工过程,2003,1(1):17~23.
    [8] Carole T.M., Pellegrino J., Paster M.D., Opportunities in the industrial biobasod products industry, Applied Biochemistry and Biotechnology, 2004, 113-116:871~885.
    [9] 阎立峰,朱清时,以生物质为原材料的化学化工,化工学报,2004,155(2):1938~1943.
    [10] Akiya N., Savage P.E., Roles of water for chemical reactions in high-temperature water, Chem. Rev., 2002, 102(8): 2725~2750.
    [11] Connolly J.F., Solubility of hydrocarbons in water near the critical solution temperatures, J.Chem.Eng.Data, 1966, 11(1): 13~16.
    [12] Harvey A.H., Klein S.A., NIST/ASMW Steam Properties, 2.01 ed, NIST: Washington, DC, 1996.
    [13] Chandler K., Liotta C.L., Eckert C.A., Tuning alkylation reactions with temperature in near-critical water, AIChE J., 1998, 44(9): 2080~2087.
    [14] Chandler K., Deng F., Dillow A.K., Liotta C.L., Eckert C.A., Alkylation reactions in near-critical water in the absence of acid catalysts, Ind. Eng. Chem. Res., 1997, 36(12): 5175~5179.
    [15] Reardon P., Metts S., Crittendon C., Daugherity P., Parsons E.J., Palladium-Catalyzed Coupling Reactions in Superheated Water, Organometallics., 1995, 14(8): 3810~3816.
    [16] Diminnie J., Metts S., Parsons E.J., In situ generation and Heck coupling of Alkenes in superheated water. Organometallics., 1995, 14(8): 4023~4025.
    [17] Korzenski M.B., Kolis J.W., Diels-Alder Reactions Using Supercritical Water As An Aqueous Solvent Medium, Tetrahedron Lett., 1997, 38(32): 5611~5614.
    [18] Harano Y., Sato H., Hirata F., Solvent effects on a Diels-Alder reaction in supercritical water: RISM-SCF study, J. Am. Chem. Soc., 2000, 122(10): 2289~2293.
    [19] An J, Bagnell L, Cablewski T, Strauss C.R., Trainor R.W., Applications of high-temperature aqueous media for synthetic organic reactions, J. Org. Chem. 1997, 62(8): 2505~2511.
    [20] Holliday R.L., King J. W., List G. R., Hydrolysis of vegetable oils in sub- and supercritical water, Ind. Eng. Chem. Res., 1997, 36(3): 932~935.
    [21] King J. W., Holliday R. L., List G. R., Hydrolysis of soybean oil—in a subcritical water flow reactor, Green Chem., 1999, 1(6): 261~264.
    [22] Aleman P.A., Boix C., Poliakoff M., Hydrolysis and saponification of methyl benzoates, Green Chem., 1999,1(2): 65~68.
    [23] Lyer S.D., Nicol G.R., Klein M.T., Hydrothermal reactions of 1-nitrobutane in high-temperature water, J. Supercrit. Fluids, 1996, 9(1): 26~32.
    [24] Kramer A., Vogel H., Hydrolysis of esters in subcritical and supercritical water, J. Supercrit. Fluids, 2000, 16(3): 189~206.
    [25] Tony L.A., Kaminsky R., Klein M.T., Klotz M.R., The effect of salts on hydrolysis in supercritical and near-critical water: reactivity and availability, J. Supercrit. Fluids, 1992, 5(3): 163~168.
    [26] Duan P.G., Wang X., Dai L.I., Noncatalytic hydrolysis of iminodiacetonitrile in near critical water —a green process for the manufacture of iminodiacetic acid, Chem. Eng. Tee., 2007, 30(2): 265~269.
    [27] Xu X., Antal M.J., Anderson D.G.M., Mechanism and temperature dependence kinetics of the dehydration of tert-butyl alcohol in hot compressed liquid water, Ind. Eng. Chem. Res.,1997, 36(1): 23~41.
    [28] Kuhlmann B., Arnett E. M., Siskin M,. Classical organic reactions in pure superheated water, Org. Chem., 1994, 59(11): 3098~3101.
    [29] Crittendon R.C., Parsons E.J., Transformations of cyclohexane derivatives in supercritical water, Organometallics., 1994, 13(7): 2587~2591.
    [30] Kuhlmann B., Arnett E.M., Siskin M., H-D Exchange in pinacolone by Deuterium oxide at high temperature and pressure, Org. Chem., 1994, 59(18): 5377~5380.
    [31] Biox C., Delafuente J.M., Poliakoff M., Preparation of quinolines by reduction of ortho-nitroarenes with zinc in near-critical water, New J. Chem., 1999, 23(6): 641~643.
    [32] Holliday R.L., Jong B.Y.M., Kolis J.W., Organic synthesis in subcritical water: oxidation of alkyl aromatics, J. Supercrit. Fluids, 1998, 12(3): 255~260.
    [33] Mesmer R.E., Marshall W,L., Palmer D.A., Simonson J.M., Holmes H.F., Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures., J. Solution Chem., 1988, 17(8): 699~718.
    [34] 王倩,朱宪,近临界水中甲苯氧化成苯甲醛的工艺研究,高校化学工程学报,(2005),4(19):503~506.
    [35] 朱志强,曾健青,刘莉玫.近临界水中卞叉乙酰苯的合成新方法,有机化学,2002,22(7):508~510.
    [36] Nolen S.A., Liotta C.L., Eckert C.A., Glaeser R., The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed condensations for organic synthesis, Green Chem., 2003, 5(5): 663~669.
    [37] Sasaki M., Kabyemela B., Malaluan R. M., Hrose S., Takeda N., Adschiri T., Arai K., Cellulose hydrolysis in subcritical and supercritieal water, J. Supercrit. Fluids, 1998, 13(1-3): 261~268
    [38] Sasaki M., Fang Z., Fukushima Y., Adschiri T., Arai K., Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water, Ind. Eng. Chem. Res., 2000, 39(8): 2883~2890
    [39] Hiroki A., Tsuyoshi S., Tetsuro K., Masao S., Yoshimitsu U., Yasuo H., Decomposition behavior of plant biomass in hot-compressed water, Ind. Eng. Chem. Res., 2000, 39(10):3688~3693.
    [40] 吕秀阳,迫田章义,铃木基之,纤维素在近临界水中的分解动力学和产物分布,化工学报,2001,52(6):556~559.
    [41] 吕秀阳,夏文莉,刘田春,Akiyoshi S.,Motoyuk s.,稻壳资源化新工艺的研究,农业工程学报,2001,17(2):132~135
    [42] Makiko N., Toshitaka F., Glucose production by hydrolysis of starch under hydrothermal conditions, J. Chem. Technol. Biotechnol., 2004, 79(3): 229~233.
    [43] Moreschi S.R.M., Petenate A.J., Meireles M.A., Hydrolysis of ginger bagasse starch in subcritical water and carbon dioxide, J. Agric. Food Chem., 2004, 52(6):1753~1758.
    [44] 高浩其,徐良峰,杨建平,陈开勋,壳聚糖在近临界水中降解及其工艺研究,西北大学学报(自然科学版),2004,34(4):436~438.
    [45] Kabyemela B.M., Takigawa M., Adschiri T., Malaluan R.M., Arai K., Mechanism and kinetics of cellobiose decomposition in sub-and supereritical water, Ind. Eng. Chem. Res., 1998, 37(2): 357~361.
    [46] Khajavi S.H., Nakazawa S.O., Kimura R.Y., Adachi S., Hydrolysis kinetics of trisaccharides consisting of glucose, galactose and fructose residues in suberitieal water, Biotechnol. Prog., 2006, 22(5): 1321~1326.
    [47] Khajavi S.H., Ota S., Kimura Y., Adachi S., Kinetics of maltooligosaccharide hydrolysis in subcritical water, J. Agric. Food Chem., 2006, 54(10): 3663~3667.
    [48] Oomori T., Khajavi S.H., Kimura Y., Adachi S., Matsuno R., Hydrolysis of disaccharides containing glucose residue in subcritical water, Biochem. Eng. J., 2004, 18(2): 143~147.
    [49] Kabyemela B.M., Adschiri T., Malaluan R., Arai K., Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water, Ind. Eng. Chem. Res., 1997, 36(6): 2025~2030.
    [50] Kabyemela B.M., Adschiri T., Malaluan R., Arai K., Kinetics of glucose epimerization and decomposition in subcritical and supercritical water, Ind. Eng. Chem. Res., 1997, 36(5): 1552~1558.
    [51] Kabyemela B.M., Adschiri T., Malaluan R., Arai K., Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms and kinetics, Ind. Eng. Chem. Res., 1999, 38(8): 2888~2895.
    [52] Matsumura Y., Yanachi S., Yoshida T., Glucose decomposition kinetics in water at 25 MPa in the temperature range of 448-673K, Ind. Eng. Chem. Res., 2006, 45(6): 1875~1879.
    [53] Khajavi S.H., Kimura Y., Oomori T., Matsuno R., Adachi S., Degradation kinetics of monosaccharides in subcritical water, J. Food Eng., 2005, 68(3): 309~313.
    [54] Watanabe M., Aizawa Y., Iida T., LevyC., Aida T.M., Inomata H., Glucose reactions within the heating period and the effect of heating rate on the reactions in hot compressed water, Carbohydr. Res., 2005, 340(12):1931~1939.
    [55] Asghari ES., Yoshida H., Acid-catalyzed production of 5-hydroxymethylfurfural from D-fructose in subcritical water, Ind. Eng. Chem. Res., 2006, 45(7): 2163~2173.
    [56] Girisuta B., Janssen L. P. B. M., Heeres H. J., Green chemicals a kinetic study on the conversion of glucose to levulinic acid, Chem. Eng. Res. and Design, (2006), 84(A5): 339~349.
    [57] Watanabe M., Aizawa Y., Iida T., Aida T.M., Levy C., Sueand K., Inomata H., Glucose reactions with acid and base catalysts in hot compressed water at 473K, Carbohydr. Res., 2005, 340(12): 1925~1930.
    [58] Asghari F. S., Yoshida H., Dehydration of fructose to 5-hydroxymethyl-furfural in sub-critical water over heterogeneous zirconium-phosphate catalysts, Carbohydr. Res., 2006, 341(14): 2379~2387.
    [59] Antal M J, Leesomboon T, Mok W S, Richards G N. Kinetic studies of the reactions of ketoses and aldoses in water at high temperature. 3. Mechanism of formation of 2-furaldehyde from D-xylose, Carbohydr. Res., 1991, 217:71~85.
    [60] Van Dam, H.E., Kieboom, A.P.G., Van Bekkum, H., The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural, Starch/Starke 1986, 38(3): 95~101.
    [61] Antal M.J., Mok W.S.L., Richards G.N., Kinetic studies of the reactions of ketoses and aldoses in water at high temperature. I. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose, Carbohydr. Res., 1990, 199(1): 91~109.
    [62] Qian, X.H., NimlosM. R., Johnson D. K., Himmel M. E., Acidic sugar degradation pathways. An Ab initio molecular dynamics study, Applied Biochemistry and Biotechnology 2005.121-124:989~997.
    [63] 李林,魏海峰,张兰,赵玲,楚晋,5-羟甲基糠醛类用于制备神经系统用药的用途,CN1565438,2005.
    [64] 普文英,5-羟甲基糠醛的药物用途,CN 1704050,2005.
    [65] 严永清,朱丹妮,陈婷,夏云,李志明,马晓红,5-羟甲基.2-糠醛的医药用途,CN1182589,1998.
    [66] Miyazawa Mitsuo, Anzai Jun, Fujioka Jun, Isikawa Yukio, Insecticidal compounds against drosophila melanogaster from Comus officinalis Sieb, Natural product research, 2003, 17(5): 337~339.
    [67] Huber G.W., Chheda J.N., Barrett C. J., Dumesic J. A., Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science, 2005, 308(3): 1446~1450.
    [68] Viallet A., Gandini A., Synthesis and photodimerization of 2, 5-furandiacrylic acid, J. Photochem. and Photobiol., 1990, 54(1): 129~130.
    [69] Dominguez C., Csaky A.G., Magano J., Plumet J., Reactions of 2,5-furandicarboxaldehyde with stabilized phosphonium ylides, Synthesis, 1989, (3): 172~175.
    [70] Crasp T.M., Sargent M.V., Synthesis and paratropicity of heteroatom-bridged
    [17] annulenones, J. Chem. Sot., 1973, 23: 2961~2971.
    [71] Sarzhevskaya V.P., Kornev K.A., Smirnova-Zamkova S.E., Polyamides with aromatic and heterocyclic links in the chain. Ⅺ. Polyamides based on piperazine and some heterocyclic dicarboxylic acids, Ukr. Khim. Zh., 1969, 35(4): 390~392.
    [72] Smay G.L., The characteristics of high-temperature resistant organic polymers and the feasibility of their use as glass coating materials, J. Mater. Sci., 1985, 20(4): 1494~1500.
    [73] Heertjes P.M., Kok G.J., Polycondensation products of 2,5-furandicarboxylie acid, Delft Progr. Rep., Ser. A, 1974, 1(2): 59~63.
    [74] Lewis J.C., Germination of bacterial spores by calcium chelates of dipicolinic acid analogs, J. Biol. Chem., 1972, 247(6): 1861~1868.
    [75] Duermenberger M., Schellenbaum M., Antibacterial 2,5-furandicarboxylic acid diamides, CH 532890, 1973.
    [76] Fraefel W., Lichti H.F., Brunetti M., Organ transplants, US4383832, 1983.
    [77] Roman-Leshkov Y., Chheda J.N., Dumesie J.A., Phase modifiers promote efficient dehydration of fructose to produce HMF, Science, 2006, 312(6): 1933~1937.
    [78] Horvat J., Klaie B., Metelko B., Sunjic V., Mechanism of levulinic acid formation, Terrahedron Lett., 1985, 26(17): 2111~2114.
    [79] 薛宝琪,王树生,果糖酸钙的制备方法及应用,CN1304923,2001.
    [80] 张一宾,周炎炎,5-氨基乙酰丙酸的植物生理活性,世界农药,2000,22(3):8~14.
    [81] 杨永祥,王耀,徐福利.富万钾有机钾肥对促进作物生长及提高作物产量和品质的效果,陕西农业科学,1997,(2):47~48.
    [82] 何柱生,赵立芳,分子筛负载TiO_2/SO_4~(-2)催化合成乙酰丙酸乙酯的研究,化学研究与应用,2001,13(5):537~539.
    [83] 毛多斌,段明清,丁乃红,α-当归内酯的合成及在烟草香精中的应用,郑州轻工业学院学报,1992,7(1):43~46.
    [84] Kitano M., Tanimoto E, Okabayashi M., Levulinic acid, new chemical raw material—Its chemistry and use, Chem. Econ. Eng. Rev., 1975, 7(7):25~29.
    [85] 汪培初,乙酰丙酸用作不定形耐火材料的结合剂,国外耐火材料,1993,18(10):11~15.
    [86] Bozell J.J., Moens L., Elliott D.C., Wang Y., Neuenscwander G.G., Fitzpatrick S.W., Bilski R.J., Jarnefeld J.L., Production of levulinlic acid and use as a platform chemical for derived products, Resources, Conservation and Recycling, 2000, 28(3-4): 227~239.
    [87] Lawson W E, Salzberg P L., Levulinic acid ester, US2008720, 1935.
    [1] Kabyemela B.M., Adschiri T., Malaluan R., Arai K., Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water, Ind. Eng. Chem. Res., 1997, 36(6): 2025~2030.
    [2] Kabyemela B.M., Adschiri T., Malaluan R., Arai K., Kinetics of glucose epimerization and decomposition in subcritical and supercritical water, Ind. Eng. Chem. Res., 1997, 36(5): 1552~1555.
    [3] Kabyemela B.M., Adschiri T., Malaluan R., Arai K., Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms and kinetics, Ind. Eng. Chem. Res., 1999, 38(8): 2888~2595.
    [4] Asghari F.S., Yoshida H., Acid-catalyzed production of 5-hydroxymethylfurfural from D-fructose in subcritical water, Ind. Eng. Chem. Res., 2006, 45(7): 2163~2173.
    [5] Girisuta B., Janssen L. P. B. M., Heeres H. J., Green chemicals a kinetic study on the conversion of glucose to levulinic acid, Chem. Eng. Res. and Design, (2006), 84(A5): 339~349.
    [6] Bobleter O., Bonn G, The hydrothermolysis of cellobiose and its reaction product D-glucose, Carbohydr. Res., 1983, 124(1):185~193.
    [7] Watanabe M., Aizawa Y., lida T., Aida T.M., Levy C., Sueand K., Inomata H., Glucose reactions with acid and base catalysts in hot compressed water at 473K, Carbohydr. Res., 2005, 340(12): 1925~1930.
    [8] Luijkx GC.A., Rantwijk F., Bekkum H., Formation of 1,2,4-benzenetriol by hydrothermal treatment of carbohydrates, Recl. Tray. Chim. Pays-Bas, 1991, 110(7-8): 343~344.
    [9] Horvat J., Klaic B., Metelko B., Sunjic V., Mechanism of levulinic acid formation, Terrahedron Lett., 1985, 26(17): 2111~2114.
    [10] 原江苏省轻化工业厅纤维水解研究所编,植物纤维水解生产,燃料化学工业出版社,1974,193~194.
    [1] Yoon K.Y., Woodams E.E., Hang Y.D., Enzymatic production of pentoses from the hemicellulose fraction of corn residues, LWT--Food Science and Technology, 2006, 39(4): 388~392.
    [2] Kabyemela B. M., Takigawa M., Adschiri T., Malaluan R. M., Arai K., Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water, Ind. Eng. Chem. Res., 1998, 37(2): 357~361.
    [3] Sasaki M., Fang Z., Fukushima Y., Adschiri T., Arai K., Dissolution and hydrolysis of cellulose in subcritical and supercritical water, Ind. Eng. Chem. Res., 2000, 39(8):2883~2890.
    [4] Lu Xiuyang(吕秀阳), Sakoda A., Suzuki M., Decomposition of cellulose by continuous near-critical water reactions, Chinese Journal of Chemical Engineering, 2000, 8(4): 321~325.
    [5] 蔡磊,吕秀阳,何龙,夏文莉,任其龙,高温液态水中果糖无催化分解反应动力学,化工学报,2005,56(4):677~680.
    [6] Jacobsen S. E., Wyman C. E., Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration, Ind. Eng. Chem. Res., 2002,41 (6): 1454~1461.
    [7] Nabarlatz D., Farriol X., Montane D., Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharides, Ind. Eng. Chem. Res., 2004, 43(15):4124~4131.
    [8] Antal M. J., Leesomboon T., Mok W. S., Richards G. N., Kinetic studies of the reactions of ketoses and aldoses in water at high temperature. 3. Mechanism of formation of 2-furaldehyde from D-xylose, Carbohydr. Res., 1991, 217:71~85.
    [9] Sasaki M., Hayakawa T., Arai K., Adschiri T., Measurement of the rate of retro-aldol condensation of D-xylosein subcritical and supercritical water, Editors: Fens Shouhua, Chen Jiesheng, Shi Zhan.Hydrothermal Reactions and Techniques. World Scientific Publishing, 2003:169~176.
    [10] Pavia D.L.,Lanpman GM.,Kriz GS.,近代实验有机化学导论,科学出版社,1985,323~324.
    [1] Schraufnagel R.A., Rase H.F., Levulinic acid from Sucrose Using Acidic Ion-Exchange Resins. Ind. Eng. Chem. Prod. Res. Dev., 1975, 14(1): 40~44.
    [2] Lourvanij K., Rorrer G.L., Reactions of aqueous glucose solutions over solids acid Y-zeolite catalyst at 110-160℃, Ind. Eng. Chem. Res., 1993, 32(1): 11~19.
    [3] Lourvanij K., Rorrer G. L., Dehydration of Glucose to Organic acid in Microporous Pillared Clay Catalyst, Applied Catalysis A: General, 1994, 109(1): 147~165.
    [4] Moreau C., Durand R., Razigade S., Duhamet J., Faugeras P., Rivalier P., Ros P., Avignon G., Dehydration of Fructose to 5-hydroxymethylfurfural over H-mordenites, Applied cataylysis A: General, 1996, 145(1-2): 211~224.
    [5] Moreau C., Durand R., Alies F., Cotillon M.; Frutz T.; Theoleyre M., Hydrolysis of sucrose in the presence of H-form zeolites, Industrial Crops and Products, 2000, 11(2-3): 237~242.
    [6] 张欢欢,陈丰秋,詹晓力,任其龙,环境友好催化剂催化葡萄糖水解的研究,工业催化,2006,14(5):27~29.
    [7] Seri K., Sakaki T., Catalytic activity of lanthanoide(Ⅲ) ions for dehydration of D-glucose to 5-(hydroxylmethyl)furfural, J. Molecular Catalysis A: Chemical, 1996, 112(2): L163~L165.
    [8] Seri K., Sakaki T., Ishida H., Catalytic Activity of Lanthanide(Ⅲ) Ions for the Dehydration of hexose to 5-Hydroxymethyl-2-furaldehyde in water, Bull. Chem. Soc. Jpn., 2001, 74(6): 1145~1150.
    [9] Seri K., Sakaki T., Shibata, M., Inoue, Y., Ishida, H., Lanthanum(Ⅲ)-catalyzed degradation of cellulose at 250℃, Bioresource Technology, 2002, 81(3): 257~260.
    [10] Carlo C., Giuttari M., Raspolli G., Anna M., Sbrana G., Armaroli T., Busca G., Selective Saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts, Applied catalysis A: general, 1999, 183(2): 295~302.
    [11] Benvenuti F., Carlini C., Patrono P., Raspolli Galletti, A. M.; Sbrana G., Massucci M. A., Galli P., Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carborthydrates, Applied catalysis A: general, 2000, 193(1-2):147~153.
    [12] Watanabe M., Aizawa Y., Iida T., Aida T.M., Levy C., Sueand K., Inomata H., Glucose reactions with acid and base catalysts in hot compressed water at 473K, Carbohydr. Res., 2005, 340(12): 1925~1930.
    [13] Asghari F. S., Yoshida H., Dehydration of fructose to 5-hydroxymethyl-furfural in sub-critical water over heterogeneous zirconium-phosphate catalysts, Carbohydr. Res., 2006, 341(14): 2379~2387.
    [14] Popken T., Gotze L., Gmehling J., Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis, Ind. Eng. Chem. Res., 2000, 39(7): 2601~2611.
    [15] Parra D., Izquierdo J.E, Cunill F., Tejero J., Fite' C., Iborra M., Vila M., Catalytic activity and deactivation of acidic ion-exchange resins in methyl tert-butyl ether liquid-phase synthesis, Ind. Eng. Chem. Res., 1998, 37(9): 3575~3581.
    [16] Lee M., Chiu J.Y., Lin H., Kinetics of catalytic esterification of propionic acid and n-butanol over amberlyst 35, Ind. Eng. Chem. Res., 2002, 41(12): 2882~2887.
    [17] Honkela M.L, Ouni T., Krause A.O., Thermodynamics and kinetics of the dehydration of tert-butyl alcohol, Ind. Eng. Chem. Res., 2004, 43(15): 4060~4065.
    [18] Cruz V.J., Izquierdo J.F., Cunill F., Tejero J., Iborra M., Fite C., Acidion-exchange resins catalysts for the liquid-phase dimerization/etherification of isoamylenes in methanol or ethanol presence, Reactive and Functional Polymers, 2005 65(1-2): 149~160.
    [19] Talwalkar S., Chauhan M., Aghalayam P., Qi Z., Sundmacher K., Mahajani S., Kinetic studies on the dimerization of isobutene with ion-exchange resin in the presence of water as a selectivity enhancer, Ind. Eng. Chem. Res., 2006, 45(4): 1312~1323.
    [20] Pavia D.L.,Lanpman GM.,Kriz GS., 近代实验有机化学导论,科学出版社,1985,323~324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700